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Abstract: Personalized therapy aims to generate treatments based on individual patient
characteristics, maximizing therapeutic efficacy while minimizing adverse effects. A
promising strategy involves modeling tumor progression and drug response through systems
of ordinary differential equations (ODEs), where patient- and tumor-specific physiological
properties are encoded in the model parameters. We present a novel framework that
utilizes neural network techniques to estimate the patient-specific physiological parameters
within a tumor model. While numerical integration is typically used to solve such models,
conventional ODE solvers lack support for automatic differentiation. This makes them
unsuitable for gradient-based training in neural network architectures. To overcome this
limitation, we incorporated a differentiable ODE solver. This enables an end-to-end training
process through gradient-based optimization and allows accurate parameter identification
directly from tumor volume measurements and dosing schedules. The approach was validated
on simulated datasets with varying noise levels, showing that it can reliably identify
model parameters that reproduce the underlying tumor dynamics. Accurate identification
of patient-specific parameters is essential for designing adaptive chemotherapy protocols,
thereby improving future treatment outcomes.

Keywords: parameter identification; machine learning; autoencoder; tumor model;
physiological parameters

1 Introduction

Cancer continues to be a major global health challenge, with nearly 20 million new
cases and 9.7 million deaths reported in 2022 [1]. The most frequently diagnosed
malignancies included lung, breast, colorectal, prostate and stomach cancers. These
types also contributed most significantly to cancer mortality. These statistics are
particularly concerning in low- and middle-income countries, where higher cancer
mortality rates are often linked to insufficient access to early detection and treatment
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services [1]. For many years, cancer treatment options for patients were limited to
surgery, radiation therapy, and chemotherapy, used separately or in combination [2].

While innovative methods, including targeted drug treatments and personalized
medicine, are now being extensively researched and applied, chemotherapy is often
still the best option for many patients [3, 4]. It is cost-effective compared to newer
treatments, making it accessible for a broader range of patients [5]. Nevertheless,
traditional chemotherapy typically employs a one-size-fits-all approach, resulting
in diverse responses and a list of side effects among patients due to individual
variability [6]. To solve this problem, personalized dosing strategies – such
as metronomic or reduced-intensity chemotherapy – have emerged as promising
alternatives, enabling personalized treatment plans that account for patient-specific
differences and often maintain efficacy while reducing toxicity [7–9].

In recent years, numerous research papers have been published questioning widely
applied high dosages, advocating for the use of lower amounts [7, 10–12].
Additionally, several studies propose control algorithms and mathematical models
to simulate tumor behavior and guide decision-making processes regarding drug
dosing [13–18]. Our research aims to optimize chemotherapy based on differential
equations that describe the tumor dynamics and the drug effect [19]. Previously, a
mathematical model was developed to describe both the natural growth of the tumor
and the pharmacodynamics and pharmacokinetics of the drug. By utilizing this
model, it is possible to determine an optimal dosing regimen based on measured,
temporal tumor data [20]. However, accurate estimation of model parameters is
essential to establish the optimal dosage regimen, as these parameters govern the
dynamics of the tumor model equations.

Accurate parameter estimation in biological systems is usually challenging due to
inherent complexities and nonlinear dynamics [21–24]. These complexities are
particularly present in physiological model fitting, where inter-individual variability
further complicates the modeling process. Physiological models often have a large
number of parameters, increasing computational cost and making optimization more
difficult. Another challenge is that clinical and experimental data are often sparse,
irregularly sampled, and noisy, making model fitting more challenging.

To address some of these limitations, the integration of neural networks with
systems of ordinary differential equations (ODEs) has gained significant attention
in the past few years [24–27]. One approach is a physics-informed neural
network, which utilizes the similarity between neural networks and differential
equations. The method incorporates the structure of differential equations directly
into the learning process, ensuring that machine learning models respect known
physical laws [28–31]. Another prominent framework is DeepONet, which is a
neural network-based architecture designed to learn mappings between function
spaces, making it highly effective for solving differential equations and parameter
identification. It uses a combination of two networks, namely branch and trunk
networks, to efficiently predict solutions or identify parameters in complex systems.
However, DeepONet generalizes well, but requires high-quality data and significant
computational resources for training [27]. An alternative significant development
in this area is Neural Ordinary Differential Equations (NODE). The architecture of
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a NODE treats the transformation of hidden states as a continuous process rather
than using discrete layers. They use an ODE solver to compute the evolution
of these states, allowing adaptive computation and efficient memory use. It is
particularly useful for modeling time-series data and systems with underlying
continuous dynamics [32–34]. These advancements in integrating neural networks
with ordinary differential equations highlight the growing potential for leveraging
machine learning in scientific and engineering applications. By embedding physical
laws directly into the learning process, these approaches ensure that predictions
remain consistent with real-world phenomena.

