
Acta Polytechnica Hungarica Vol. 21, No. 10, 2024

When Is a Single “And”-Condition Enough?
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Abstract: In many practical situations, there are several possible decisions. Any general
recommendation means specifying, for each possible decision, conditions under which this
decision is recommended. In some cases, a single “and”-condition is sufficient: e.g., a condi-
tion under which a patient is recommended to take aspirin is that “the patient has a fever and
the patient does not have stomach trouble”. In other cases, conditions are more complicated.
A natural question is: when is a single “and”-condition enough? In this paper, we provide
an answer to this question.
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1 Formulation of the Problem
1.1 Need to describe conditions
In many practical situations, we need to make a decision. For example, a medical
doctor needs to decide what treatment to recommend for a patient. Usually:

• there are several possible decisions;

• so, to describe a general recommendation, we need to list conditions under
which each possible decision should be chosen.

In the simplest cases, these conditions are straightforward: e.g.,

“if a patient has a fever, recommend some fever reducer”.

In more complex cases, several such straightforward conditions must be satisfied.
For example, the condition to recommend aspirin can be described as

“the patient has a fever and the patient does not have stomach trouble”.
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We can call such conditions “and”-conditions.

In general, there can be several such “and” conditions that lead to the same action.
For example, the condition to recommend aspirin can take the following form:

“(the patient has a fever and the patient does not have stomach trouble) or the
patient has a strong headache”.

1.2 Conditions are often fuzzy
Word like “fever” are not precise. It is not true that:

• 37.9 is not a fever,

• but 38.0 is already a fever.

This Covid-time rule was clearly a simplification.

From the medical doctor’s viewpoint, fever is a matter of degree:

• one can have slight fever,

• one can have high fever, etc.

To describe such imprecise (“fuzzy”) words in precise terms, Lotfi Zadeh came up
with an idea of fuzzy logic, where with each such word, we associate a function m(x)
that assigns:

• to each possible value x of the corresponding quantity,

• the degree – on the scale from 0 to 1 – to which the given value has this
property (e.g., to which a patient has a fever).

This function is known as a membership function or, alternatively, a fuzzy set; see,
e.g., [1, 3, 4, 6, 7, 8].

Comment. The choice of 0-to-1 scale is just a matter of convenience. Instead, we
can choose, e.g.:

• the 0-to-10 scale – as in many polls, or

• the −1-to-1 scale – as in some expert systems (see, e.g., [2]).

1.3 A natural question
Since the component conditions are fuzzy, their “and”- and “or”-combinations are
also fuzzy. In general, a fuzzy condition means that we assign to each tuple
(x1, . . . ,xn) a degree f (x1, . . . ,xn) to which the given tuple satisfies this condition.

As we have mentioned:

• sometimes, a single “and”-condition is enough,

• sometimes more complex conditions are needed.

So, a natural question is:
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When is a single “and”-condition enough?

1.4 What we do in this paper
In this paper, we provide an answer to this question.

2 Let Us Formulate This Problem in Precise Terms
2.1 Towards a precise formulation

• We are given a condition f (x1, . . . ,xn), and

• we want to check when this condition can be represent by a single “and”-
condition.

By definition, an “and”-condition means

“x1 has the property m1 and . . . and xn has the property mn”

for some appropriate properties m1(x1), . . . , mn(xn).

In fuzzy logic, our degree of confidence in an “and”-combination is computed by
applying the appropriate “and”-operation f&(a,b) (also known as t-norm) to the
degrees of confidence of component statements.

So, our main question takes the following form:

When can a function f (x1, . . . ,xn) be represented as

f (x1, . . . ,xn) = f&(m1(x1), . . . ,mn(xn)) (1)

for some “and”-operation f&(a,b) and for some membership functions mi(xi)?

2.2 It makes sense to only consider smooth (differentiable) func-
tions

Usually, small changes in xi lead to small changes in the degree. So it makes sense to
assume that the function f (x1, . . . ,xn) is smooth (differentiable). From the practical
viewpoint, this assumption make sense; indeed:

• degrees are only known with some accuracy – e.g., hardly any expert can
distinguish between his/her degrees of confidence 0.80 and 0.81 – and

• any continuous function on a bounded domain can be approximated, with any
given accuracy, by a polynomial – i.e., by a smooth (actually, infinitely many
times differentiable) function.

Similarly, it makes sense to require that the membership functions m1(x1), . . . ,
mn(xn) are smooth.

As for the “and”-operation, there is a theorem (see, e.g., [5]) that:

• any “and”-operation can be approximated, with any given accuracy,
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• by a function of the type g(g−1(a) + g−1(b)) for some strictly monotonic
function g(x).

