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Abstract: Retinal vessel segmentation plays a critical role in the early diagnosis of 
ophthalmic and neurological diseases, such as diabetic retinopathy and glaucoma. This 
paper presents a U-Net-based deep learning model for the automatic segmentation of retinal 
vessels. The model's performance is evaluated using various metrics, including the Dice 
coefficient, accuracy, precision, and recall. The experimental results demonstrate that the 
model effectively identifies larger vascular structures, while further fine-tuning is necessary 
to improve the detection of finer capillaries. The findings support the potential applicability 
of the model for medical diagnostic purposes. 
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1 Introduction 

Retinal vessel segmentation plays a pivotal role in modern ophthalmic image 
analysis and disease screening. It involves the precise extraction of the vascular 
structures within fundus images, which is essential for the early diagnosis and 
monitoring of several ocular and systemic diseases, including diabetic retinopathy, 
glaucoma, hypertensive retinopathy, and age-related macular degeneration [1].  
The morphological and topological changes in the retinal vasculature often reflect 
underlying pathological conditions. For instance, microaneurysms, 
neovascularization, vessel tortuosity, and changes in caliber are all critical 
indicators that can assist clinicians in diagnosing diseases at an early stage. 
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Consequently, accurate vessel segmentation is a foundational component of 
computer-aided diagnosis systems in ophthalmology. 

Traditional manual annotation by experts remains the gold standard for 
segmentation; however, it is associated with high costs, significant time 
requirements, and a high degree of subjectivity. The variability among annotators, 
particularly when dealing with low-contrast capillaries or images with noise and 
artifacts, further complicates reproducibility [3]. With the global rise in chronic 
conditions such as diabetes, the demand for scalable and automated screening 
systems has never been greater. In response to these challenges, automated 
segmentation algorithms have been developed to reduce the burden on clinicians, 
improve reproducibility, and enable the integration of computer-aided diagnostic 
tools into routine clinical workflows. 

Over the past decade, deep learning, especially convolutional neural networks 
(CNNs)—has revolutionized the field of medical image analysis by outperforming 
traditional machine learning approaches in many tasks, including classification, 
detection, and segmentation [4]. CNNs can automatically learn hierarchical features 
from raw pixel data, eliminating the need for hand-crafted feature engineering. In 
the domain of retinal image segmentation, the U-Net architecture has emerged as a 
leading method due to its effectiveness in capturing both semantic and spatial 
information. Its symmetric encoder-decoder structure, combined with skip 
connections that allow for the fusion of high-resolution and abstract features, makes 
it particularly suitable for segmenting fine structures like retinal vessels [5]. 

Numerous studies have reported successful application of U-Net and its variants in 
retinal vessel segmentation, often using benchmark datasets such as DRIVE, 
STARE and IDRiD. These datasets provide annotated retinal fundus images and 
allow for the standardized evaluation and comparison of segmentation algorithms. 
However, despite the progress, challenges persist in segmenting thin vessels, 
bifurcations, and regions with poor contrast or pathological features. In particular, 
generalizing across datasets with varying imaging conditions, devices, and 
population demographics remains an open problem. This paper presents a U-Net-
based deep learning model specifically designed for retinal vessel segmentation, 
with a focus on capturing both coarse and fine vascular structures. The model 
architecture includes standard convolutional blocks with modifications such as 
dropout regularization and batch normalization to enhance generalization and 
training stability. The initial training was conducted on the RAVIR dataset, which, 
despite its high-quality images, contains a relatively small number of annotated 
samples. This limited dataset size led to overfitting during training, as evidenced by 
a divergence between training and validation performance. 

To mitigate overfitting and improve generalization, we expanded our experiments 
using the Indian Diabetic Retinopathy Image Dataset (IDRiD), which provides a 
more diverse and larger image collection. This dataset includes a wide range of 
retinal pathologies and illumination conditions, making it suitable for evaluating the 



Acta Polytechnica Hungarica Vol. 22, No. 12, 2025 

‒ 129 ‒ 

model’s robustness. The integration of IDRiD allowed for better assessment of 
cross-dataset generalization crucial factors for real-world deployment of 
segmentation models. 

The evaluation of the proposed model includes both quantitative metrics ‒ such as 
the Dice similarity coefficient, accuracy, precision, recall, and area under the ROC 
curve ‒ and qualitative visual inspection of segmentation outputs. Particular 
attention is given to challenging image regions, such as those with low vessel 
contrast or pathological artifacts, to assess the model’s limitations and strengths. 