In this study, we propose a solution for parameter identification, which is an
essential phase in a research pipeline aimed at optimizing cancer therapy. In earlier
work, feed-forward neural networks were trained to predict model parameters,
however, this approach performed primarily as an initial estimate for subsequent
optimization methods [35]. Later, a framework combining two neural networks
was introduced to predict tumor model parameters [36]. Since conventional ODE
solvers do not support backpropagation, a second neural network was employed to
simulate tumor dynamics. However, this design increased model complexity and
reduced training accuracy, introducing additional sources of error and necessitating
pre-training with fixed dosing schedules. In this work, we address these challenges
by introducing a new architecture that replaces the second neural network with a
differentiable ODE solver, enabling a more flexible design and a more efficient and
accurate training process.

The tumor model utilized in this study is described in detail in Section 2. We
incorporated this model into our proposed framework to improve the accuracy of
the tumor model solution. The corresponding neural network architecture, also
presented in Section 2, functions as a parameter estimator. During evaluation, rather
than using a preset training dataset, we directly optimized the network on each tumor
volume time series. In other words, the weights of the network were tuned for
each individual case (each set of temporal tumor measurements) to find the best-fit
parameters. We validated our proposed framework using in silico input-output
pairs, applying different noise levels on the input tumor volume measurements.
Furthermore, run-time performance evaluation is discussed in Section 3.

2 Materials and Methods

2.1 The Architecture of the Algorithm

The proposed architecture is illustrated in Figure 1. It takes two input time series
of identical length L: the tumor volume measurements and the chemotherapy
dosing schedule. Tumor volumes are sampled specifically on Monday, Wednesday,
and Friday of each week, reflecting typical preclinical measurement intervals.
Chemotherapy doses are administered two or three times weekly, selected randomly
among weekdays, with each dose amount independently drawn from a uniform
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Figure 1
The architecture of the developed algorithms. The algorithm is designed to estimate tumor model
parameters from tumor volume and dosage data. Based on the identified parameters, optimized

therapeutic strategies can be formulated for more personalized treatment planning.

distribution ranging between 0 and 8 mg/kg. Both input time series have a
length of L, however, the tumor volume measurements are further refined through
interpolation at a fixed temporal resolution, introducing a predefined number of
intermediate points between each measurement. The improved temporal resolution
ensures finer granularity, which is essential for the accurate numerical integration of
the tumor model equations and is required by deep learning frameworks to maintain
differentiability throughout the training process.

The inputs are fed into the neural network, which then predicts the model
parameters. Subsequently, these parameters are mapped to a physiologically
relevant range using the transformation defined below. The output of the neural
network is p, the vector of the five predicted parameters. On the i-th parameter
value pi, the following transformation is applied:

p̃i = pi,min +(pi,max − pi,min)×σ(pi), (1)

where the sigmoid function σ(pi) is defined as:

σ(pi) =
1

1+ e−pi
. (2)

In (1), we apply the sigmoid function to each element of p, which is a column
vector with five elements, containing the predicted parameters. It transforms them
to values between 0 and 1, and then scales and shifts them to the intervals limited
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by pmin and pmax values. Each element is constrained within its corresponding
limits. The sigmoid function provides a smooth function, which is necessary for
differentiability during training.

The pmin and pmax values of the parameters are listed in Table 1. This mapping
ensures that the parameter values remain within biologically meaningful bounds.
Given that the parameters typically have units of day−1 or mg · kg−1, their upper
and lower limits are constrained by biological considerations.

Following the transformation of parameters to their respective ranges, a
differentiable ODE solver was employed to reconstruct the tumor volume time series
based on the given doses and parameter values. For simulated tumor volumes, the
loss function quantifies the error as the difference between the input tumor volumes
(indicated by the orange markers in the figure) and the predicted tumor volumes
(indicated by the green markers in the figure). This error is then backpropagated
through the neural network to update its weights. In the subsequent iteration, the
neural network predicts a new set of tumor model parameters that are more likely
to capture the original tumor dynamics. This process repeats until the discrepancy
between the original and predicted tumor volumes is minimized. At the end of
the training, the optimal parameter values are obtained. These values can be
used to characterize patient-specific properties, enabling the design of personalized
treatment strategies. This approach allows us to identify the most effective dosing
regimen for individual cases, as illustrated with the blue markers in Figure 1.

