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Abstract: This study presents the Quite OK Encoding (QOE), a novel encoding algorithm 
designed for the efficient compression of multi-channel signals with a focus on losslessness, 
speed, and memory utilization. The evaluation of this algorithm was conducted using an 
electrocardiogram (ECG), a seismograph, and water parameter signals. The results indicate 
that it can effectively compress ECG signals, without relying on complex predictors, 
dictionaries, detectors, or additional encoding methods. The experiments targeted both two-
channel and twelve-channel ECG signals from the MIT-BIH arrhythmia database as well as 
the PTB Diagnostic ECG Database. The properties of the proposed algorithm were assessed 
concerning cross-correlation between channels. The compression properties of the proposed 
algorithm were evaluated as well with seismic and water analysis signals. The computing 
efficiency of the proposed algorithm was assessed on the ATMega328p and STM32F446RE 
microcontroller systems. The findings indicate that the STM32F446RE demonstrated 
superior results with fewer computing instructions required. 
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1 Introduction 

Lossless encoding algorithms are a type of compression technique that allows the 
reduction of data size without losing any of the original information. This property 
makes them particularly useful for applications where keeping the original quality 
of data is very important [1]. One of the fields where lossless encoding is vital is 
medicine, where doctors often need accurate data to precisely diagnose patients [2]. 
In modern medicine, one of the most commonly studied signals is the ECG. These 
signals are critical in the diagnosis and monitoring of heart conditions, and it is 
important to ensure that the data remains intact during the compression process. 

In recent years, numerous lossless encoding algorithms have been proposed and 
tested on ECG signals. In the study [3], an adaptive linear prediction and a two-
stage Huffman coding approach were used to compress ECG signals. Another study 
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[4] used an adaptive region prediction and variable length coding method. A peak 
detection and backward difference Huffman coding approach was presented in [5]. 
The algorithms proposed in [6] and [7] employ adaptive linear prediction and 
Golomb-Rice coding. While these algorithms can achieve a Compression Ratio 
(CR) greater than 2, they have the disadvantage of requiring some form of complex 
prediction algorithm or a dictionary, or they have a complex implementation. In the 
study [8], compression of ECG based on the Run Length Encoding (RLE) was 
proposed. Although this approach achieves high compression ratios (around 18), it 
is lossy and relies on Discrete Wavelet Transform (DWT) decomposition. In 
another study [9], the ECG compression method using ASCII character encoding 
was presented. The relatively high compression (around 7) was achieved, but the 
method contains operations that lead to computational complexity. The multi-lead 
measurement of ECG enables the diagnosis of cardiovascular diseases that may 
only be visible in specific channels. The 3-lead ECG is normally sufficient, but for 
high-precision measurement, mainly in hospitals, the 12-lead ECG monitoring 
system is used [10], [11], [12]. The multi-channel nature of the data is particularly 
intriguing for encoding using the proposed method. 

The seismograph signals are another typical example of multi-channel signals. We 
selected seismic activity signals due to the significant portion of these signals 
exhibiting either no change or only small fluctuations in amplitude. The proposed 
method is expected to achieve high compression ratios on seismic signals recorded 
during periods of low activity. Consequently, the proposed methods are expected to 
be well-suited for the long-term monitoring of slow-changing signals. According to 
[13], the seismic data are compressed through a quantization-based approach [14], 
prediction-based [15], transformation-based, Run Length Encoding [16] approach 
as well as compression based on machine learning  [17], [18]. The study [19] 
presented a compression algorithm based on deep learning, where the compression 
ratio is strongly influenced by the SNR (signal-to-noise ratio). Furthermore, the 
method is single-channel oriented and too complex for microcontroller 
implementation. In [20], a highly effective multitone model-based seismic data 
compression method was proposed. While the method achieves high compression, 
it also imposes high demands on computational power. The proposed method could 
be considered, to some extent, a hybrid solution integrating RLE with elements of 
prediction-based techniques. 

The multi-channel water parameter signals consist of signals originating from 
various sources. Probes placed on the surface of the river measure several 
parameters, including pH, salinity, temperature, and many others [21]. 
The proposed method is suitable for compressing multichannel signals of diverse 
origins. 

