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Abstract: Filtering and sensor fusion are critical tasks in advanced engineering applica-
tions, especially in robotics and autonomous vehicles. It is a general problem that the high
accuracy and low computational cost are mutually exclusive in such filtering algorithms.
The Unscented Kalman-Filter (UKF) is a golden mean between the Extended Kalman-
Filter (EKF) and the Particle Filter. Recently, the authors have proposed a generic com-
putational relaxation for the EKF that provides options to decrease the computational cost
by exploiting the partially linear nature of the mappings in the system model. This pa-
per introduces an open-source C++ RelaxedUnscentedTransformation library that fully
implements the proposed method. Since the technique offers several independent usage
options, different components are implemented, and the corresponding use cases are il-
lustrated through examples. Via numerical tests, the paper shows that the implementation
can significantly decrease computational costs and even provide an opportunity to in-
crease filtering accuracy.
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1 Introduction

Advanced engineering systems use complex mechatronics, where various sen-
sors are responsible for measuring the changes in the system’s state. Sensor
fusion from the output of the different sensors and the prediction from the latest
estimated state can lead to the optimal estimation of the system’s state, on which
the control algorithm relies.

Prediction is performed via the state and output update model. The traditional
low computational approach (with limited accuracy) was the Extended Kalman-
filter (EKF), while later, a much more accurate but computationally more de-
manding method, Particle Filtering, was introduced. Nowadays, the Unscented
Transformation-based (UT) Unscented Kalman-filtering (UKF) offers a trade-off
between accuracy and computational cost [1, 2].

The UT applies so-called sigma points around the expected value according to
the distribution of the stochastic variable. By applying the nonlinear mapping on
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these sigma points, the expected value and the distribution can be estimated more
accurately than via the local linearization of EKF [2].

In the standard formulation of UT, the n dimensional covariance ellipsoid is es-
timated by one sigma point at the expected value, and further 2n sigma points
are selected symmetrically around it. These sigma points are computed via
Cholesky-factorization [3] of the covariance matrix. There are other methods
where more (e.g., 4n+ 1) sigma points are used to approximate the uncertainty
better [4]. Another approach decreases the number of sigma points to (n+ 1)
[5, 6] via an optimization step. However, it is computationally more expensive
than the Cholesky-factorization, and the Cholesky-factorisation-based symmet-
ric approach remained the most common method. (For a systematic overview,
see [7].) Different scaling methods and Taylor-series-based derivations were
proposed to improve the method using different weights, and sigma point dis-
tances [8–10].

The key idea of UKF was extended with multivariate adaptive methods (see [11–
14]) to estimate the necessary parameters of filtering. However, there are robust
extensions; see [15–18] to deal with varying parameters, sensor faults, and other
phenomena. The method can be combined with the well-known approaches to
account for the time delay of the measured signals, see [19].

The methodology is widely applied in distributed filtering [20], consensus fil-
ter [21], finite-horizon extended Kalman-filter [22] and the robustness of dis-
tributed filters is also analyzed [23]. There are use cases in remote state esti-
mation with stochastic event-triggered sensor schedule [24] to test multi-agent
communication schemes [25] and robust, adaptive, and consensus aims are also
formulated in the framework, see [26].

Paper [27] of the authors proposed the Relaxed Unscented Transformation as a
systematically structured set of methods to decrease the computational cost of UT
in cases where the function does not depend on all of the variables in a nonlinear
way. In these cases, fewer sigma points can be used, avoiding the unnecessary
operations with computation seen in original, linear Kalman-filtering.

This paper aims to introduce a novel C++ library (available at [28]) developed
to help the control community to exploit the advantages of Relaxed Unscented
Transformation in Kalman-filtering. Because the library provides multiple op-
tions that can be fitted to the considered model, several components were defined
according to the steps of the method. These components can be individually
combined in a way that fits the given filtering problem.

To better illustrate the library’s features, some numerical examples are prepared.
The examples show that the computational cost can be reduced to almost 50%,
and the accuracy of the filtering can also be increased.
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2 Notations

a,b, . . . scalar values
a,b, . . . vectors
A,B, . . . matrices
0a×b, Ia×b zero matrix, identity matrix of size a×b
a(i) reindexed vector with i index vector, as a(i) =

[
ai1 ai2 . . .

]T
A(i, :) matrix with reindexed rows using the i index

vector, as A(i, :) =

Ai1,1 Ai1,2 . . .
Ai2,1 Ai2,2 . . .

