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Abstract: Accurate and reliable localization is a key requirement in autonomous mobile 
robotics. The performance of EKF-based localization is highly dependent on the proper 
configuration of its process and measurement noise covariance matrices. This paper 
investigates the optimization of an Extended Kalman Filter (EKF)-based localization 
framework through three covariance tuning strategies, using Particle Swarm Optimization 
(PSO). The study focuses on the fusion of odometry and Absolute Positioning System (APS) 
measurements for successful localization of a wheeled mobile robot performing trajectory 
tracking. The first strategy optimizes the diagonal elements of the EKF’s process and 
measurement noise covariance matrices (R and Q), while the second method tunes motion 
model coefficients (α₁ and α₂) that govern uncertainty propagation from encoder data.  
The third approach introduces an adaptive model where angular velocity – measured by a 
gyroscope – is used to dynamically adjust these coefficients. Each method is evaluated on 
five real-world trajectories across seven fitness modes using RMSE, MAE, and MAXE 
metrics. Results show that all three strategies outperform the baseline EKF. Among them, 
the method based on tuning the process and measurement noise covariance matrices delivers 
the most consistent improvements, while the gyro-adaptive method achieves peak 
performance in highly dynamic scenarios. However, the latter displays higher variance, 
motivating future use of nonlinear models for improved robustness. The findings highlight 
the benefits of optimization-driven and context-aware tuning in enhancing EKF localization 
performance. 

Keywords: robot localization; sensor fusion; EKF; parameter tuning; Particle swarm; 
mobile robot 
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1 Introduction 

The accurate localization has a fundamental role in robotics, as the applications 
depend on the robot’s ability to determine its absolute position in their environment. 
There are several engineering applications that use Kalman-Filter (KF) based 
approaches to achieve suitable localization accuracy, such as precision agriculture 
[1] [2], autonomous vehicles [3], hospital research [4] or mobile robot systems [5]. 

Localization approaches are generally categorized into two main types: absolute (or 
global) localization and relative localization. Global localization refers to the 
process of determining a robot’s position within an environment without any prior 
knowledge of its starting point. This approach is commonly employed in outdoor or 
large-scale environments, where external infrastructure such as satellite-based 
systems, landmarks, or beacons can be leveraged [6-8]. In contrast, relative 
localization assumes an initially known position and continuously updates the 
robot's pose based on sensor readings. This method is widely used in structured or 
indoor environments, where global references are unavailable or unreliable, relying 
instead on data from onboard sensors such as inertial measurement units (IMUs), 
wheel encoders, or vision systems [9] [10]. 

Localization is typically achieved through multi-sensor fusion, where absolute and 
relative measurements are integrated to estimate the robot's position, pose, and 
trajectory. One of the most widely used methods for this purpose is the Extended 
Kalman Filter (EKF), which provides a recursive framework for fusing data from 
sensors such as wheel encoders, IMUs, LiDARs, and absolute positioning systems 
(APSs). Several studies have demonstrated the effectiveness of EKF-based fusion 
techniques in improving localization accuracy across different domains. For 
example, in [11], an EKF was applied to fuse odometry and ultrasonic positioning 
data, significantly reducing the average error in indoor environments, achieving 
below 10 cm average position error. In [12], a fusion is proposed between RSSI and 
Phase Shifting data, by a KF, which leads the authors to get a position error less 
than 6.6 cm. Advanced variants such as the Taylor expansion-based EKF (TEKF) 
[13] and the Unscented Kalman Filter (UKF) [14] [15] have been proposed to 
address the linearization limitations of traditional EKFs. These techniques 
demonstrated better handling of non-linear dynamics and higher robustness in 
sensor-degraded scenarios. In [16], the authors proposed a system that uses UKF to 
achieve around 10% less position error than a regular KF. 