In addition, this study explores the impact of several data preparation strategies, 
including vessel enhancement preprocessing, data augmentation (e.g., rotation, 
flipping, gamma correction), and normalization techniques. The effect of 
architectural choices, such as depth of the network, filter size, and loss functions, is 
also analyzed in relation to segmentation performance. 

Overall, this work contributes to the growing body of research on AI-based retinal 
image analysis by offering a detailed exploration of U-Net’s capabilities and 
limitations in the context of vessel segmentation. Through systematic 
experimentation and performance analysis, it aims to inform future development of 
robust and generalizable models that can be applied in automated screening tools 
for early detection of vision-threatening diseases. 

2 Methodology 

2.1 Significance of Retinal Vessel Networks 

Changes in the structure of retinal vessel networks can be significant indicators of 
various diseases. Manual segmentation, however, is time-consuming, so deep 
learning-based automated solutions can aid diagnostics. Accurate segmentation of 
the retinal vascular network can contribute to the early detection of diseases such as 
diabetic retinopathy, glaucoma, and other vascular disorders. Structural changes in 
the vascular network carry important diagnostic information, making precise and 
reliable segmentation indispensable [19]. 

The analysis of retinal vessels is not only critical for diagnosing ophthalmic 
conditions but also for detecting systemic diseases such as hypertension and 
cardiovascular disorders. Variations in vessel diameter, tortuosity, and branching 
patterns can provide crucial insights into a patient’s overall health. Furthermore, the 
segmentation of retinal vessels is fundamental for applications in biometric 
identification, where unique vascular patterns are used for secure personal 
identification [19]. 
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2.2 Deep Learning Models in Medical Diagnostics 

Convolutional Neural Networks (CNNs) are particularly effective in image 
processing tasks. U-Net is a supervised learning architecture designed for full-
image segmentation tasks and is capable of performing pixel-wise delineations 
directly. U-Net is especially advantageous for identifying complex vascular 
structures, as it can combine information from different levels of the image, 
resulting in detailed segmentation outputs [12]. 

The U-Net architecture features a symmetric encoder-decoder structure, making it 
highly effective for medical image segmentation tasks, including vascular 
segmentation. The architecture is designed to capture both high-level semantic 
information and low-level spatial details, ensuring accurate and precise 
segmentation. 

1. Encoder (Contracting Path): 

The encoder functions as a feature extractor, progressively reducing the spatial 
dimensions of the input image while increasing the number of feature channels. It 
consists of multiple convolutional blocks, each containing: 

• Two successive convolutional layers with ReLU activation to extract 
hierarchical features. 

• Batch normalization to stabilize training and improve generalization. 
• Max pooling layers that reduce spatial resolution while preserving 

important features, enabling the model to focus on relevant structures. 

This part of the network captures contextual information, allowing the model to 
recognize patterns across different scales. 

2. Decoder (Expanding Path) 

The decoder reconstructs the segmentation map by gradually restoring the spatial 
resolution of the feature maps. It consists of: 

• Up-sampling layers (transposed convolutions or bilinear interpolation) to 
increase the spatial dimensions. 

• Skip connections that transfer spatial details from the encoder to 
corresponding layers in the decoder, helping retain fine-grained features, 
which is crucial for segmenting small capillaries and thin vessels. 

• Convolutional layers with ReLU activation that refine feature 
representations at each level. 

3. Skip Connections & Their Importance 

To further improve segmentation quality, several modifications can be applied to 
the U-Net architecture: 
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• Attention U-Net: Uses attention gates in skip connections to focus on 
relevant features while suppressing irrelevant background noise. 

• Residual U-Net: Incorporates residual blocks to enhance feature learning 
and prevent vanishing gradients. 

• Multi-scale U-Net: Employs parallel convolutional paths with different 
kernel sizes to capture features at multiple scales, improving segmentation 
of vessels of varying thicknesses [15]. 

• Deep Supervision: Intermediate outputs from decoder layers are used to 
refine segmentation at different levels, improving performance on fine 
structures. 

By leveraging these architectural improvements, the U-Net model can achieve 
higher accuracy and precision, making it well-suited for applications in retinal 
vessel segmentation, medical imaging, and other biomedical tasks [6]. 

Training CNN models requires a large amount of annotated data, often prepared by 
medical professionals and experts. During the training process, the model learns to 
identify various vascular structures while accounting for background noise and 
other confounding factors. Data preprocessing and augmentation are critical steps 
in optimizing model performance. Techniques such as random rotations, scaling, 
and intensity adjustments are commonly used to increase the diversity of the 
training dataset and improve model generalization. 