...
...


A(:, i) matrix with reindexed columns using the i

index vector, as A(i, :) =

A1,i1 A1,i2 . . .
A2,i1 A2,i2 . . .

...
...


A(i, j) reindexed matrix with i, j index vectors, as

A(i, j) =

Ai1, j1 Ai1, j2 . . .
Ai2, j1 Ai2, j2 . . .

...
...


√

A lower triangle Choleski-factorization of a matrix as A =
√

A
√

AT

x̂ estimated value of x
x̃ difference of x from the expected value
Σxx estimated covariance matrix Σxx = E(x̃x̃T )
Σxy estimated cross covariance matrix Σxy = E(x̃ỹT )

3 Original Unscented Transformation (UT) and the
related components

The Unscented Transformation considers a continuous nonlinear mapping in gen-
eral, as

y = f (x), (1)

where x ∈Rn is an (approximately) Gaussian stochastic variable with covariance
matrix Σxx. The method approximates the expected value of y, its covariance
matrix Σyy and the cross covariance matrix Σxy.

The σ points are chosen around the expected value of x, such that the expected
values and covariance matrices computed from the σ points with appropriate
weighting returns exact values for second-order mappings.

In the Cholesky-factorization based method, the (2m+1) sigma points are chosen
as

X0 = x̂, Xi = x̂−
√

κδi, Xi+m = x̂+
√

κδi, (2)
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where m denotes the rank of Σxx, δi is for the non-zero columns of matrix
√

Σxx
(i = 1, ...,m), and κ is a parameter that covers various parameters of different
approaches, e.g., the so-called scaling parameter that provides an extra degree of
freedom to tune the method.

Then by mapping the sigma points as Yi = f (Xi), the expected value and the
covariance matrices can be approximated as

ŷ =W0Y0 +W1

2m

∑
i=1

Yi,

Σyy =V0(Y0− ŷ)(Y0− ŷ)T +V1

2m

∑
i=1

(Yi− ŷ)(Yi− ŷ)T ,

Σxy =V1

2m

∑
i=1

(Xi− x̂)(Yi− ŷ)T ,

where weights W0, W1, V0, V1 and distance κ depends on the method to be applied.

The systematic investigations in [29, 30] showed that the accuracy of UT can
be highly improved by tuning the scaling parameter in each step. Many studies
[30–33] proposed online optimization for this purpose that performs the UT much
more times in each sampling step. In these methods, the computational demand
of UT is crucial.

From a functional viewpoint, this method has two main parts:

1. The determination of vectors δi from the covariance matrix Σxx, their num-
ber will be equal to the rank of the matrix. This method is available in the
repository as

std::vector<Eigen::VectorXd>
GenSigmaDifferences(
const Eigen::MatrixXd& S);

where the matrix S denotes the covariance matrix Σxx and the output is the
std::vector of vectors δi (i = 1, ...,m).

2. The second part is the computation of Xi, then Yi sigma points, and from
the weighted summations the demanded values. It is available as

template<typename Func>
ValWithCov UTCore(

const Eigen::VectorXd& x,
const std::vector<Eigen::VectorXd>&
xdiffs, Func f,
const UTSettings& settings);

where arbitrary weights and κ can be used (computed according to the
value m) through the struct
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struct UTSettings {
double kappa, W0, W1, V0, V1;
UTSettings(double kappa, double W0,
double W1, double V0, double V1);

UTSettings(double kappa, double W0,
double W1); %Vi=Wi

};

that allows arbitrary UT parametrization like Scaled UT of [10, 34] but
[INESKJ] proved relevance of original parameters for larger models.

The output of the method contains the expected value, the covariance ma-
trix and the cross covariance matrix as

struct ValWithCov {
Eigen::VectorXd y;
Eigen::MatrixXd Sy, Sxy;

};

4 Relaxed Unscented Transformation

The key feature of the method is that it can consider functions as

y = A ·x(il)+ f (x),

where f has a larger dimensional null space and, this way, less sigma point is
enough to generate and perform the UT on. Furthermore, the linear part can also
depend on a subset of the variables denoted by il indices.

In this case, the computation can be decomposed into three main steps: first, the
sigma points must be generated. Two different methods will be presented for this
purpose. Then the properties of the output of the nonlinear part will be presented
based on the determined sigma points. Then the properties of y will be computed
by exploiting the properties of linear mappings.