This article presents a universal multichannel lossless real-time encoding algorithm. 
The proposed method was initially introduced at the 26th IMEKO TC4 International 
Symposium and the 24th International Workshop on ADC/DAC Modelling and 
Testing, featuring a case study focusing on ECG signals [22]. The main benefits of 
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the proposed encoding algorithm include its memory efficiency, ease of 
implementation, and lack of reliance on complex predictors, dictionaries, detectors, 
or additional encoding methods. The proposed method's advantages are intended to 
be used in real-time systems, including Compressed Sensing (CS) applications. The 
CS systems [23], [24] could benefit from the use of lossless encoding algorithms. 

The article is organized as follows: The second section describes the proposed 
algorithm. This algorithm is explained in terms of a two-channel implementation, 
where both the algorithm and the compression data structure used are clarified. 
Subsequently, multichannel compression is described. The third section focuses on 
the experimental evaluation of the proposed algorithm. At the beginning of the third 
section, a comparison of the proposed method with some of the aforementioned 
ECG compression methods is conducted. Subsequently, the implementation of the 
proposed method on microcontrollers is evaluated. The subsequent experiments, 
addressed in the third section, focus on the compression of signals with more than 
two channels, such as twelve-lead ECG, seismic activity, and water parameters. At 
the end of this section, the influence of cross-correlation between channels on the 
compression achieved by the proposed method is assessed. 

2 The Proposed Algorithm 

In this paper, we propose an encoding algorithm inspired by the "Quite OK Image 
Format" (QOI), which is a lossless image encoding algorithm presented by Dominic 
Szablewski in [25]. The other algorithm of this author, which was inspiring for our 
work, is the lossy audio compression format, the “Quite OK Audio Format” (QOA) 
[26]. The QOI has been formally verified by [27], and is characterized by its ease 
of implementation and fast processing, and incorporates commonly used techniques 
such as run-length encoding as well as difference and dictionary-based 
compression. To achieve memory efficiency, the proposed method does not utilize 
dictionaries, instead, it relies on the RLE of sample differences. The RLE reduces 
the size of repetitive sequences by replacing consecutive identical elements with a 
count of the repetition and the element itself [28], [29]. For example, 
"AAAABBBCCDAA" would be encoded as "4A3B2C1D2A". RLE reduces 
redundancy with high effectiveness in data with long sequences of repeated 
elements. Due to its nature, RLE is not effective for data characterized by rapid 
amplitude fluctuations or frequent changes in values. The differentiation of samples 
is highly effective for suppressing redundancy before encoding, thereby introducing 
additive compression. 
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2.1 The Two-Channel QOE 

The proposed algorithm uses some of the techniques that are used in QOI, but also 
some techniques that have been optimized for two-channel signals. The flowchart 
of the proposed encoding algorithm is shown in Figure 1. 

 
Figure 1 

The proposed encoding algorithm 

For simplification, Figure 1 shows the algorithm for two-channel encoding.  
The encoding method employs three variables in its process. The first variable, 
denoted by 𝑠𝑠, stores the current two-channel sample, while the second variable, l, 
holds the previous two-channel sample. The third variable, 𝑟𝑟𝑟𝑟𝑟𝑟, is used for storing 
Run-length data. These variables are initialized to zero at the onset of the encoding 
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process. Subsequently, the encoding process involves the comparison of the two-
channel sample to the previous sample, and this comparison can yield four possible 
outcomes. Specifically, the sample may have the same value as the previous sample, 
in any one of the channels, or the difference between the two may fall within the 
interval of 〈−4, 3〉. Alternatively, the difference between the two samples, in any 
one of the channels, may lie within the interval of ⟨−64,−4) ∪ (3, 63⟩, or none of 
these cases. Each of these cases will be discussed in detail in the subsequent text. 