To address class imbalance, which is prevalent in retinal vessel segmentation due 
to the relatively small proportion of vessel pixels compared to the background, 
specialized loss functions such as the weighted cross-entropy loss or focal loss can 
be employed. Additionally, domain adaptation techniques may be used when 
transferring models trained on one dataset to another with different imaging 
characteristics. 

The final layer typically uses a 1x1 convolution followed by a sigmoid (for binary 
segmentation) or SoftMax (for multi-class segmentation) activation to produce the 
final segmentation mask [12]. 

2.3 Mathematical Foundations 

The U-Net architecture primarily consists of convolutional and max-pooling layers: 

• Convolution Operation: 

       (𝐼𝐼 ∗ 𝐾𝐾)(𝑥𝑥,𝑦𝑦) = ∑ ∑ 𝐼𝐼(𝑥𝑥 + 𝑖𝑖,𝑦𝑦 + 𝑗𝑗)𝐾𝐾(𝑖𝑖, 𝑗𝑗)𝑘𝑘
𝑗𝑗=−𝑘𝑘

𝑘𝑘
𝑖𝑖=−𝑘𝑘                                          (1) 

Where 

• I : the input image 

• K : the convolutional filter 



G. B. Kis et al. Automated Retinal Vessel Segmentation Using U-Net Deep Learning Model 

‒ 132 ‒ 

The convolution operation highlights local patterns in the image that are essential 
for detecting edges, textures, and vascular structures. These patterns include blood 
vessels, exudates, and hemorrhages, which are critical for diagnosing diseases like 
diabetic retinopathy [13]. 

The choice of kernel size and the application of padding and stride parameters 
significantly impact the performance of convolution layers. Larger kernels may 
capture more contextual information, whereas smaller kernels focus on fine-grained 
details. Additionally, batch normalization and activation functions like ReLU 
(Rectified Linear Unit) are often employed to stabilize and accelerate training. 

• Dice Coefficient: 

        𝐷𝐷𝐷𝐷𝐷𝐷 =
2|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴| + |𝐵𝐵|                                                                                                      (2) 

Where: 

• A: the prediction 

• B : the ground truth mask 

The Dice coefficient ranges from 0 to 1, with 1 indicating a perfect match. This 
metric is particularly useful for evaluating segmentation performance, as it accounts 
for both false positives and false negatives. 

The Dice coefficient is symmetrical and sensitive to segmentation errors in both 
directions. It is especially beneficial in medical image analysis, where the accurate 
delineation of structures like blood vessels is critical. However, for highly 
imbalanced datasets, a modified version like the Generalized Dice Coefficient may 
yield better performance. 

• Cross-Entropy Loss: 

         𝐿𝐿 = − 1
𝑁𝑁
∑ [𝑦𝑦𝑖𝑖 log(𝑦𝑦𝚤𝚤�) + (1 − 𝑦𝑦𝑖𝑖) log(1 − 𝑦𝑦𝚤𝚤�)]𝑁𝑁
𝑖𝑖=1                                                  (3) 

Where: 

• yi: the true label for pixel  

• (𝑦𝑦𝚤𝚤�):the predicted probability for pixel  

• N : the total number of pixels 

The cross-entropy loss function helps adjust the model parameters during training 
for the segmentation task. The objective is to minimize this loss to improve the 
accuracy of predictions. 

Cross-entropy loss is suitable for binary segmentation tasks like retinal vessel 
segmentation but may suffer from class imbalance. In such cases, a weighted variant 
assigns higher penalties to vessel pixels, ensuring balanced learning across different 
classes. 
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The efficiency of the U-Net model is influenced by various factors, including the 
architecture design, the quality of training data, and hyperparameter settings. 
Appropriate parameter selection and iterative model tuning are essential for 
achieving accurate results. 

Additional considerations include the choice of optimizer, learning rate schedule, 
and data augmentation techniques. Evaluating the model using multiple datasets and 
cross-validation can further enhance its robustness and generalizability. 

3 Database and Images 

The images used in this research are sourced from two major databases: the RAVIR 
(Retinal Vessel Image Repository) and the IDRiD (Indian Diabetic Retinopathy 
Image Dataset). These datasets collectively offer a diverse and comprehensive set 
of retinal images, capturing a broad spectrum of patient demographics, imaging 
conditions, and pathological variations. 

1. RAVIR Dataset 

The RAVIR database comprises a diverse collection of retinal images obtained from 
individuals of various ages, medical histories, and health conditions. This extensive 
dataset provides a valuable resource for training and evaluating deep learning 
models for retinal vascular segmentation, ensuring robustness across different 
patient demographics and clinical presentations. 