(Here g−1(x) denotes the inverse function, i.e., a function for which g−1(a) = b if
and only if g(b) = a.) Thus, it makes sense to restrict ourselves to such “and”-
operations.

Similarly to the cases of the original condition and membership function, we can
safely assume that the function g(x) is also differentiable.

2.3 Towards a precise formulation (cont-d)
For a smooth “and”-operation of the above type, the equality (1) take the following
form:

f (x1, . . . ,xn) = g(g−1(m1(x1)), . . . ,g−1(mn(xn))). (2)

This expression can be re-written as follows:

f (x1, . . . ,xn) = g(g1(x1)+ . . .+gn(xn), (3)

where we denoted gi(xi)
def
= g−1(mi(xi)).

Vice versa, if we have a description of the form (3), we can represent it in the form
(1) if we take mi(xi)

def
= g(gi(xi)).

Thus, we arrive at the following definition.

Definition. We say that a smooth function f (x1, . . . ,xn) can be represented by a
single “and”-condition if it can be described by the formula (3) for some smooth
functions g(x) and gi(xi).

Comment. Usually, in fuzzy logic, we only consider truth values from the interval
[0,1] – and thus, functions whose values are in this interval. However, as we have
mentioned earlier, we could as well choose any other interval instead. Because of
this, in our result, we do not restrict ourselves to the interval [0,1].

3 Main Result
Proposition. For any smooth function f (x1, . . . ,xn), the following two conditions
are equivalent to each other:

• this function can be represented by a single “and”-condition;

• for every two different indices i and j, we have

∂ 2

∂xi∂x j

(
ln
(

∂ f
∂xi

)
− ln

(
∂ f
∂x j

))
= 0, (4)

and for every three different indices i, j, and k, we have

∂

∂xk

(
ln
(

∂ f
∂xi

)
− ln

(
∂ f
∂x j

))
= 0. (5)
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Comment. When n = 2:

• there is only one pair of different indices, and

• we do not have three different indices.

So, in this case, the following single condition is sufficient:

∂ 2

∂x1∂x2

(
ln
(

∂ f
∂x1

)
− ln

(
∂ f
∂x2

))
= 0. (4a)

Mathematical comment. For our proof, it is sufficient to require that:

• the function f (x1, . . . ,xn) is three times differentiable, i.e., that it has deriva-
tives up to the third order:

∂ f
∂xi

,
∂ 2 f

∂xi∂x j
,

∂ 3 f
∂xi∂x j∂xk

,

• the function g(x) is one time differentiable, and

• the functions gi(xi) are two times differentiable.

Proof.

1◦. Let us first prove that:

• if the function f (x1, . . . ,xn) can be represented by a single “and”-condition –
i.e., can be represented in the form (3),

• then the function f (x1, . . . ,xn) satisfies the conditions (4) and (5).

1.1◦. Indeed, suppose that the function f (x1, . . . ,xn) has the form (3). Then, differ-
entiating the expression in the right-hand side of the formula (3) by xi, we conclude
that

∂ f
∂xi

= A ·g′i(xi), (6)

where:

• we denoted A def
= g′(g1(x1)+ . . .+gn(xn)) and,

• as usual, for functions of one variable, f ′(x) means the derivative.

1.2◦. By applying logarithm to both sides of the formula (6), we get:

ln
(

∂ f
∂xi

)
= ln(A)+ ln(g′i(xi)). (7)

So, the difference between such logarithms that appears in the left-hand sides of the
desired equalities (4) and (5) has the following form:

ln
(

∂ f
∂xi

)
− ln

(
∂ f
∂x j

)
= ln(g′i(xi))− ln(g′j(x j)). (8)
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1.3◦. Now, we are ready to prove the equality (5).

Indeed, the right-hand side of the expression (8) does not depend on any other vari-
able xk. So, the derivative of this right-hand side with respect to xk is equal to 0.

Thus, the condition (5) is satisfied.

1.4◦. To prove that the condition (4) is also satisfied, let us first differentiate the
right-hand side of the expression (8) with respect to x j.

The first term in the right-hand side of (8) does not depend on x j, so its derivative is
0. Thus, we have

∂

∂x j

(
ln
(

∂ f
∂xi

)
− ln

(
∂ f
∂x j

))
=− ∂

∂x j
(ln(g′j(x j))). (9)

1.5◦. The right-hand side of the expression (9) does not depend on xi, so its deriva-
tive with respect to xi is equal to 0 – which is exactly what the condition (4) is
about.

So indeed, if a function f (x1, . . . ,xn) can be represented in the form (3), then this
function satisfies the conditions (4) and (5). The first statement is proven.