In the initial case, when the current sample value matches the previous one, the 𝑟𝑟𝑟𝑟𝑟𝑟 
variable is incremented. The algorithm then checks whether this variable has 
exceeded the threshold of 63. If so, a Run packet is encoded, and the 𝑟𝑟𝑟𝑟𝑟𝑟 variable 
is reset to zero. Moreover, the Run packet is encoded if the 𝑟𝑟𝑟𝑟𝑟𝑟 variable possesses 
a value greater than zero and the algorithm has not entered the initial case. It should 
be noted that the encoding of the Run packet occurs before the execution of any 
other cases. The Run byte is encoded and stored as illustrated in Figure 2. 

 
Figure 2 

Run packet encoding 

The first two bits in the Run packet represent the ID of the packet, and the remaining 
6 bits store the 𝑟𝑟𝑟𝑟𝑟𝑟 variable. When the difference between the current and previous 
samples falls within the interval of 〈−4, 3〉, the difference for both channels is 
calculated. This difference is then converted into a 3-bit number, encoded, and 
stored according to Figure 3a. The difference for the first channel is denoted as 𝑑𝑑1, 
while the difference for the second channel is denoted as 𝑑𝑑2. In the third case, when 
the difference between the two samples lies within the interval of 〈−64, 63〉 the 
encoding is similar to the previous case. The only difference is that two bytes are 
used, and the difference values are stored as 7-bit numbers as displayed in Figure 
3b. If none of the previously mentioned cases apply, a Raw value of the two-channel 
sample is encoded. To encode raw values, three bytes are required. The Raw values 
of the two-channel sample, denoted as 𝑟𝑟𝑟𝑟𝑟𝑟1 and 𝑟𝑟𝑟𝑟𝑟𝑟2, are stored as 11-bit values. 
The encoding of Raw values is depicted in Figure 3c. Each byte is encoded using a 
unique ID, which is employed in the decoding process to enable the decoding 
algorithm to determine how to decode the byte. 
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a) b) 

 

c) 

Figure 3 
The packet used by two-channel QOE a) Diff1, b) Diff2, and c) Raw 

The decoding process is a straightforward procedure. The decoding algorithm 
maintains a record of the preceding multi-channel sample and reads the encoded 
bytes. Depending on the mask, the algorithm reads either one, two, or three bytes. 
If a Run packet is encountered, the algorithm based on the value encoded in the Run 
packet produces samples of the previous value. If the Diff1 or Diff2 packet is read, 
the algorithm adds the value of the previous sample and the decoded difference. In 
the final scenario, when the Raw packet is read, the algorithm outputs only the Raw 
data contained within that packet. 

2.2 The Multichannel-Channel QOE 

The suggested approach is adaptable for two-channel as well as multichannel 
implementation. The block diagram of the multichannel QOE implementation is 
shown in Figure 4, where the length of the Run packet is intended to be 6 bits. 

 
Figure 4 

The block diagram of the multichannel QOE implementation 
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However, the Run packet's length can vary depending on signal properties; in such 
cases, the decision levels will be adjusted accordingly. In the block diagram, it is 
evident that a first-order difference is applied to each signal in the multichannel 
input. In the subsequent step, if all differences are equal to zero, the internal counter 
is incremented. When the counter surpasses a maximum value (it is 63 for “normal 
encoding”), the RunByte Encoder is activated. If the absolute value of the difference 
is greater than zero, the Run Encoder is employed to encode the preceding number 
of zero-value differences. Following this, the values of the differences or Raw data 
are encoded based on the maximum difference value among all channels. To 
maintain generality, decision levels in the block diagram are denoted as 
𝑑𝑑𝑑𝑑_1,𝑑𝑑𝑑𝑑_1,𝑑𝑑𝑑𝑑_2, and du_2. In our experiments for the “normal encoding”, these 
values are given as follows: 𝑑𝑑𝑑𝑑_1 = −4,𝑑𝑑𝑑𝑑_1 = 2,𝑑𝑑𝑑𝑑_2 = −64, and 𝑑𝑑𝑑𝑑_2 = 63. 
During the experiment, we will examine different constellations of packet lengths, 
and the scenario yielding the best results will be denoted as the “best-case”.  
The Run packet is the same as for the two-channel implementation. The Diff1, Diff2, 
and Raw packets will exhibit similarities, with the sole distinction being their 
appropriate length corresponding to the number of channels. The packets used for 
multichannel encoding are shown in Figure 5. 