4.1 Generation of sigma points
Denote the result of the nonlinear part as b = f(x). The first challenge is to gen-
erate only as many sigma points as necessary. Paper [27] proposed two methods
to obtain them.
4.1.1 Fewer sigma points by considering only a subset of variables
The nonlinear part depends on the variables with indices inl . In this case, the
Cholesky-factorization must be performed only in the given columns.

The result can also be described as performing Cholesky-factorization on the
rearranged Σx as

∆A =
√

Σx(
[
inl inl

]
,
[
inl inl

]
), (3)
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and then ∆X is constructed from its first m columns, by rearranging the rows as

∆X(
[
inl inl

]
, :) = ∆A(:,

[
1 . . . m

]
), (4)

where index vector inl is constructed from the complementer set of indices in inl
and the δi (i = 1, ...,m) vectors are its columns.

This method is available with function

std::vector<Eigen::VectorXd>
GenSigmaDifferences(
const Eigen::MatrixXd& S,
const Eigen::VectorXi& inl);

4.1.2 Less sigma points by considering a subspace of the domain
Assume that the nonlinear part depends on the linear combinations of the vari-
ables. Describe these values as (m1 ·x(i1)), (m2 ·x(i2)), ..., (mK ·x(iK)), where
mk is the vector of weights for values with indices ik and K denotes the number
of combinations.

In this case, the function depends on values of M ·x, where

M(k, ik) = mk, k = 1, ...,K,

denote its rank by m.

Example 1. Considering a mapping, e.g.,

f (x) = sin(x1 +0.1x3)− cos(0.5x2 + x3),

two linear combinations of the variables can be seen in nonlinear functions. In
the first case, the index vector is i1 =

[
1 3

]
and the corresponding weight vector

is m1 =
[
1 0.1

]
. In the second linear combination, the index vector is i2 =[

2 3
]

and the weight vector is m2 =
[
0.5 1

]
. This way, the matrix M can be

written in this case as

M =

[
1 0 0.1
0 0.5 1

]
.

Denote the matrix constructed from an orthonormal basis of the rowspace of M
by Q1 ∈Rm×n and the matrix constructed from an orthonormal basis of nullspace
of M by Q2 ∈ R(n−m)×n. The matrix Q is constructed of them as

Q =

[
Q1
Q2

]
, (5)

and can be easily computed as RQ factorization of M.

The Choleski-factorization of rearranged Σx must be computed as

∆A =
√

QΣxQT , (6)
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and the ∆X is constructed from its first m columns, by rearranging the rows as

∆X = QT
∆A(:,

[
1 . . . m

]
) (7)

and the vectors δi are its columns.

The matrix Q and value m can be determined via the constructor of the following
struct:

struct ExactSubspace {
struct MixedNonlin {
Eigen::VectorXi i;
Eigen::VectorXd M;

};
typedef std::vector<MixedNonlin>
MixedNonlinearityList;
Eigen::SparseMatrix<double> Q;
int m;
ExactSubspace(int n, const
Eigen::VectorXi& inl, const
MixedNonlinearityList& mix);

};

This method must be used only at the initialization of the program.

From this data, the sigma points can be computed via the method:

std::vector<Eigen::VectorXd>
GenSigmaDifferences(const
Eigen::MatrixXd& S,
const ExactSubspace& sp);

4.2 Computing Sigma points and approximations from them
The computation of the output of this nonlinear mapping b = f (x) is the same as
before: the UTCore(...) function can be used to do it, but in this case it results
in b̂, Σbb, Σxb values.

4.3 Merging linear and nonlinear results
It considers the problem of

y = A ·x(il)+b (8)

where x̂, Σxx, b̂, Σbb, Σxb are given from the previous computations. In order to
solve it, the library implements optimized version of computation:

ŷ = A · x̂(il)+ b̂, (9)

Σy = Σb +AΣx(il , il)AT +Sym(AΣxb(il , :)),

Σxy = Σxb +Σx(:, il)AT .

That is available as:
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ValWithCov MixedLinSources(
const ValWithCov& x,
const ValWithCov& b,
const Eigen::VectorXi& il,
const Eigen::MatrixXd& A);

4.4 Reduced size output of the nonlinear function
The previous components can be enough to perform the Relaxed Unscented
Transformation with smaller computational cost than the original UT. The fol-
lowing component can decrease the computational cost further, if the values in
the nonlinear function are not linearly independent.