Although EKF-based fusion is widely adopted, the accuracy of such systems is 
strongly influenced by the configuration of the noise covariance matrices 𝑹𝑹 (process 
noise) and 𝑸𝑸 (measurement noise). Inappropriate tuning of these matrices can lead 
to filter divergence or degraded accuracy. Traditionally, these parameters are either 
set heuristically or manually tuned, based on prior experiments. However, this 
process is often time-consuming, suboptimal, and not generalizable across different 
environments or robot platforms [17]. To address this challenge, recent research has 
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explored the application of optimization algorithms to automatically identify 
optimal or near-optimal values for 𝑹𝑹 and 𝑸𝑸. Among these methods, Particle Swarm 
Optimization (PSO) has gained attention due to its global search capabilities and 
ease of implementation. For instance, PSO has been applied to optimize filter 
parameters for autonomous vehicle path planning [18], AUV navigation [19], and 
a SLAM application for Forward-Looking Sonar [20] or for an RGB-D Camera-
based system [21]. These applications consistently outperform static or manually 
tuned EKF configurations. 

This paper focuses on the global optimization of the noise parameters in EKF-based 
localization systems using PSO. In contrast to a previous study [22] that primarily 
investigated the impact of varying the update frequency and measurement noise 
levels of APS, this work assumes fixed update rates and noise characteristics, 
thereby isolating and analyzing the effect of EKF parameter tuning on localization 
performance. The proposed methodology evaluates three distinct optimization 
strategies. First, the diagonal elements of the process noise covariance matrix 𝑹𝑹 and 
the measurement noise covariance matrix 𝑸𝑸 are optimized independently to identify 
their most effective configuration for each trajectory and evaluation mode. Second, 
the parameters 𝛼𝛼1 and 𝛼𝛼2, which govern the propagation of uncertainty from wheel 
encoder measurements in the motion model, are adjusted to better represent motion-
induced noise within the prediction step of the EKF. Finally, the third scenario 
introduces a more advanced, adaptive formulation in which gyroscopic 
measurements are incorporated to dynamically modulate the control noise 
parameters, effectively linking angular velocity to model uncertainty. This gyro-
based extension allows the filter to respond to environmental and kinematic 
variations in real-time, enhancing robustness in dynamic or uneven terrain.  
The performance of each optimization strategy is systematically assessed across 
five distinct real-world trajectories using seven evaluation metrics based on Root 
Mean Square Error (RMSE), Mean Absolute Error (MAE), Maximum Error 
(MAXE), and their combinations. The experimental results confirm that all three 
approaches contribute to measurable improvements in localization accuracy, 
demonstrating the benefits of data-driven, scenario-specific tuning of EKF 
parameters in multi-sensor fusion frameworks. 

The rest of this paper is organized as follows. Section 2 describes the simulation 
setup, including the reference trajectories, the fitness functions, and the evaluation 
metrics briefly introduces the EKF framework used in this study and presents the 
PSO strategies applied to optimize the filter parameters. Section 3 presents the 
obtained results and analyses the improvements in localization accuracy under 
different optimization scenarios. Finally, Section 4 concludes the paper and outlines 
directions for future work. 
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2 Methodological Framework 

2.1 Experimental Setup and Trajectory Data 

The 2D localization performance is evaluated on a differential drive wheeled robot 
that follows five predefined real-world trajectories (Track 1-5). The robot is 
equipped with incremental wheel encoders, and during each experimental run, the 
encoder readings are recorded to simulate odometry. These encoder-derived 
trajectories serve as the baseline for localization, which is then enhanced using 
EKF-based sensor fusion with APS measurements. 

To ensure controlled experimentation, the APS coordinates are not derived from 
real sensors but are artificially generated using ground truth data. The generation 
process comprises two stages: selection and perturbation. In the selection phase, 
APS updates are sampled at a fixed frequency of 1 Hz from the ground truth path. 
In the perturbation phase, zero-mean Gaussian noise with a standard deviation of 
60mm is added to the coordinates. This simulates realistic APS noise under 
consistent conditions across all trajectories. The details of this experimental setup 
are described in [22]. 

Figure 2 illustrates a) the differential drive robot equipped with wheel encoders and 
b) a representative test track layout recorded during experimentation while Figure 
2 depicts the five reference trajectories used in the evaluation, 

 

 
Figure 1 

a) The differential drive mobile robot used in the experiments. 
b) A snapshot of one of the predefined test tracks during deployment. 
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2.2 The EKF Framework 

The EKF framework adopted in this study builds upon the methodology detailed in 
[22], offering a reliable and well-established basis for multi-sensor data fusion.  
The filter operates in two iterative steps: the prediction phase estimates the robot’s 
next state using motion inputs derived from wheel encoder data, while the update 
phase incorporates simulated APS observations to correct this estimate. The APS 
updates are provided at a fixed frequency of 1 Hz, and Gaussian noise with a 
standard deviation of 60 mm, is consistently applied across all scenarios, to model 
real-world measurement uncertainty. 