  
a) b) 

 
c) 

Figure 5 
The packet used by multi-channel QOE a) Diff1, b) Diff2, and c) Raw 

 
PSEUDOCODE: 
s   – samples (vector Nx1, where N is the number of channels) 
ptr   – memory location where we save encoded data 
pre_s   – previous samples (vector Nx1) 
Run   – number of repeating samples 
d1_l, d1_u  – lower and upper decision levels for Diff1 encoding  
d2_l, d2_u  – lower and upper decision levels for Diff2 encoding 
RunMax  – limit for Run (for 6b RunMax = 64) 
// Global Variables (in RAM) 
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pre_s = 0 
Run = 0 
FUNCTION encode_sample(s, ptr) RETURNS out_bytes 
    out_bytes = 0      
    IF ALL(s == pre_s) THEN 
        IF Run >= RunMax THEN 
            out_bytes ++ 
            encode_Run_sample(ptr) 
            Run = 0 
        END IF 
        Run = Run + 1 
        update_variables() 
        RETURN out_bytes 
    END IF 
    IF Run > 0 THEN 
        out_bytes ++ 
        encode_Run_sample(ptr) 
        Run = 0 
    END IF 
    IF ALL(d1_l <= (s - pre_s) <= d1_u) THEN 
        out_bytes ++ 
        encode_Diff1_sample(ptr) 
        update_variables() 
        RETURN out_bytes 
    END IF 
    IF ALL(d2_l <= (s - pre_s) <= d2_u) THEN 
        out_bytes = out_bytes + 2 
        encode_Diff2_sample(ptr) 
        update_variables() 
        RETURN out_bytes 
    END IF 
    out_bytes = out_bytes + 3 
    encode_Raw_sample(ptr) 
    update_variables() 
    RETURN out_bytes 
END FUNCTION 

3 Experimental Results 

The initial experiment was concentrated on assessing the CR compared with five 
methods outlined in [5], [6], [7], [8], [9]. Emphasizing the swift implementation of 
the other methods under consideration, all algorithms, including QOE, underwent 
evaluation on a PC.  The evaluation used the MIT-BIH arrhythmia database [30]. 
This database contains a set of 48 ECG records sampled at 360 Hz with 11-bit 
resolution. The CR was calculated using (1). 

 CR =
𝑛𝑛𝑖𝑖
𝑛𝑛𝑜𝑜

, (1) 

where 𝑛𝑛𝑖𝑖 represents the number of bits used in the original data and 𝑛𝑛𝑜𝑜 represents 
the number of bits after compression. 
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Table 1 displays the average result obtained by the proposed method. The results 
from the previously mentioned methods are provided for comparison as well. 

Table 1 
Performance comparison of the proposed method with other methods in the MIT-BIH database 

Encoding technique Average CR 
Adaptive linear prediction + two-stage Huffman coding [3] 2.53 
Adaptive region prediction + variable length coding [4] 2.67 
Peak detection + backward difference Huffman coding [5] 2.64 
Adaptive linear prediction + content adaptive Golomb-Rice coding [6] 2.77 
Adaptive linear prediction + Golomb-Rice coding [7] 2.89 
Proposed Quite OK Encoding 1.98 

Based on the obtained results, it can be concluded that the proposed method 
produced an average CR that was approximately 25-45% lower than that of the 
other recent methods. As part of our analysis, we also report the minimum and 
maximum CR. The minimum CR of 1.54 was achieved for record 112, and the 
maximum CR of 2.36 was obtained for record 205. 

In addition to evaluating the method's speed, an assessment was conducted to 
analyze its encoding and decoding speed, algorithm size, and the average number 
of instructions per sample. The evaluation was carried out on a personal computer 
equipped with an Intel Core i7-10700 processor, operating at a frequency of 
2.9 GHz, and 16 GB of RAM. The proposed method was implemented in the C 
programming language. For timing evaluation, the function clock() and clock_t data 
type from time.h library were used. The algorithm was executed 1,000 times for 
each record, resulting in average encode and decode times of 6.46 ms and 5.29 ms, 
respectively. With 650,000 samples per record, the average encode and decode 
times per sample were 9.93 ns and 8.14 ns.  Certainly, the simulation's performance 
may have been influenced by the multitasking capabilities of the operating system, 
thereby restricting access to complete hardware resources. Consequently, a more 
precise evaluation of the algorithm's speed is conducted on various MCUs in the 
subsequent subsection. 