The first one is that the function can be defined as

b =

[
b0

F ·b0

]
, b0 = f0(x). (10)

In this case, the b related quantities can be computed as

b̂ =

[
b̂0

Fb̂0

]
, Σxb =

[
Σxb0 Σxb0FT

]
, (11)

Σb =

[
Σb0 Σb0FT

FΣb0 FΣb0FT

]
.

that is available in the component

ValWithCov LinearMappingOnb(
const ValWithCov& b0,
const Eigen::MatrixXd& F);

A similar case, where

b =

 0
b0

F ·b0

 , b0 = f0(x), (12)

is also implemented and is available as

ValWithCov LinearMappingOnbWith0(
const ValWithCov& b0,
const Eigen::MatrixXd& F);

If there are multiple entries of this expression, or only the order must be changed
reordering can be applied as

b = b0(g), (13)

then
b̂ = b̂0(g), Σb = Σb0b0(g,g), Σxb = Σxb0(:,g). (14)

where g ∈ Nb is an index vector and f0 : Rn→ Rb.
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It is implemented as

ValWithCov Reordering(const ValWithCov&
b0, const Eigen::VectorXi& g);

5 Multiscaled Unscented Transformation

In Multiscaled Unscented Transformation instead of (2m+1) sigma points, (2m ·
Nmax +1) sigma points are used, defined as

X0 = x̂, X
(N)

i = x̂−
√

κNδi, X
(N)

i+m = x̂+
√

κNδi, (15)

where δi denotes the non-zero columns of matrix
√

Σx, m their numbers, i =
1, ...,m, and κN is the parameter for N = 1, ...,Nmax circle of sigma points.

Then by mapping the sigma points as Y
(N)

i = f (X (N)
i ), the expected value and

the covariance matrices can be approximated as

ŷ =W0Y0 +
Nmax

∑
N=1

WN

2n

∑
i=1

Y
(N)

i ,

Σyy =V0(Y0− ŷ)(Y0− ŷ)T+

+
Nmax

∑
N=1

VN

2n

∑
i=1

(Y
(N)

i − ŷ)(Y (N)
i − ŷ)T ,

Σxy =
Nmax

∑
N=1

VN

2n

∑
i=1

(X
(N)

i − x̂)(Y (N)
i − ŷ)T ,

where weights WN , VN and distances κN depend on the method to be applied.

This computation is available as

template<typename Func>
ValWithCov MultiScaledUTCore(const
Eigen::VectorXd& x, const
std::vector<Eigen::VectorXd>& xdiffs,
Func f,
const MultiScaledUTSettings& settings);

where the necessary constants are provided in the struct

struct MultiScaledUTSettings {
std::vector<double> kappa, W, V;
double W0, V0;

};

– 65 –



J. Kuti, P. Galambos Modular C++ Library for Relaxed UKF

6 Kalman-filtering

For the sake of convenience, the well-known equations of the Kalman-filtering

x̂ = x−K(y−ymeas),

Σ̂xx = Σxx−KΣyx,

where K = ΣxyΣ
−1
yy (1− ε), are also available as

ValWithCov KalmanFilter(const ValWithCov&
x, const ValWithCov& y, const
Eigen::VectorXd& ymeas,
double eps = 1e-5);

where ε is a small number to avoid negative eigen values, but also highly depends
on the parity of weight V0.

7 UKF from the given components

7.1 UT of a function
7.1.1 Original UT

If there is a nonlinear function, a struct can be built around it like

struct StateUpdate {
static VectorXd f(const VectorXd& x) {
VectorXd out = VectorXd::Zero(11);
out(0) = ....;...
return out;

}
ValWithCov UT(const ValWithCov& x) {
auto xdiffs =
GenSigmaDifferences(x.Sy);

int m = xdiffs.size();
return UTCore(x.y, xdiffs, f,
UTSettings(m, 0, 0.5 / double(m)));

}
};

7.1.2 Relaxed UT

In this case, the necessary values can be initialized in the constructor and only
used in the UT subroutine, as

struct StateUpdate {
Eigen::MatrixXd A, F;
Eigen::VectorXi il, inl;
StateUpdate() {
// Deriving matrix A
A = Eigen::MatrixXd::Zero(11, 6);
for (int i = 0; i < 6; i++)
A(i, i) = 1;
A(6, 2) = Ts;

– 66 –



Acta Polytechnica Hungarica Vol. 21, No. 10, 2024

// il, inl
il = Eigen::VectorXi(6);
for (int n = 0; n < 6; n++)
il(n) = n;

inl = Eigen::VectorXi(5);
for (int n = 0; n < 5; n++)
inl(n) = n + 6;