Unlike previous studies focusing on alternative sensor fusion approaches or varying 
APS characteristics, this work retains a fixed measurement frequency and noise 

 
Figure 2 

Example trajectories used during the experimental evaluation 
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profile to isolate and investigate the effects of different noise parameter tuning 
strategies. The EKF implementation is not re-derived here, as its mathematical 
formulation ‒ including state propagation, covariance prediction, Kalman gain 
calculation, and state correction ‒ is directly based on the formulation presented in 
[22]. By maintaining a consistent filtering architecture, the study can focus 
exclusively on the effect of parameter tuning via PSO. This enables the evaluation 
of how different noise model configurations influence localization accuracy, 
independent of external sensor variability or changes in filter design. 

2.3 Optimization Strategies 

To enhance the localization accuracy of the EKF-based sensor fusion system, three 
distinct optimization strategies were developed, each leveraging the global search 
capabilities of Particle Swarm Optimization (PSO). These strategies target different 
components of the noise modelling process within the EKF framework and are 
designed to explore how data-driven tuning can improve performance under fixed 
sensing conditions. 

2.3.1 R and Q Diagonal Elements Optimization 

In the first strategy, the focus is placed on directly tuning the noise covariance 
matrices of the EKF. These matrices – 𝑹𝑹 ∈  ℝ3𝑥𝑥3 representing the process noise, 
and 𝑸𝑸 ∈  ℝ2𝑥𝑥2 representing the measurement noise – play a critical role in the 
filter’s ability to accurately estimate the robot’s position. Improper settings can lead 
to significant drift or instability in the state estimation. Despite their importance, 
these parameters are often manually tuned or kept constant across different 
environments and robots, which reduces adaptability and generalization. To 
overcome this limitation, the elements of both matrices are treated as optimization 
variables. Assuming diagonal structure for both 𝑹𝑹 and 𝑸𝑸, the optimization targets 
five variables: 

𝑹𝑹 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3)       (1) 

𝑸𝑸 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑞𝑞1, 𝑞𝑞2)       (1) 

The five variables are constrained by the following search bounds: 𝑟𝑟1, 𝑟𝑟2  ∈ [1, 105], 
𝑟𝑟3  ∈ [10−6, 1], 𝑞𝑞1, 𝑞𝑞2  ∈ [10, 104]. These ranges were selected to balance 
flexibility and numerical stability. The PSO algorithm is configured with 50 
particles and runs for 150 iterations. To ensure statistical reliability and avoid bias 
due to initial swarm configurations, 20 independent seeds are used in each case.  
The optimization is carried out over five distinct tracks and seven evaluation modes, 
which include RMSE, MAE, MAXE, and weighted combinations of these error 
metrics. 
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Although the APS updates are generated using a fixed Gaussian noise model with 
a standard deviation of 60 mm, the decision to include the 𝑸𝑸 matrix in the 
optimization process was motivated by practical considerations. In real-world 
systems, sensor noise characteristics are often only approximately known or can 
vary due to environmental interference, sensor aging, or imperfect calibration. 
Therefore, optimizing 𝑸𝑸 allows the system to account for these uncertainties 
implicitly, potentially improving robustness and generalization. 

This method provides a globally optimal EKF configuration per track and objective 
function, under fixed APS conditions. By evaluating the performance across 
multiple tracks and fitness metrics, this strategy serves as a baseline for comparison 
with more advanced methods. 

2.3.2 Motion Model Coefficients Optimization 

In this approach, rather than optimizing the entire noise covariance matrices, the 
focus shifts to tuning two scalar coefficients – 𝛼𝛼1 and 𝛼𝛼2 – that directly influence 
the control noise modelling in the EKF’s prediction step. These coefficients are 
embedded in the noise formulation of the odometry-based motion model and affect 
how translational and rotational uncertainties are quantified based on encoder 
readings. 