2.2 The Neural Network and the Training Hyperparameters

The neural network used in this work is designed to predict the parameters of an
ODE system representing tumor growth dynamics. The network consists of three
fully connected layers with 128, 64, and a latent dimension of 5 corresponding to
the number of estimated parameters (a, b, n, w, ED50). It uses ReLU activation
functions and a constant initialization for the final layer weights and biases. Since
the parameters predicted by this network are used in an ODE system, any large or
random initial outputs could cause the ODE solver to behave unpredictably or even
fail. Constant initialization ensures that the initial predictions are centered within
the parameter intervals after mapping, providing the network with a better starting
point for parameter estimation.

The training was carried out using the Adam (Adaptive Moment Estimation)
optimizer with a learning rate of 0.0001. The loss function calculated the mean
squared error of the predicted tumor volumes and the input tumor volumes. The
training process continues for a maximum of 500 epochs, or until the loss falls below
a threshold of 0.001, or shows no improvement for 10 consecutive iterations (early
stopping criterion). The model is saved, and the parameters are considered optimal
when the loss is minimal during the whole training iteration process. Regularization
was applied to the model parameters, and gradient clipping was used to prevent
exploding gradients. For longer time series measurements, we employed alternative
configurations due to the tendency of the model to converge to local minima. This
was particularly evident for time series exceeding 49 days, where the exponential
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growth characteristic of tumor dynamics could lead to increased error. In these
cases, we utilized torch.nn.SmoothL1Loss instead of torch.nn.MSELoss. The
torch.nn.SmoothL1Loss, also known as Huber Loss, is based on applying
different penalties depending on the error magnitude, thereby mitigating the impact
of large deviations and improving robustness in the presence of rapidly growing
tumor volumes.

2.3 The Tumor Model and the Differentiable ODE Solver

In order to describe the tumor dynamics, we utilized the tumor growth model
presented in [19]. This model is defined by a set of ordinary differential equations,
with four state variables, as detailed in (3)-(6). The first state variable, x1 [mm3],
represents the living tumor volume, while the second state variable, x2 [mm3],
captures the dead tumor volume in time. The state variables x3 [mg·kg−1] and x4
[mg·kg−1] describe the pharmacokinetics of the chemotherapeutic agent.

ẋ1 = (a−n)x1 −b
x1x3

ED50 + x3
, (3)

ẋ2 = nx1 +b
x1x3

ED50 + x3
−wx2, (4)

ẋ3 =−(c+ k1)x3 + k2x4 +u, (5)
ẋ4 = k1x3 − k2x4, (6)

The variable u denotes the impulsive input of the model. The injection was
considered over an infinitesimally short duration and injected directly into the blood.
The variable x3 describes the drug concentration in the first compartment (blood),
while x4 represents the drug concentration in the second compartment (tissue).

The model is validated using experimental data of mice, where tumor dimensions
(width and length) are measured with a caliper, and the total tumor volume (y)
is estimated using an approximation formula [37]. In the model, the total tumor
volume is represented as the sum of the state variables x1 and x2.

Since the analytical solution of this system of ordinary differential equations is not
known, we use numerical solvers. Specifically, a fourth-order Runge-Kutta solver
is employed to solve the differential equations over the defined time interval with
given initial conditions. The model parameters, summarized in Table 1, include a,
b, n, w, ED50, c, k1, and k2. The lower and upper bounds for these parameters are
based on previous mouse experiments, where nonlinear mixed-effects modeling was
used to estimate the parameter values of mice. The pharmacokinetic parameters c,
k1, and k2 were previously determined and therefore set to constant during training.

To solve the differential equations of the tumor model a special ODE solver was
needed. The differentiability of the ODE solver was crucial because the model
parameters are optimized via gradient-based methods. Without differentiability,
gradients of the loss function to the parameters cannot be computed, hindering
effective optimization. We implemented the introduced model in Python language.
We used the torchdiffeq package functions to solve the tumor model, as it
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Table 1
The name, applied minimum and maximum values, and unit of measure of the model parameters. The

aim of the presented algorithm is to determine these parameters.