F = Eigen::MatrixXd::Zero(0, 11);
}
static VectorXd f(const VectorXd& x) {
VectorXd out = VectorXd::Zero(11);
out(0) = ....;...
return out;

}
ValWithCov UT(const ValWithCov& x) {
auto xdiffs = GenSigmaDifferences(
x.Sy, inl);

auto b0 = UTCore(x.y, xdiffs, f,
UTSettings(m, 0, 0.5 / double(m)));

auto b = LinearMappingOnb(b0, F);
return MixedLinSources(x, b, il, A);

}
};

where κ = m, W0 =V0 = 0, W1 =V1 = 1/2m weights were applied.

(Similarly, struct ExactSubspace can be also initialized and used in function
GenSigmaDifferences(...) or if reordering is needed, the function StateUpdate::UT
must return with

return MixedLinSources(x,
Reordering(b, g), il, A);

where vector g is initialized in the constructor.)

7.2 Implementation of Unscented Kalman-Filter
If the standard UT is applied, the system model is traditionally defined as

xk = fk(xk−1)+wk, (16)
yk = gk(xk)+vk, (17)

or it can also depend on the disturbance and noise signals in a nonlinear way and
the x0 value is considered an initial value. In this case, the output of the nonlinear
function can be computed via UT, and the covariance must be increased with Σww
and Σvv (and the values with ŵ and v̂ if they are not zero).

To exploit the benefits of the Relaxed UT, one or both of them can be written in
a partially linear form as

xk = Akxk−1,l + fk(xk−1)+wk, (18)
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or in a more relaxed form

xk = Akxk−1,l +b(g)+wk, (19)

b =

[
b0

Fb0

]
, b0 = fk(xk−1). (20)

If the function depends on the w disturbance or v noise in a more sophisticated
way, the function can be considered on the variable

z =
[

x
w

]
and the same formalisms can be used.

In all cases, a simple struct can wrap the specifics of the UT for either the state
update or the output update. (Via so-called lambda functions, the varying sam-
pling time Ts or other parameters can also be injected into the functions.)

Then the simple Kalman-filter can be implemented as

(Inputs: ValWithCov xold;
Eigen::VectorXd ymeas, w, v;
Eigen::MatrixXd Sw, Sv;
StateUpdate stateUpdate;
OutputUpdate outputUpdate;)

auto xnew = stateUpdate.UT(xold);
xnew.Sy += Sw;
xnew.y += w;
auto ynew = outputUpdate.UT(xnew);
ynew.Sy += Sv;
ynew.y += v;
auto xnewfiltered = KalmanFilter(
xnew, ynew, ymeas);

It is easily extendable to achieve an adaptive UT methods see [30] for an example.

7.3 Implemented compact methods
The library provides compact methods for the original UT or some types of the
relaxed UT as

template <typename Func>
ValWithCov FullUT(Func f,
const ValWithCov& x);

template <typename Func>
ValWithCov RelaxedUT(
const Eigen::MatrixXd& A,
const Eigen::VectorXi& il, Func f,
const Eigen::MatrixXd& F,
const Eigen::VectorXi& g,
const Eigen::VectorXi& inl,
const ValWithCov& x);

However, they cover only a small subset of the functionality to give some ex-
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amples as reference, and a large number of arguments should also be wrapped
for the sake of compactness. For these reasons, the composition from the given
components is recommended.

8 Comparison of functions and methods

8.1 Compared approaches
In this section, the following function

f (x) =



sin(x1 +4x2−0.5x3)
cos(x1 +4x2−0.5x3)

x4 + x5
x4 + x6

x4
x5
x6


.

Here the following implementations will be compared:

1. Original UT on the nonlinear function using 2 ·6+1 sigma points.

2. Relaxed UT considering the function as

f (x) = A ·x(il)+



sin(x1 +4x2−0.5x3)
cos(x1 +4x2−0.5x3)

0
0
0
0
0


.

where il = [4,5,6] and

A =



0 0 0
0 0 0
1 1 0
1 0 1
1 0 0
0 1 0
0 0 1


,

applying

(a) using 2 ·3+1 sigma points,

(b) using 2 ·1+1 sigma points applying exact subspace.
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1 2/a 2/b 3/a 3/b
Comp. time[µs] 9.436 7.512 5.075 7.772 6.027

Table 1
Comparison of average computational cost of different relaxed approaches with the original UT. The

Relaxed UT (especially 2/b) highly overwhelm the Original UT (1).