In the EKF formulation, the variances 𝜎𝜎𝑙𝑙2 and 𝜎𝜎𝑟𝑟2 of the control noise for the left and 
right wheels are defined as [22]: 

𝜎𝜎𝑙𝑙2 = (𝛼𝛼1𝑙𝑙)2 + (𝛼𝛼2(𝑙𝑙 − 𝑟𝑟))2      (3) 

𝜎𝜎𝑟𝑟2 = (𝛼𝛼1𝑟𝑟)2 + (𝛼𝛼2(𝑙𝑙 − 𝑟𝑟))2      (4) 

Where, 𝑙𝑙 and 𝑟𝑟 denotes the distances travelled respectively by the left and right 
wheels between two consecutive time stamps. The 𝛼𝛼1 and 𝛼𝛼2 account for 
uncertainty caused by the translational and differential motion.  

These variances are then used to construct the process noise covariance matrix 𝑹𝑹 in 
the EKF prediction step. Specifically, the EKF models the control noise in the space 
of linear and angular velocities, requiring a transformation from the wheel-space 
variances into the robot’s motion model. This is achieved through the Jacobian-
based propagation: 

𝑹𝑹 = 𝑽𝑽 ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎𝑙𝑙2, 𝜎𝜎𝑟𝑟2)  ∙  𝑽𝑽𝑻𝑻      (5) 

where V is the Jacobian is the Jacobian of the motion model with respect to the 
control inputs. The 𝑸𝑸 matrix in this scenario is fixed as  𝑸𝑸 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(602, 602), 
corresponding to the known APS standard deviation of 60mm. 

The PSO algorithm is tasked with identifying the optimal pairs of the two 
parameters within the bounded search space 𝛼𝛼1, 𝛼𝛼2  ∈ [0,1], and the optimization 
parameters – such as particles, iterations and seed – and the fitness function modes 
are the same as in 1), ensuring consistency with the other optimization strategies. 
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This method offers a compact parameter space while directly targeting a critical 
component of the filter ‒ the propagation of uncertainty ‒ thereby enabling efficient 
tuning of motion model fidelity without altering the full covariance structure. 

2.3.3 Adaptive Gyro-Based Noise Modelling 

The third optimization strategy introduces adaptivity to the EKF's motion model by 
incorporating gyroscopic feedback. This approach is motivated by the observation 
that wheel slip, surface irregularities, and turning maneuvers often correlate with 
angular velocity. Instead of assuming fixed coefficients for control noise modelling, 
the filter dynamically adjusts the uncertainty based on real-time sensor input. 

The angular velocity 𝜔𝜔𝑧𝑧 is estimated as the average of two gyroscope measurements 
from identical IMUs mounted on the robot. This measurement is then used to 
linearly modulate the control noise parameters as follows: 

𝛼𝛼1 =  𝑎𝑎1 + 𝑏𝑏1|𝜔𝜔𝑧𝑧|       (6) 

𝛼𝛼2 =  𝑎𝑎2 + 𝑏𝑏2|𝜔𝜔𝑧𝑧|       (7) 

where,  

𝑎𝑎1, 𝑎𝑎2 are the base noise levels, and 𝑏𝑏1, 𝑏𝑏2 are scaling 
coefficients determining the sensitivity to the angular velocity 

The PSO algorithm is tasked with optimizing these four parameters ( 𝑎𝑎1, 𝑎𝑎2 , 𝑏𝑏1, 𝑏𝑏2) 
in the search bound of: 𝑎𝑎1, 𝑎𝑎2  ∈ [0,1], and 𝑏𝑏1, 𝑏𝑏2  ∈ [0,5]. The inclusion of gyro-
based adaptivity allows the EKF to respond to motion dynamics in real time, 
increasing robustness in sharp turns, uneven terrain, or scenarios with abrupt 
direction changes. The same evaluation methodology is applied: 50 particles, 150 
iterations, and 20 random seeds across all five tracks and seven fitness modes. 