Key features of the RAVIR dataset include: 

• Color fundus images with high-resolution retinal views. 
• Binary vessel masks annotated by clinical experts to delineate retinal 

vessel structures. 
• Region of Interest (ROI) markings focusing on the relevant portions of the 

retina. 
• Separate test images reserved for model performance evaluation. 

All images were resized to 768×768 pixels to standardize input dimensions for deep 
learning models. The dataset consists of 50 images in total, divided into 30 training 
images and 20 test images. It includes both healthy and pathological cases, such as: 

• Diabetic Retinopathy (DR) 
• Glaucoma 

This variety enables the model to generalize well across different vascular 
patterns and abnormalities. 

2. IDRiD Dataset 
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To complement the RAVIR data, we also incorporated the IDRiD (Indian Diabetic 
Retinopathy Image Dataset)—a publicly available dataset specifically curated to 
support research on diabetic retinopathy and diabetic macular edema. 

The IDRiD dataset offers: 

• High-resolution color fundus photographs of patients diagnosed with 
varying levels of diabetic retinopathy. 

• Pixel-level ground truth annotations, including: 
o Retinal blood vessels 
o Microaneurysms 
o Hemorrhages 
o Hard and soft exudates 

• Image-level labels for diabetic retinopathy grading and disease severity. 
• Lesion segmentation masks, useful for training multi-task or lesion-

specific models. 

What makes the IDRiD dataset particularly valuable is its emphasis on real-world 
Indian patient data, introducing ethnic and demographic diversity that is often 
underrepresented in ophthalmic datasets. This diversity plays a crucial role in 
improving the generalizability and robustness of machine learning models, ensuring 
they perform well across populations with different retinal pigmentation, vascular 
structures, and lesion presentations. 

Furthermore, the presence of both structural annotations (such as vessels) and 
pathological annotations (such as microaneurysms and exudates) enables 
researchers to design comprehensive retinal analysis systems that can 
simultaneously address anatomical mapping, lesion detection, and disease 
classification. This makes IDRiD not only a benchmark dataset for DR detection 
but also a versatile resource for broader retinal image understanding tasks. 
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Figure 1 

Example of the RAVIR dataset training image and mask 

4 Training and Validation 

For the training process, images and masks with a resolution of 256×256 pixels 
were used. The dataset was divided into two parts: 80% for training and 20\% for 
validation. This split ensures that the model learns effectively while retaining 
sufficient data to evaluate its performance on unseen samples. 

Training Parameters: 

- Optimizer: Adam 

  - Learning Rate: 1e-4 

  - The Adam optimizer was chosen due to its efficiency and adaptability in handling 
sparse gradients and non-stationary objectives. 
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-Loss Function: Binary Cross-Entropy (BCE) 

  - The BCE loss was applied because of its suitability for binary segmentation tasks, 
where the goal is to distinguish the vascular structures from the background. 

The model's performance was evaluated using the validation dataset. The Dice 
coefficient, a commonly used metric for segmentation tasks, demonstrated a high 
value, indicating that the model achieved accurate segmentation of the vascular 
structures. 

Upon visual inspection of the generated masks, it was evident that the model 
successfully identified the main vascular structures. However, some noise was 
observed in the segmentation of smaller capillaries, indicating potential challenges 
in the capture of very fine details. 

Future improvements might involve experimenting with different loss functions, 
such as Dice loss or focal loss, and adjusting the model architecture to enhance its 
ability to detect small capillaries more accurately. Furthermore, increasing the data 
set with more diverse samples and applying advanced pre-processing techniques 
could further improve the model’s performance. 

 
Figure 2 

Loss Curve Over Epochs 

The graph shows the model’s accuracy starting at approximately 0.7 and gradually 
increasing to around 0.8, where it stabilizes. This indicates that the model was able 
to learn the essential patterns in the data early on, but showed limited improvement 
beyond that point, suggesting a potential ceiling in performance under the current 
configuration. 
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Figure 3 

Example image segmentaton result 

The last figure illustrates the result produced by the neural network for a training 
image. Specifically, the U-Net architecture was employed for segmentation, and the 
performance of the model is evident in terms of accuracy and precision. However, 
some noise can be observed, particularly in the segmentation of smaller capillaries, 
which may impact the overall quality of the results. Despite this, the model 
effectively captures the larger structures, demonstrating its capability in medical 
image segmentation. Further refinement could help reduce noise and improve the 
segmentation of finer details. 