Parameter Name Min. Max. Dimension

a Proliferation rate coefficient 0.0603 0.8147 day−1

b Drug efficiency rate coefficient 0.002368 33 day−1

n Necrosis rate coefficient 2.5360e-05 0.0461 day−1

w
Washout rate coefficient of
dead tumor cells

0.0704 0.0988 day−1

ED50
Median effective dose of
the drug

1.9256 2.3234 mg ·kg−1

c Clearance of the drug 1.8211 1.8211 day−1

k1

Flow rate coefficient of the drug
from the central to peripheral
compartment

14.008 14.008 day−1

k2

Flow rate coefficient of the drug
from the peripheral to central
compartment

136.2781 136.2781 day−1

provides differentiable ODE solvers compatible with automatic differentiation of
PyTorch framework [38]. It enables efficient gradient computation and parameter
optimization within a framework that integrates ordinary differential equations and
neural networks.

2.4 Simulation of Experimental Data for Model Validation

To evaluate the performance of the proposed architecture on time series data of
tumor volumes with known physiological parameters, we first generated simulated
datasets. Specifically, we created in silico tumor growth trajectories under
chemotherapy treatment across virtual mouse populations, each characterized by
distinct, predefined parameter sets.

Initial conditions for the tumor model were defined as follows: the living tumor
volume, x1(0) was initialized with a random value between 0 and 200 mm3,
reflecting typical starting points for tumor measurements. The remaining state
variables at t = 0 were initialized to zero based on biological assumptions. The
dead tumor volume (x2(0)) was presumed to be negligible. This is justified by the
value of necrotic rate n, which has much lower values than the tumor proliferation
rate a, see Table 1. Both the drug concentrations in the blood (x3(0)) and tissue
(x4(0)) were set to zero, reflecting the fact that no drug had been administered at the
initial time point.

The duration of the experiment is determined by its endpoint, which occurs either
upon euthanasia of the mouse due to excessive tumor size or upon completion of
the experiment. In simulations, we typically use a maximum duration of 105 days,
as this is the empirically established lifespan of a mouse with cancer with standard
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treatments or the time of remission followed by a reasonable amount of dormant
state for more advanced therapies [39].

Since excessive tumor size can also be the cause of the termination of the
experiment, only simulations in which the tumor volume remained below 2000 mm3

were utilized.

Tumor volume measurements were recorded three times weekly, reflecting the
frequency used in standard preclinical protocols. Chemotherapy dosing schedules
were randomly assigned to either two or three administrations per week, with
individual doses sampled from a uniform distribution ranging between 0 and 8
mg/kg. Synthetic tumor volume data were generated using parameter sets sampled
uniformly within the predefined ranges listed in Table 1.

To evaluate the effect of noise in realistic measurements, zero-mean Gaussian noise
was added to the tumor volume measurements. Tumor volumes were sampled
three times per week (Monday, Wednesday, and Friday) from the high-resolution
trajectory obtained by solving the tumor model with known parameters with an
ODE solver.

Noise was added only at the discrete measurement time points to reflect uncertainty
arising from various sources of error. The noise values were independently drawn
from a Gaussian distribution:

εi ∼ N (0,σ2), i = 1,2, . . . ,N (7)

where σ denotes the standard deviation of the noise, and N is the number of
measurement days. The standard deviation σ was defined as a fixed absolute value,
applied uniformly across all time points and samples in a given simulation. It
was not scaled relative to the tumor volume magnitude at each measurement point.
This modeling choice allows explicit control over the amplitude of measurement
uncertainty and its impact on training. However, it may underestimate the variability
of measurements at larger tumor sizes. To evaluate robustness, the noise level (σ )
was systematically varied, taking values of 0%, 10%, 20%, and 40%.