3.1 Different MCUs Implementation 

The third experiment was focused on the proposed algorithm's performance 
implemented on various microcontroller systems. The evaluation was performed on 
the ATmega328p and STM32F446RE. The clock frequency of both MCUs was set 
to 16 MHz. The algorithm was implemented in C as well as the assembler (ASM) 
programming language. The performance was assessed on real hardware boards. 
MCU ATMega was programmed in the Arduino IDE and was implemented on 
Arduino UNO. The STM32F446RE was programmed in STM32CubeIDE and 
implemented on NUCLEO-F411RE. The measurement was performed using a 4-
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channel RIGOL MSO5104 oscilloscope (100 MHz clock frequency and 8 GSa/s 
sampling rate). The encoding time was measured on pins 2 and 13 for STM and 
Arduino, respectively. When the encoding begins, the pin is set to logical 1, and 
when the encoding process completes, the pin switches to logical 0. At the 
beginning of the measure, the initial pulse was produced by the MCU to determine 
the duration of one pulse. The pulse duration can be easily converted to the number 
of MCUs’ instructions. Subsequently, the next pulses are produced during Run, 
Diff1, Diff2, and Raw encoding. The measurements were performed based on the 
scenario for two-channel encoding. The scenario simulates the worst-case encoding 
time for all encoding cases. The scenario is given as follows: 

 
PSEUDOCODE: 
out_buff – output buffer address 
// Experiment start pulse 
set_pin() 
reset_pin() 
// Perform Run encoding 
set_pin() 
encode_sample(0, 0, out_buff) 
reset_pin() 
// Perform Diff1 encoding 
set_pin() 
encode_sample(0, 3, out_buff) 
reset_pin() 
// Perform Run encoding to make the next encoding longer 
encode_sample(0, 3, out_buff) 
// Perform Diff2 encoding 
set_pin() 
encode_sample(0, 63, out_buff) 
reset_pin() 
// Perform Run encoding to make the next encoding longer 
encode_sample(0, 63, out_buff) 
// Perform Raw encoding 
set_pin() 
encode_sample(0, 256, out_buff) 
reset_pin() 
// Experiment stop pulse 
set_pin() 
reset_pin() 
 

For example, the output from RIGOL MSO5104 for C-programmed STM32 tested 
according to the scenario listed above is shown in Figure 6. The ATMega328p and 
the ASM programming were evaluated in the same way as the STM32 shown in 
Figure 6. 
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Figure 6 

The output from RIGOL MSO5104 for the C-programmed STM32 

The impulses are numbered in Figure 6 as follows: 1 – Initial pulse, 2 – Run, 3 - 
Diff1, 4 – Diff2, 5 – Raw, and 6 - Ending pulse. Hence, if 0.875 μs is the duration 
of the starting pulse, which has to be subtracted from the measured time, then the 
Run encoding for the 16 MHz system has (3,5625-0.875)/0.0625 = 43 instructions. 
The comparison of the compiled algorithm size and average number of executions 
for various microcontrollers is shown in Table 2. 

Table 2 
The comparison of the compiled algorithm size and average number of executions for the 

ATMega328p and STM32F446RE MCUs 

MCU ATMega328p STM32F446RE 

Programming 
ASM 

(PUSH) 
ASM 

(NO PUSH) 
C ASM C 

Number of 
instructions 

RUN 77 i 49 i 46 i 62 i 43 i 
DIFF1 114 i 86 i 106 i 82 i 66 i 
DIFF2 121 i 93 i 100 i 87 i 69 i 
RAW 112 i 84 i 142 i 86 i 70 i 