3. Relaxed UT considering the function as

f (x) = A ·x(il)+b([2,3,1,1,1,1,1]),

where

b =

[
0

f0(x)

]
, f0(x) =

[
sin(x1 +4x2−0.5x3)

x1 cos(x1 +4x2−0.5x3)

]
.

applying

(a) using 2 ·3+1 sigma points,

(b) using 2 ·1+1 sigma points applying exact subspace.

8.2 Comparison of computational cost
First, the computational costs of the different implementations are compared. All
of them were called 107 times on an i7-9750H (2.6GHz x64) processor. The
measured average computational times are discussed in Table 1.

The first column in Table 1 refers to the original UT. It can be seen that reducing
the sigma points from 2 ·6+1 to 2 ·3+1 in approach 2a does reduce the compu-
tational cost to 80% and by reducing it to 2 ·1+1 in approach 2b reduces further
it to 53%.

The following columns show that the reduced output size did not decrease the
computational time because it is not crucial if there are only a few sigma points,
as in these cases.

8.3 Comparison of accuracy
To compare the accuracy of the relaxed UT approach with the original UT method
considering random inputs (number of 104 with given Tr(Σxx)) with values re-
sulting from Monte-Carlo simulations of number 105 samples.

The results of the method highly depends on the applied κ Wi and Vi values. In
order to ensure positive definiteness of matrices

Σyy, (Σxx−Σxy(Σyy +Σvv)
−1

Σyx)

where Σvv→ 0 is assumed as a worst case scenario, all of the Wi weights must be
positive. By applying

W1 =V1 =
1

2κ
, W0 =V0 = 1− m

κ
,
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Tr(Σxx) = 0.1 Tr(Σxx) = 1
ε(y) ε(Σyy) ε(y) ε(Σyy)

1(κ = 6) 5.53e-5 3.26e-3 1.19e-1 0.283
2/a(κ = 3) 2.27e-5 8.48e-4 2.03e-2 0.153
2/b(κ = 1) 8.28e-5 4.55e-3 1.60e-1 0.472
2/b(κ = 2) 2.12e-5 6.51e-4 8.73e-3 0.197
2/b(κ = 3) 3.79e-6 1.55e-4 2.30e-2 0.336
3/a(κ = 3) 2.27e-5 8.48e-4 2.03e-2 0.153
3/b(κ = 1) 8.28e-5 4.55e-3 1.60e-1 0.472
3/b(κ = 2) 2.12e-5 6.51e-4 8.73e-3 0.197
3/b(κ = 3) 3.79e-6 1.55e-4 2.30e-2 0.336

Table 2
Comparison of accuracy of original UT with relaxed UT approaches with different weights and

under different Tr(Σxx) circumstances. The Relaxed UT (especially 2/b κ = 2) highly overwhelm
the Original UT (1 κ = 6).

where 2m+ 1 is the number of sigma points, it can be seen that κ ≥ m must be
used.

From this condition, and Taylor-series-based derivations that prefer κ = 2,3 val-
ues, the following situations will be considered in the next comparison:

• (1) κ = m = 6,

• (2/a) and (3/a) κ = m = 3,

• (2/b) and (3/b) where m = 1: κ = 1,2,3.

To characterize the results, the following values were computed

ε(y) = mean(||E(y)− ŷ||),
ε(Σyy) = mean(||E(Σyy)− Σ̂yy||),

where E(y) and E(Σyy) are computed from the Monte-Carlo simulations and
mean is computed on the 104 random data.

The results can be seen in Table 2 for Tr(Σxx) = 0.1 and Tr(Σxx) = 1 cases. It can
be seen that the relaxed UT approaches overwhelm the original UT by allowing
a larger variety of κ values, and this increase in accuracy is significant.

Conclusion

The paper introduced the concepts and functionality of the open-source C++
library for Relaxed Unscented Transformation. It has shown the implemented
components, their mathematical role, and practical usage. Finally, a numerical
example has shown that the appropriate setup in the considered case reduced the
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computational cost to 53% and increased the filtering accuracy.
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József Kuti and Péter Galambos thankfully acknowledge the financial support of
this work by the project no. 2019-1.3.1-KK-2019-00007 implemented with the
support provided from the National Research, Development and Innovation Fund
of Hungary, financed under the 2019-1.3.1-KK funding scheme. Péter Galambos
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