After noise was added, to meet the temporal resolution requirements of the ODE
solver, interpolation was applied to generate additional data points between the
original measurement days. A time step of 0.1 days was used, resulting in
1050 interpolated points over a 105-day period, compared to the original 105
measurements. This smaller stepsize was necessary to avoid large value jumps
between consecutive points, which could destabilize the training process. To
ensure smooth transitions and differentiability, we applied Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP) interpolation [40], which produces curves with
continuous first derivatives. This interpolation approach led to a more stable and
efficient training process compared to bigger time steps.
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3 Results

To evaluate the performance of the proposed architecture, we conducted simulations
of tumor volume time series under varying measurement duration and noise. Two
examples are presented in Figures 2 and 4. In both cases, tumor volumes were
simulated for 105 days using the same chemotherapy dosing regimen but with
different underlying parameter values.
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Figure 2
Example results for the 105-day tumor volume data with 10% noise are shown, with predicted tumor
volumes represented in blue and the noisy, original measurements in orange. In the lower figure, the

corresponding dosing regimen is visualized.
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Figure 3
Training loss evolution during the fitting process for the test case shown in Figure 2. The loss is

calculated as the mean squared error between predicted and original tumor volumes.
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In the upper panels of both figures, the temporal evolution of tumor volumes is
visualized. The original noisy measurements, sampled three times weekly (Monday,
Wednesday, Friday), are marked with orange circles. A blue dashed line represents
the interpolated values using PCHIP, which serves as the ground truth time series
for loss computation. The predicted tumor volumes, based on the optimized
model parameters, are shown in orange, with corresponding measurement-day
markers. Notably, the predicted curves closely follow the trend of the measured
data, suggesting that the model effectively captures the underlying tumor dynamics
even under moderate noise conditions.

The bottom figures illustrate the corresponding chemotherapy dosing schedules as
blue bars. These dose amounts were drawn randomly from a uniform distribution
and administered on two or three randomly selected weekdays.
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Figure 4
Example results for the 105-day tumor volume fitting are shown, with predicted tumor volumes

represented in orange and the original measurements in blue. In the lower figure, the corresponding
dosing regimen is visualized.

Figure 3 illustrates the trajectory of the training loss over the training epochs for
the case presented in Figure 2. The loss function, defined as the mean squared
error between the predicted and interpolated tumor volumes, exhibits a consistent
downward trend, indicating stable convergence of the parameter estimation process.
For this specific example, the final average deviation between the predicted and
reference tumor volumes after the training was 44.4 mm3, a level of accuracy that is
considered acceptable. However, the noise structure in vivo is often more complex
than the Gaussian noise assumed in this study [41]. A future direction involves
integrating more realistic noise models into the simulated data generation process,
thereby improving the representativeness of the training data and its alignment with
experimental conditions.
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To evaluate the parameter prediction capability of the model, parameter estimation
was performed on 100 distinct in silico datasets for each noise level with known
parameter values. To minimize computational time, the evaluation was conducted
with a measurement length of 14 and a maximum of 500 epochs. This upper limit
for the number of training iterations was determined empirically, as it was observed
that training generally converged to optimal solutions beyond 500 epochs.

The accuracy of parameter prediction was evaluated under varying levels of
Gaussian noise in tumor volume measurements, as described in Section 2. For each
noise level, we simulated 100 test cases. We assessed our method by comparing the
result tumor volume (defined by the determined parameters) to the original noiseless
tumor volumes.

The differences for these test cases are shown in Figure 5. The figure shows the
average differences between the predicted tumor volumes and the original tumor
volumes. The errors are categorized into 10 intervals, where the group ID represents
the maximum error of that group interval. The first interval shows a low error
between the fitted and the original data. We can see that for error levels of 0%,
10%, and 20%, the fitting error remains below 24.5 mm3 in at least 65% of the test
cases. A significant decrease in accuracy is observed at higher noise levels (40%).
Nevertheless, even in these cases, the maximum errors remain acceptable, typically
staying below 100 mm3. The median errors for noise levels of 0%, 10%, 20%, and
40% are 11.23, 11.03, 18.25, and 25.85, respectively, while the corresponding mean
errors are 31.53, 32.15, 35.20, and 40.67. These values indicate that low levels of
Gaussian noise have no significant impact on parameter estimation when applying
this method.
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Figure 5
The histogram of the errors between the predicted and original tumor volumes. The labels indicate the

error groups, with the ID including the maximum error of that interval. The label intervals are the
following: I-24.5: [0.09, 24.50], I-48.91: [24.50, 48.91], I-73.32: [48.91, 73.32], I-97.73: [73.32,
97.73], I-122.14: [97.73, 122.14], I-146.56: [122.14, 146.56], I-170.97: [0.09, 170.97], I-195.38:
[170.97, 195.38], I-219.79: [195.38, 219.79], I-244.20: [219.79, 244.20]. The error is determined

between the predicted tumor volumes – defined by the identified parameters – and the original tumor
volumes. Subsequently, the average of the absolute differences was calculated.
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We also assessed the intervals of the predicted parameters. Figure 6 illustrates
the distributions of the five parameters, with the original upper and lower limits
indicated by grey dashed lines. The distribution of the parameters is visualized with
a violin plot, which combines a box plot and a density plot, providing insight into
the distribution shape of the parameters. Although a uniform distribution was used
to generate the parameters, the predicted values exhibit similar to a bell curve.