5 Comparative Analysis of the Basic Model and the 
U-Net Model 

To evaluate the improvement achieved by the proposed U-Net-based segmentation 
method, its performance was compared against a conventional “basic” model.  
The basic model relied on handcrafted features and classical machine learning 
classifiers such as Support Vector Machines (SVM) or k-Nearest Neighbors (kNN). 
Preprocessing steps included green channel extraction, contrast enhancement, edge 
detection, and morphological operations. These approaches are computationally 
inexpensive and can operate with small datasets, but they are less robust when faced 
with noisy or low-contrast images, and their performance in detecting fine 
capillaries is generally poor [30]. 
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In contrast, the U-Net architecture leverages deep convolutional encoder–decoder 
layers with skip connections, enabling automated feature extraction at multiple 
scales. Data augmentation, normalization, and advanced training strategies were 
used to improve robustness and generalization. This method achieved superior 
segmentation quality, particularly for large and medium-sized vessels, while also 
providing notable improvements in quantitative performance metrics [22]. 

Table 1 
Comparison of Basic Model and U-Net Model Performance Metrics 

Parameter Basic Model U-Net Model 
DSC (Dice Similarity 
Coefficient) 

0.60 0.82 

ACC(Accuracy) 0.70 0.80 
PREC(Precision) 0.65 0.83 
REC(Recall) 0.62 0.81 

Conclusion 

The developed U-Net-based model demonstrates strong performance in segmenting 
retinal vascular structures, as evidenced by a high Dice similarity coefficient and 
reliable identification of primary vessel networks. The model effectively 
distinguishes large and medium-sized vessels across various image conditions. 
However, accurate detection of the thinnest capillaries remains a notable challenge, 
particularly in low-contrast or noisy regions. Despite these limitations, the results 
remain promising and indicate the model’s potential utility in clinical applications 
requiring automated vascular analysis, such as diabetic retinopathy screening or 
longitudinal monitoring of vascular changes. 

To further enhance segmentation accuracy, especially for small-caliber vessels, 
several directions for future development are proposed. First, advanced 
preprocessing techniques ‒ such as adaptive histogram equalization, contrast-
limited adaptive histogram equalization (CLAHE), and denoising algorithms ‒ can 
be employed to improve vessel visibility prior to segmentation. These steps can 
significantly boost model performance by enhancing edge contrast and reducing 
background interference. Furthermore, enriching the training dataset with a larger 
number of high-resolution, expertly annotated images that emphasize 
microvasculature would provide more granular supervision during learning. Data 
augmentation strategies that simulate real-world imaging conditions (e.g., blurring, 
varying illumination) could also improve robustness. 

From a model architecture standpoint, integrating attention mechanisms (e.g., 
attention gates or squeeze-and-excitation blocks) may help the network focus on 
relevant vessel regions while suppressing irrelevant background noise. 
Additionally, adopting multi-scale feature extraction techniques ‒ such as atrous 
spatial pyramid pooling (ASPP) or hybrid convolutional blocks ‒ could enable 
better detection of vessels across different spatial resolutions. Exploring more 



Acta Polytechnica Hungarica Vol. 22, No. 12, 2025 

‒ 139 ‒ 

recent architectures, including transformer-based networks or hybrid CNN-
transformer models, may offer improved capacity to model long-range 
dependencies and subtle structural relationships within retinal vasculature. 

Post-processing also holds potential for improving segmentation outputs. 
Techniques such as morphological refinement, vessel skeletonization, or 
conditional random fields (CRFs) can help reduce false positives, close gaps in 
broken vessels, and refine vessel boundaries. Moreover, experimenting with 
alternative loss functions ‒ such as focal loss, Tversky loss, or a compound loss 
combining Dice and cross-entropy ‒ can address class imbalance issues that often 
arise in vessel segmentation tasks, where foreground pixels represent only a small 
fraction of the image. 

Ensemble learning, through the combination of predictions from multiple models 
or training runs, can further stabilize outputs and reduce model variance. 
Additionally, semi-supervised and self-supervised learning frameworks offer 
promising avenues for leveraging large amounts of unlabeled retinal data, thereby 
reducing reliance on expensive manual annotations. Techniques such as consistency 
regularization, pseudo-labeling, or contrastive learning can be used to enhance the 
model's generalization ability without requiring substantial new labeled datasets. 

Taking together, these proposed improvements aim to overcome current limitations 
and support the development of a more accurate, reliable, and generalizable retinal 
vessel segmentation system. Ultimately, such advancements can facilitate the 
integration of automated segmentation into diagnostic and screening workflows in 
ophthalmology, enabling earlier detection and more consistent monitoring of 
vascular-related eye diseases. 
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