Algorithm 
implementation size 252 B 224 B 380 B 252 B 208 B 

The cells with a maximum number of instructions are highlighted, which represents 
the maximum possible time needed for encoding of the 2-channel sample. These 
results suggest that the STM32 provides much better performance. The best results 
(70 instructions and 208 B) are obtained for a C language programmed STM32.  
The best results for ATMega328p (93 instructions, and 224 B) are obtained for 
ASM implementation, where the used registers were not pushed on the stack (NO 
PUSH). Better results of STM32 are most probably achieved thanks to the 32-bit 
architecture compared with the 8-bit used by the ATmega328p. The better 
performance of STM programmed with the C language is most probably caused by 
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the good optimization of the C compiler implemented in the STM32CubeIDE 
studio. 

3.2 Compression Performance for Different Multichannel 
Signals 

The previous experiments were focused on the two-channel signals. The next 
experiments will be focused on multichannel signals. ECG signals can be acquired 
from multiple leads, with options ranging from 1 to 12 leads. In the next experiment, 
the proposed method was applied to the ECG signals from another database popular 
among scientists. The PTB [31] database contains 12-lead ECG signals, thus, the 
multichannel compression of the proposed method can be evaluated. This database 
contains a set of 549 ECG records from 290 subjects, sampled at 1 kHz with 16-bit 
resolution. Besides the conventional 12 leads, the database contains 3 Frank lead 
ECGs, respiration, and line voltage channels, which were excluded from our 
experiments. The CR was obtained according to (1). The proposed method applied 
to 12-lead ECG signals from the PDB database was evaluated on a PC on all 
records. The results of encoding performance are listed in Table 3, where the normal 
encoding and best-case lengths are shown. For the normal encoding, the length was 
chosen as shown in Table 3. The algorithm was additionally evaluated for all 
reasonable combinations of Run, Diff1, and Diff2 length. The average CR was 
calculated for the whole database, and then the combination with the highest CR is 
called the best-case. Based on the results listed in Table 3, it is possible to conclude 
that the QOE applied to 12-lead ECG signals achieves comparable results to the 
case of two-channel ECG encoding. 

Table 3 
The comparison of  Run, Diff1, Diff2, and Raw packet lengths and the evaluation of the average CR 

achieved by the normal and best-case encoding of 12-lead ECG records (PTB Database) 

 Normal encoding  The best-case  
RUN 6 1 

DIFF1 3 6 
DIFF2 7 9 
RAW 15 16 

Average CR 
(549 ECG records) 

2.174 ±0.238 2.350 ±0.192 

Numerous signals could be processed across multiple channels. The seismic activity 
record serves as a typical example of multichannel signals. The upcoming 
experiment focuses on compressing a seismic activity record from the earthquake 
that occurred in Japan on January 1, 2024. The selected record for our experiment 
spans 2 hours (from 6 a.m. to 8 a.m. UTC) and was captured by an STS-2 device 
[32] located at the JSD station. The sampling frequency was 20 Hz with a 24-bit 
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quantization resolution. The data were acquired from [33]. The quantization levels 
for our experiment were re-quantized to 11-bit, resulting in an average SNR of 
35.25 dB across all three channels. In Table 4, the mean value, as well as the best 
achieved CR for all 3 channels, are listed. 

Table 4 
The comparison of  Run, Diff1, Diff2, and Raw packet lengths and the evaluation of the CR achieved 

by the normal and best-case encoding of a 3-channel record of SA 

 Normal encoding  The best-case  
RUN 6 4 

DIFF1 3 2 
DIFF2 7 5 
RAW 11 11 

CR 5.841 6.648 

The following case study presents an evaluation of time-varying CR achieved by 
the proposed method when applied to the Seismic Activity (SA) record. In Figure 7, 
the 3-channel recording of the Ishikawa Prefecture earthquake from January 2024 
is depicted. 