2◦. Vice versa, let us prove that:

• if a smooth function f (x1, . . . ,xn) satisfies conditions (4) and (5),

• then this function f (x1, . . . ,xn) can be represented in the form (3) for some
smooth functions g(x) and gi(xi).

2.1◦. Indeed, due to the condition (5), the difference

Di, j(x1, . . . ,xn)
def
= ln

(
∂ f
∂xi

)
− ln

(
∂ f
∂x j

)
(10)

does not depend on any variables different from xi and x j. Thus, the expression Di, j
depends only on xi and x j:

Di, j(x1, . . . ,xn) = Di, j(xi,x j).

2.2◦. The condition (4) says that

∂

∂xi

(
∂Di, j(xi,x j)

∂x j

)
= 0. (11)
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The fact that the derivative with respect to xi is equal to 0 means that the differenti-
ated function does not depend on xi, i.e., that it depends only on x j:

∂Di, j(xi,x j)

∂x j
= Fi, j(x j). (12)

for some function Fi, j(x j).

2.3◦. For each xi, we can now integrate both sides of the equality (12) with respect
to x j. Thus, we conclude that

Di, j(xi,x j) = Ii, j(x j)+Ci, j(xi), (13)

where:

• by Ii, j we denoted the integral of Fi, j, and

• by Ci, j(xi), we denoted the integration constant – which, generally speaking,
depends on xi.

2.4◦. In particular, for i = 1, the expression (13) leads to:

D1, j(x1,x j) =C1, j(x1)+ I1, j(x j). (14)

In particular, for j = 2, we have:

D1,2(x1,x2) =C1,2(x1)+ I1,2(x2). (15)

2.5◦. From the definition (10), we can check that for every j which is different from
1 and 2, we have

D j,2(x j,x2) = D1,2(x1,x2)−D1, j(x1,x j). (16)

2.6◦. Substituting the expressions (14) and (15) into the formula (16), we conclude
that

D j,k(x j,x2) = (C1,2(x1)−C1, j(x1))+ I1,2(x2)− I1, j(x j). (17)

The left-hand side of this equality does not depend on x1. So the right-hand side
should not depend on x1 either.

Hence, the difference C1,2(x1)−C1, j(x1) cannot depend on x1 and is, thus, a con-
stant. Let us denote this constant by ci:

C1,2(x1)−C1, j(x1) = ci. (18)

Then,
C1, j(x1) =C1,2(x1)− ci. (19)
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2.7◦. Substituting the expression (19) for C1, j(x1) into the formula (14), we have

D1, j(x1,x j) =C1,2(x1)− ci + I1, j(x j), (20)

i.e.,
D1, j(x1,x j) = F1(x1)−Fj(x j), (21)

where:

• we denoted F1(x1)
def
= C1,2(x1) and

• we denoted Fj(x j)
def
= ci − I1, j(x j) for all j ̸= 1.

2.8◦. From (10), we conclude that

Di, j(xi,x j) = D1, j(x1,x j)−D1,i(x1,xi). (22)

Substituting the expression (21) into this formula, we conclude that for every i and
j, we have

Di, j(xi,x j) = Fi(xi)−Fj(x j). (23)

2.9◦. By definition of Di, j, the formula (23) means that

ln
(

∂ f
∂xi

)
− ln

(
∂ f
∂x j

)
= Fi(xi)−Fj(x j). (24)

Moving two terms to the opposite side of this equality, we conclude that

ln
(

∂ f
∂xi

)
−Fi(xi) = ln

(
∂ f
∂x j

)
−Fj(x j). (25)

2.10◦. Applying the function exp(x) to both sides of the equality (25), we conclude
that

1
ai(xi)

· ∂ f
∂xi

=
1

a j(x j)
· ∂ f

∂x j
(26)

where we denoted
ai(xi)

def
= exp(Fi(xi)). (27)

2.11◦. It is known that d f (x) = f ′(x) ·dx and thus, ai(xi) · xi = dXi, where:

• we denoted Xi = gi(xi) and

• we denoted gi(xi)
def
=

∫
ai(xi).
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Thus, the equality (26) takes the form

∂ f
∂Xi

=
∂ f
∂X j

. (28)

If we introduce new variables

u = Xi +X j and v = Xi −X j,

then (28) turns into
∂ f
∂v

= 0.

Hence f depends only on the sum Xi +X j.

Similarly, we can conclude that f only depends on the sum Xi +X j +Xk, etc., i.e.,
that

f (x1, . . . ,xn) = g(X1 + . . .+Xn), (29)

for some function g(x).

By definition, Xi = gi(xi). Substituting Xi = gi(xi) into the formula (29), we get
exactly the desired equality (3).

The statement is proven, and so is the proposition.
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