2.3.4 Optimization Procedure 

In all three optimization strategies discussed above, the objective of PSO is to 
minimize a scalar-valued fitness function that quantifies localization error. Seven 
optimization modes are defined to guide the fitness evaluation process. Mode 1 
minimizes the RMSE, Mode 2 focuses on the MAE, and Mode 3 targets the MAXE. 
Modes 4 through 7 represent composite metrics combining two or more of these 
quantities: Mode 4 minimizes the sum of RMSE and MAE, Mode 5 the sum of 
RMSE and MAXE, Mode 6 the sum of MAE and MAXE, and Mode 7 considers 
the aggregated sum of all three metrics—RMSE, MAE, and MAXE. These modes 
enable the optimization to target various aspects of the error distribution, depending 
on the application-specific priorities (e.g., minimizing average error versus 
suppressing worst-case deviations). To ensure statistical robustness and minimize 
the influence of random initialization, each PSO run is repeated across 20 different 
random seeds. This results in a total of 700 independent optimization runs per 
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strategy. For each configuration, the best-performing parameter set is retained based 
on the selected fitness metric. 

All experiments and PSO routines are implemented in MATLAB R2025a. The EKF 
implementation is executed for each particle’s parameter configuration to compute 
the corresponding trajectory and localization error. The simulation setup remains 
consistent across all trials: the robot starts from the same initial state, the APS 
operates at a fixed frequency of 1 Hz, and the standard deviation of the simulated 
APS noise is fixed at 60mm. The optimized parameters derived from PSO are used 
in the subsequent evaluation phase to assess their impact on localization accuracy 
across all test tracks and modes. The effectiveness of each strategy is compared in 
Section III. 

3 Experimental Results 

This section analyses the localization performance achieved through the three 
proposed optimization strategies. 

Figure 3 presents a heatmap visualization of RMSE improvement percentages 
achieved by the RQ optimization strategy across seven fitness modes and five 
trajectory scenarios. Each cell quantifies the relative improvement in RMSE 
compared to the baseline EKF implementation with fixed parameters. Higher values 
indicate more effective tuning. The results reveal that optimization consistently 
leads to notable performance gains, particularly on Tracks 1 through 4. The highest 
single-mode improvement reaches 48.4% on Track 3 (Mode 2), while several 
modes demonstrate over 30% average improvement across multiple tracks. 
Notably, Modes 4-7, which involve composite fitness metrics, tend to yield the most 
balanced improvements, suggesting their effectiveness in guiding PSO toward 
globally robust solutions. Track 5, which contains more complex turns and sharp 
angle transitions, presents the lowest average improvement. This suggests that 
trajectory complexity poses a challenge for static parameter configurations and 
highlights the need for adaptive modelling. Figure 4 provides a comparative 
overview of the overall improvement distributions achieved by each strategy across 
all tracks and optimization modes. Subfigure a) illustrates the three metrics 
improvements intervals and means. 
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The heatmaps of MAE and MAXE show similar trends. While numerical values 
slightly vary, the best-performing modes remain consistent, reinforcing the 
robustness of composite fitness objectives and the general effectiveness of the RQ 
tuning strategy across error metrics. 

The second method shows RMSE improvements comparable to the RQ method, 
occasionally even surpassing it (e.g., Track 3, Modes 4 and 7). However, some 
modes exhibit weak or even negative gains, indicating less consistent performance, 
likely due to data issues or suboptimal convergence. While the gyroscope-based 
method achieves similar peak improvements to RQ in isolated cases, but overall 
results are more erratic, with several modes showing negative performance. Despite 
these shortcomings, the method still demonstrates potential under certain 
conditions. 

Subfigures b) and c) also illustrate the three metrics boxplots, respectively, the first 
and second methods, exhibit strong median performance with relatively compact 
interquartile ranges and few negative outliers, confirming their stability. In contrast, 
the third shows a greater variance and a higher number of outliers, with several 
instances of performance degradation, especially in MAE and MAXE. These results 
reinforce earlier observations: while third can be effective under specific conditions, 
first and second provide more reliable and consistent benefits overall. 