 
Figure 7 

The 3-channel recording of the Ishikawa Prefecture earthquake from January 2024 
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Signals within the first 6 minutes represent a period of no SA, resulting in a high 
CR. The mean CR value is 22.22 with a standard deviation of 5.81. This high CR is 
attributed to the abundance of samples with identical values, allowing for efficient 
RLE. Over the following four minutes, there is a recording of low SA with a 
decreasing trend, leading to a gradual increase in CR. Moments before the 
earthquake, the CR reached approximately 14. During the main SA, all three 
channels exhibit high magnitudes, and the signal amplitudes change rapidly, 
resulting in a minimal CR of 1.02. As the SA diminishes, the CR gradually rises. 
However, records after the main wave contain numerous small oscillations, 
necessitating encoding with Diff1 and Diff2 packets. The mean CR value after the 
onset of the main wave is 3.19, with a standard deviation of 1.53. Based on this 
experiment, it can be concluded that the QOE is a suitable choice for long-term 
measurements where the observed phenomenon exhibits a slow-changing behavior. 
When rapid changes occur in the measured signals, the CR tends to be low. 
However, since high SA represents only a small portion of the total recording time, 
the lower CR during such periods does not significantly impact overall 
performance. Notably, the proposed method is compatible with low-power 
consumption MCUs, making it advantageous for implementation in outdoor 
measuring systems. 

The signals encoded by QOE do not have to be for the same physical unit. In the 
next experiment, the Water Parameter Signals (WPS) [34] were encoded by the 
proposed method. The signals contained in WPS were of various origins. These 
parameters are commonly measured in water: temperature, conductivity, salinity, 
PH, oxygenation, and re-dox. The records used in our experiment were taken by 8 
probes. In Figure 8, the record of atmospheric pressure, temperature, PH, and 
salinity of water from one of the probes placed in a river for four days is shown. 
From the chart, it is possible to conclude that the PH and salinity during the 
measurement time change slowly. The changes in the pressure are significant. These 
conclusions are valid for all of the probes used in the experiment. 

 
Figure 8 

The WPS record - atmospheric pressure, temperature, PH, and salinity of water 
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Each record has 105 entries taken in a one-hour interval. The four-channel encoding 
was applied to pressure, temperature, PH, and salinity. In Table 5, the mean value, 
as well as the best achieved CR for all 8 probes, are listed. 

Table 5 
The comparison of  RUN, DIFF1, DIFF2, and RAW packet lengths and the evaluation of the average 

CR achieved by the normal and best-case encoding of a 4-channel record of WPS 

 Normal encoding  The best-case  
RUN 6 1 

DIFF1 3 4 
DIFF2 7 6 
RAW 11 11 

Average CR 
(8 probes) 

1.649 ±0.0418 1.991 ±0.0213 

3.3 The CR Dependence on the Cross-Correlation between the 
Encoded Channels 

The last experiments were conducted to evaluate the performance of the proposed 
method concerning cross-correlation [35] between encoded channels. The initial 
assumption is that higher channel correlation leads to higher CR, as more samples 
can be encoded using Diff1 or Diff2 instead of Raw. The experiment is evaluated 
statistically for the Lobachevsky University Electrocardiography Database 
(LUDB) [36]. The cross-correlation was evaluated by using (2). 

 𝜌𝜌(𝑥𝑥,𝑦𝑦) =
1

𝑁𝑁 − 1
∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑥𝑥)(𝑦𝑦𝑖𝑖 − 𝜇𝜇𝑦𝑦)𝑁𝑁
𝑖𝑖=1

𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦
 (2) 

Where 𝑥𝑥 and y are channels of ECG records, 𝑁𝑁 is the number of samples, 𝜇𝜇𝑥𝑥 𝜇𝜇𝑦𝑦, 
are the mean values, and 𝜎𝜎𝑥𝑥, and 𝜎𝜎𝑦𝑦 are the standard deviations, respectively. 

Channels I and V6 are on average highly correlated (84.59%). On the other hand, 
channels I and AVR have minimal correlation (2.55%). The results of compression 
for 50 signals of LUDB are shown in Table 6. 