This may be due to our test case restrictions, as we excluded data where the tumor
volume exceeded 2000 mm3, a threshold set to reflect realistic tumor sizes in mice.
This explanation is further supported by the observed parameter values, where the
proliferation rate (a) median is lower and the maximum drug effect (b) median is
higher than the center of the plot. This implies that we mainly excluded test cases
with significant tumor growth.
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Figure 6
The distribution of the predicted parameters. The grey dashed lines indicate the predefined intervals

from Table 1 used for sampling random parameter values from a uniform distribution within this
specified range.

Furthermore, we conducted a runtime evaluation as a function of measurement
length to assess the impact on computational efficiency. The measurement length
was incrementally increased by weeks (seven days), and for each point, the
evaluation was executed three times to ensure reliability. The average computation
times for each measurement length were then calculated. The results, presented in
Figure 7, show a linear relationship between computation time and measurement
length, indicating that as the measurement length increases, the computational
demands also increase proportionally. It provided helpful information for the
determination of the length of the measured tumor volumes during evaluation.

In summary, the results presented in this section demonstrate that the proposed
architecture can accurately estimate patient-specific model parameters across a
range of Gaussian noise levels. Notably, low to moderate noise (up to 20%)
does not substantially affect the performance of the algorithm. These findings
highlight the potential of the method for ODE-based personalized therapy, where
reliable parameter identification is necessary for effective treatment planning.
Furthermore, the integration of a differentiable ODE solver enables the tumor model
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Figure 7
The results of the runtime evaluation for varying input lengths. The input size (the number of

measurement days) was incremented by seven days. For each input size, runtime measurements were
conducted three times and the average value was calculated and visualized in this figure.

to be incorporated into neural network frameworks that rely on gradient-based
optimization, broadening its applicability across widespread machine learning
architectures.

It should be emphasized, however, that our evaluation was performed exclusively
on in silico datasets. In real experimental settings, measurement uncertainty
often depends on tumor volume. For example, caliper-based tumor volume
measurements exhibit volume-dependent variability: small tumors are associated
with higher relative error due to skin interference and manual handling, while
larger tumors tend to exhibit lower relative but higher absolute error [41]. Since
our noise model assumes a constant standard deviation across all measurements, it
may underestimate the true variability, particularly at larger tumor sizes. Future
work should therefore include more advanced noise modeling and validation
using experimental tumor volume data to assess the method’s robustness under
real-world measurement conditions. Additionally, benchmarking against existing
parameter estimation approaches would help contextualize the relative strengths and
limitations of the proposed framework.

Conclusion

In this study, we developed and evaluated a novel approach to estimate tumor
model parameters using a neural network, integrated with a differentiable ordinary
differential equation (ODE) solver. This framework allows for efficient and quick
parameter identification, facilitating personalized cancer therapy optimization. By
utilizing tumor volume data and dosing schedules, our model was able to predict
parameters that govern tumor dynamics, ensuring a high level of precision in the
fitted data. We evaluated our method using in silico tumor measurement data
under both noiseless and noisy conditions. Our results indicate that low levels
of Gaussian noise do not substantially affect parameter estimation performance,
whereas higher noise levels lead to decline in precision. However, it is important
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to note that the current validation was performed only on synthetic datasets. Future
work should aim to apply the framework to in vivo experimental data in order to
assess its robustness to measurement uncertainties. Furthermore, the integration of
more realistic noise models, along with comparative analyses against established
parameter estimation methods, would offer deeper insights into the practical utility
and relative performance of the proposed approach.