 
Figure 3 

RMSE improvement (%) achieved by RQ optimization strategy 
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To further quantify the performance differences between the methods, Table I 
summarizes the absolute RMSE values (in meters) obtained on each track using the 
baseline EKF configuration and the three optimized variants: 1), 2) and 3).  
The results confirm the earlier observations: all three optimization strategies 
provide consistent RMSE reductions compared to the original configuration. While 

 
Figure 4 

Boxplots of the three investigated methods improvements 

a)

b)

c)
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3) achieves the lowest RMSE in several cases – particularly on Tracks 3 and 5 – it 
does so with higher variance, as previously shown in the boxplots. In contrary, first 
and second strategies demonstrate more stable improvements across the board. 
Notably, the second strategy often outperforms first on Tracks 1 and 2, but 
underperforms on Tracks 3 and 5, highlighting the track-dependent nature of each 
strategy’s effectiveness. To support the visual findings with precise numerical 
values, Table I reports the absolute RMSE results for each track and optimization 
mode. These values allow for direct comparison of estimation accuracy between the 
baseline EKF and each tuning method. The results highlight both the strengths and 
limitations of the proposed strategies under varying trajectory complexities. 

In conclusion, the experimental results clearly demonstrate that all three proposed 
optimization strategies yield significant improvements in localization accuracy over 
the baseline EKF configuration. The first method delivers consistently strong results 
with limited variance, making it a robust general-purpose solution across diverse 
scenarios. The second strategy often matches or even surpasses the first 
performance in certain tracks, particularly in early trajectories with smoother 
dynamics. However, it occasionally exhibits inconsistent results, due to increased 
sensitivity to convergence behavior or optimization landscape. The third, while 
capable of achieving the lowest RMSE values in select configurations – especially 
in more complex scenarios – suffers from higher variability and occasional 
performance degradation. This instability can be attributed to the dynamic nature of 
gyro-based adaptation, which, while promising, may require further constraints or 
context-aware smoothing to ensure reliable performance across all conditions. To 
address this, future work may consider employing nonlinear or adaptive functions 
to relate gyro input (e.g., angular velocity) to the process noise parameters. Such 
models could better capture the relationship between motion dynamics and 
uncertainty, enabling the filter to respond more effectively to real-world variability. 

The comprehensive evaluation – including heatmaps, boxplots, and raw RMSE 
values – provides convincing evidence that composite fitness modes are more 
effective at guiding optimization toward globally beneficial configurations. 
Furthermore, the results reaffirm the importance of matching the filter’s internal 
model to both sensor behavior and environmental characteristics. 

Table 1 
Summary of the procedure 

Track Mode 
Original 
RMSE 
[mm] 

1) 
RMSE 
[mm] 

2) 
RMSE 
[mm] 

3) 
RMSE 
[mm] 

1 

1 47.8760 29.3130 29.7290 31.7730 
2 47.8760 29.2640 29.9860 32.4480 
3 47.8760 35.4420 34.5650 36.2440 
4 47.8760 30.6320 29.8990 32.1720 
5 47.8760 32.0700 31.6440 33.3160 
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6 47.8760 35.4280 30.5910 32.3660 
7 47.8760 31.9510 30.9100 32.0950 

2 

1 63.0980 42.7160 36.1690 36.4930 
2 63.0980 43.3570 39.1900 38.5080 
3 63.0980 52.0220 34.2000 36.7160 
4 63.0980 43.1390 37.5230 37.1280 
5 63.0980 42.3110 34.0220 34.0120 
6 63.0980 42.3700 33.7810 40.7580 
7 63.0980 42.2830 34.0220 36.4560 

3 

1 34.8470 18.1820 33.7810 39.3920 
2 34.8470 17.9770 17.7850 17.7760 
3 34.8470 22.1140 28.1600 39.3920 
4 34.8470 17.9940 17.3840 17.3750 
5 34.8470 18.1630 33.7810 39.3920 
6 34.8470 17.9720 33.7810 39.3920 
7 34.8470 17.9810 17.1050 19.8630 

4 

1 43.2430 34.4180 27.0720 29.1080 
2 43.2430 34.2280 29.2260 29.9610 
3 43.2430 33.2010 29.4050 31.6120 
4 43.2430 34.3970 27.6980 28.8750 
5 43.2430 32.4070 27.3740 39.3920 
6 43.2430 32.3150 29.1840 26.4170 
7 43.2430 32.2660 25.2010 28.6300 

5 

1 65.1240 57.8260 59.6090 65.8680 
2 65.1240 57.3850 59.2760 63.6290 
3 65.1240 63.3060 33.7810 67.9200 
4 65.1240 56.8600 59.4700 63.9820 
5 65.1240 56.1790 33.7810 68.3180 
6 65.1240 56.1720 33.7810 68.3060 
7 65.1240 60.1470 59.4680 63.6410 