Table 6 
The comparison of  RUN, DIFF1, DIFF2, and RAW packet lengths and the evaluation of cross-

correlation impact on the average CR achieved by the normal and best-case encoding of two channels 
of 12-lead ECG records (LUDB Database) 

 Highly correlated ECG  Low correlated ECG 

 Normal 
encoding  

The best-
case  

Normal 
encoding  

The best-
case  

RUN 6 1 6 1 
DIFF1 3 4 3 4 
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DIFF2 7 9 7 9 
RAW 15 15 15 15 

Average CR 
(50 ECG records) 

3.330 
±0.338 4.643 ±0.362 3.560 ±0.440 4.999 ±0.410 

We show a case study to show the influence of cross-correlation on the CR achieved 
by QOE. In Figure 9 (a and b), two channels (I and V6) of record #16 (samples: 
from 712 to 2211 ) are shown. The cross-correlation between these channels is 
89.49%. The achieved CR was 3.346. In Figure 9c, the same record is shown, but 
the second channel was selected by minimal cross-correlation (0.47%). In this case, 
the average CR was 3.237. 

 
a) 

 
b) 

 
c) 

Figure 9 
The ECG signals of record #16 from the LUDB Database:  

a) channel I, b) channel V6, and c) channel AVR 

Based on the mean value of CR and standard deviation achieved during the last 
experiment, it is possible to conclude that the cross-correlation between channels of 
12-lead ECG signals has minimal influence on CR. 
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Conclusion 

This article introduced a novel encoding algorithm that is well-suited for the 
lossless, real-time, and memory-efficient encoding of multi-channel signals. This 
algorithm was named “Quite OK Encoding” (QOE). The algorithm is derived from 
the Quite OK Image algorithm, initially developed for fast and memory-efficient 
compression of images. The proposed algorithm was modified to multi-channel 
signal encoding. 

Initially, QOE was tested on two-channel ECG signals from the MIT-BIH 
arrhythmia database, and the results demonstrated that it achieved an average CR 
of 1.98. While the proposed method achieves a lower CR than other recent methods, 
its primary advantage lies in the algorithm's simplicity of implementation and 
memory efficiency. In contrast to other methods, it does not require complex 
predictors, dictionaries, detectors, or additional encoding methods. The proposed 
method on the lowlevel uses only subtraction and bit-shifting operations. These 
design features make the proposed algorithm a promising candidate for use in 
systems with limited memory or computing power resources, as well as in real-time 
applications. Thus, the QOE was implemented in the ATmega328p and 
STM32F446RE microcontrollers as well. The results suggest that 
the STM32F446RE achieves better performance than the ATmega328p. 
Subsequent observations suggest that implementation in the C language is more 
effective than the ASM implementation on STM32F446RE. This is likely due to 
the optimization of the C compiler in STM32CubeIDE. The best results for 
ATMega328p were achieved by the ASM programming language without using 
push instructions. 

To prove that the QOE is suitable for encoding various signals, we presented the 
experimental results achieved on 12-lead ECG signals from the Physikalisch-
Technische Bundesanstalt (PTB) database, 3-channel recordings of SA during the 
earthquake as well as 4-channel water parameter output of probes placed in the 
Slovak rivers. Based on the results of these experiments, it is possible to conclude 
that the QOE is suitable for lossless encoding of various multichannel data. Based 
on the results for SA compression, it is possible to say that the proposed method 
achieves a high CR if the input signals exhibit very few changes. On the other hand, 
when significant changes occur in the signal (i. e. the earthquake), the CR goes 
lower. Hence, the proposed method is suitable for long-term measurement of the 
signals without very frequent significant changes. The compression of WPS data 
was less effective than that of seismic data, mainly because the measurements were 
taken only once per hour. For example, atmospheric pressure or temperature may 
vary significantly over one hour. If the measurements were taken within a much 
smaller interval, the CR could be higher. Since all evaluated signals (ECG, SA, and 
WPS) were obtained from real-world sources, they inherently include additive 
noise. As such, the reported compression results already account for the algorithm's 
behavior under realistic noise conditions. 
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The last experiment was focused on the cross-correlation between channels. This 
experiment was conducted on the recordings of a twelve-lead ECG from the LUDB. 
The main hypothesis was that if the channels are highly correlated, the CR should 
be higher. However, this hypothesis was not confirmed. Although the CR was 
slightly higher for low-correlated signals, we conclude that cross-correlation has 
limited influence on the compression efficiency of QOE. 
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