Acknowledgment

This project has been supported by the Hungarian National Research, Development
and Innovation Fund of Hungary, financed under the TKP2021-NKTA-36
funding scheme. The work of Dániel András Drexler was supported by
the Starting Excellence Researcher Program of Obuda University, Budapest
Hungary. Lilla Kisbenedek is also with the Obuda University, Applied
Informatics and Applied Mathematics Doctoral School, Budapest, Hungary. Lilla
Kisbenedek acknowledges the support of the National Talent Program under the
NTP-HHTDK-24-0078 project. This research was partially supported by the
European Union (EU HORIZON-MSCA-2023-SE-01-01) and the Hungarian NRDI
program (2020-2.1.1-ED-2024-00346) within the DSYREKI: Dynamical Systems
and Reaction Kinetics Networks project.

References

[1] F. Bray, M. Laversanne, H. Sung, J. Ferlay, R. L. Siegel, I. Soerjomataram, and
A. Jemal. Global cancer statistics 2022: Globocan estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal
for Clinicians, 74(3):229–263, April 2024.

[2] R. Kaur, A. Bhardwaj, and S. Gupta. Cancer treatment therapies: traditional
to modern approaches to combat cancers. Molecular Biology Reports,
50(11):9663–9676, October 2023.

[3] D. T. Debela, S. G. Muzazu, K. D. Heraro, M. T. Ndalama, B. W. Mesele,
D. C. Haile, S. K. Kitui, and T. Manyazewal. New approaches and
procedures for cancer treatment: Current perspectives. SAGE Open Medicine,
9:205031212110343, January 2021.

[4] J. C. Baltussen, N. A. de Glas, Y. van Holstein, M. van der Elst, S. Trompet,
A. U. den Boogaard, W. van der Plas-Krijgsman, G. Labots, C. Holterhues,
J. M. van der Bol, et al. Chemotherapy-related toxic effects and quality
of life and physical functioning in older patients. JAMA Network Open,
6(10):e2339116–e2339116, 2023.

[5] P. Aguiar, J. J. Adashek, F. Roitberg, C. M. Noia Barreto, A. Del Giglio, and
G. L. Lopes. In the era of cost-effectiveness analysis, affordability is a limiting
factor for patients’ access to innovative cancer treatments. Value in Health
Regional Issues, 20:47–50, December 2019.

[6] A. Hoeben, E. A. J. Joosten, and M. H. J. van den Beuken-van Everdingen.

– 24 –



Acta Polytechnica Hungarica Vol. 22, No. 10, 2025

Personalized medicine: Recent progress in cancer therapy. Cancers,
13(2):242, January 2021.

[7] C. Simsek, E. Esin, and S. Yalcin. Metronomic chemotherapy: A systematic
review of the literature and clinical experience. Journal of Oncology,
2019:1–31, March 2019.

[8] G. Ouyang, Y. Liu, J. Liu, L. Huang, F. Luo, and L. Li. Efficacy and
safety of reduced-dose chemotherapy plus immunotherapy in patients with
lung squamous cell carcinoma: A ¡scp¿real-world¡/scp¿ observational study.
Cancer Medicine, 12(18):18679–18690, September 2023.

[9] L. DeRidder, D. A. Rubinson, R. Langer, and G. Traverso. The past, present,
and future of chemotherapy with a focus on individualization of drug dosing.
Journal of Controlled Release, 352:840–860, December 2022.

[10] R. K. Jain, J. J. Lee, D. Hong, M. Markman, J. Gong, A. Naing, J. Wheler, and
R. Kurzrock. Phase i oncology studies: Evidence that in the era of targeted
therapies patients on lower doses do not fare worse. Clinical Cancer Research,
16(4):1289–1297, February 2010.

[11] M. A. Banks. Challenging the high-dose paradigm for cancer drugs. Nature,
December 2022.

[12] O. Y. Basar, S. Mohammed, M. W. Qoronfleh, and A. Acar. Optimizing cancer
therapy: a review of the multifaceted effects of metronomic chemotherapy.
Frontiers in Cell and Developmental Biology, 12, May 2024.

[13] M. Bodzioch, P. Bajger, and U. Foryś. Angiogenesis and chemotherapy
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D. A. Drexler. Positive impulsive control of tumor therapy—a cyber-medical
approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
54(1):597 – 608, 2024.

[40] F. N. Fritsch and J. Butland. A method for constructing local monotone
piecewise cubic interpolants. SIAM Journal on Scientific and Statistical
Computing, 5(2):300–304, 1984.

[41] M. Puskás and D. A. Drexler. Modeling the error of caliper measurements in
animal experiments. IEEE Access, 13:54836–54852, 2025.

– 27 –