To provide a concrete example of the localization behavior, Figure 5 illustrates the 
estimated trajectories obtained from the baseline EKF and the three optimization 
strategies on Track 2, alongside the ground truth path. The results clearly show that 
all optimized methods follow the reference path more closely than the unoptimized 
baseline. In particular, the first method demonstrates a substantial reduction in drift 
and deviation throughout the entire trajectory. The second strategy also achieves 
accurate localization, especially in smooth linear sections. The gyro-based 
optimization exhibits competitive performance but shows greater deviation during 
sharp transitions, consistent with the previously reported variability. This visual 
comparison further supports the quantitative results and highlights the strengths and 
limitations of each approach. 
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Conclusions 

This study presented a comparative evaluation of three PSO-based optimization 
strategies, to improve the performance of EKF-based localization systems.  
The following methods were assessed across multiple real-world trajectories, using 
various fitness metrics:  

1) Noise covariance matrix tuning 
2) Motion model coefficient tuning 
3) Gyro-adaptive control noise modulation 

The results consistently showed that all three strategies outperformed the baseline 
EKF with fixed parameters, delivering measurable improvements in localization 
accuracy. 

Among the methods, the first exhibited the most stable and balanced performance 
across scenarios, making it a strong general-purpose solution. The second method 
demonstrated high effectiveness in smoother trajectories but showed sensitivity to 
track complexity. The third method achieved the lowest RMSE in certain dynamic 
cases, yet its higher variance highlighted the limitations of using a linear 
relationship between angular velocity and noise parameters. 

To address this, future work will explore nonlinear adaptive models that more 
accurately capture the relationship between gyroscopic inputs and process noise, 
thereby enabling the EKF to better adapt to environmental dynamics. Additionally, 
extending the framework with real-time classification and parameter adjustment 

 
Figure 5 

Localization Trajectories on Track 2 Using Different Optimization Strategies 
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based on terrain or motion characteristics, could further enhance localization 
robustness. 

The findings support the integration of optimization and adaptivity as essential tools 
in the design of reliable localization systems for mobile robots operating under 
uncertain and variable conditions. 

Acknowledgement 

The work was supported by the National Research, Development, and Innovation 
Fund of Hungary through project no. 142790 under the FK_22 funding scheme. 

References 
[1] D. Vieira, R. Orjuela, M. Spisser, and M. Basset: Positioning and Attitude 

determination for Precision Agriculture Robots based on IMU and Two 
RTK GPSs Sensor Fusion, in IFAC-PapersOnLine, 2022 

[2] T. Severin and D. Soffker: Sensor optimization for altitude estimation of 
spraying drones in vineyards, in IFAC-PapersOnLine, 2022 

[3] M. Singh, S. Lakra, S. Das, S. K. Mishra, A. K. Sahoo, and B. Acharya: 
Extended Kalman Filter-Based Position Estimation in Autonomous Vehicle 
Applications, in Lecture Notes in Electrical Engineering, 2023 

[4] A. Ziegl et al.: MHealth 6-minute walk test - Accuracy for detecting 
clinically relevant differences in heart failure patients, in Proceedings of the 
Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society, EMBS, 2021 

[5] M. Stefanoni, M. Takács, Á. Odry, and P. Sarcevic: A Comparison of 
Neural Networks and Fuzzy Inference Systems for the Identification of 
Magnetic Disturbances in Mobile Robot Localization, Acta Polytechnica 
Hungarica, Vol. 22, pp. 239-264, May 2025 

[6] C. Storm, H. Hose, and R. H. Schmitt: State Estimation and Model-
Predictive Control for Multi-Robot Handling and Tracking of AGV 
Motions using iGPS, in IEEE International Conference on Intelligent 
Robots and Systems, 2021 

[7] M. Dares, K. W. Goh, Y. S. Koh, C. F. Yeong, E. L. M. Su, and P. H. Tan: 
Automated Guided Vehicle Robot Localization with Sensor Fusion, in 
Lecture Notes in Electrical Engineering, 2022 

[8] J. Simon: Fuzzy Control of Self-Balancing, Two-Wheel-Driven, SLAM-
Based, Unmanned System for Agriculture 4.0 Applications, Machines, Vol. 
11, No. 4, 2023 

[9] D. M. Lee and B. Labinghisa: Indoor localization system based on virtual 
access points with filtering schemes, Int J Distrib Sens Netw, Vol. 15, No. 
7, 2019 



I. Kovacs et al  Evaluation of Optimal Covariance Models for EKF-based Wheeled Mobile Robot Localization 

‒ 158 ‒ 

[10] J. Huang, X. Yu, Y. Wang, and X. Xiao: An integrated wireless wearable 
sensor system for posture recognition and indoor localization, Sensors 
(Switzerland), Vol. 16, No. 11, 2016 

[11] Y. Dobrev, S. Flores, and M. Vossiek: Multi-modal sensor fusion for indoor 
mobile robot pose estimation, in Proceedings of the IEEE/ION Position, 
Location and Navigation Symposium, PLANS 2016, 2016 

[12] H. Ma and K. Wang: Fusion of RSS and Phase Shift Using the Kalman 
Filter for RFID Tracking, IEEE Sens J, Vol. 17, No. 11, 2017 

[13] X. Shi, J. Tan, and D. Zhang: Indoor wheeled robot positioning algorithm 
based on extended kalman filter, in Proceedings - 2019 IEEE International 
Conferences on Ubiquitous Computing and Communications and Data 
Science and Computational Intelligence and Smart Computing, Networking 
and Services, IUCC/DSCI/SmartCNS 2019, 2019 

[14] K. Tian, M. Radovnikovich, and K. C. Cheok: Comparing EKF, UKF, and 
PF Performance for Autonomous Vehicle Multi-Sensor Fusion and 
Tracking in Highway Scenario, in SysCon 2022 - 16th Annual IEEE 
International Systems Conference, Proceedings, 2022 

[15] J. Kuti and P. Galambos: Modular C++ Library for Relaxed Unscented 
Kalman-Filtering, Acta Polytechnica Hungarica, Vol. 21, pp. 57-74, May 
2024 

[16] M. Sever, T. Y. Erkec, and C. Hajiyev: Comparison of EKF&UKF for 
GNSS Based Micro Satellite Orbital State Estimation, in Proceedings of 
10th International Conference on Recent Advances in Air and Space 
Technologies, RAST 2023, 2023 

[17] G. Kermarrec, A. Jain, and S. Schon: Kalman Filter and Correlated 
Measurement Noise: The Variance Inflation Factor, IEEE Trans Aerosp 
Electron Syst, Vol. 58, No. 2, 2022 

[18] A. D. Sabiha, M. A. Kamel, E. Said, and W. M. Hussein: Real-time path 
planning for autonomous vehicle based on teaching–learning-based 
optimization, Intell Serv Robot, Vol. 15, No. 3, 2022 

[19] L. Zhou, M. Wang, X. Zhang, P. Qin, and B. He: Adaptive SLAM 
Methodology Based on Simulated Annealing Particle Swarm Optimization 
for AUV Navigation, Electronics (Switzerland), Vol. 12, No. 11, 2023 

[20] X. Mu, G. Yue, N. Zhou, and C. Chen: Occupancy Grid-Based AUV SLAM 
Method with Forward-Looking Sonar, J Mar Sci Eng, Vol. 10, No. 8, 2022 

[21] S. László and Z. Vamossy: Improved RGB-D Camera-based SLAM System 
for Mobil Robots, Acta Polytechnica Hungarica, Vol. 21, pp. 107-124, May 
2024 

[22] M. Stefanoni, G. Fodor, P. Sarcevic, and Á. Odry: Evaluation of 2D 
Localization Performance in Wheeled Robots Based on the Fusion of 
Odometry and Absolute Positioning Systems, Budapest, May 2025 


	1 Introduction
	2 Methodological Framework
	2.1 Experimental Setup and Trajectory Data
	2.2 The EKF Framework
	2.3 Optimization Strategies
	2.3.1 R and Q Diagonal Elements Optimization
	2.3.2 Motion Model Coefficients Optimization
	2.3.3 Adaptive Gyro-Based Noise Modelling
	2.3.4 Optimization Procedure


	3 Experimental Results

