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Abstract: The reverse supply chain (RSC) plays a critical role in industrial waste 
management by ensuring efficient waste collection, transportation, and recycling. A key 
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aspect of RSC optimization involves determining the most cost-effective location for waste 
collection centers. This study evaluates three facility location optimization methods ‒ 
Center of Gravity (CoG), Voronoi Diagrams, and k-Means Clustering ‒ to determine the 
most effective approach for waste collection center placement in Kazakhstan’s mining 
industry. Using geospatial data from 10 tailings dams, each method was applied to 
minimize transportation costs and optimize collection center locations. The findings reveal 
that the CoG method is the least effective, as it assumes a centralized facility, leading to 
longer travel distances and higher costs. The Voronoi method significantly reduces 
transportation distances by assigning mining sites to the nearest collection center but does 
not account for variations in waste generation. k-Means Clustering outperforms both 
methods, achieving the lowest transportation distance while maintaining a balanced 
distribution of waste across multiple facilities. The study highlights the advantages of 
multi-facility clustering techniques in RSC design, demonstrating that dynamic 
optimization approaches can significantly enhance cost efficiency and logistical feasibility 
in industrial waste management. These findings provide a basis for further research and 
practical implementation of data-driven facility location strategies in the mining sector. 

Keywords: Reverse Supply Chain; Facility Location Optimization; k-Means Clustering; 
Voronoi Diagrams; Center of Gravity; Mining Waste Management 

1 Introduction 

Sustainability and the open issues of sustainability affect all sectors of the 
economy. Sustainable operation and management raises a number of issues and 
demands from individuals and companies alike [1], affecting almost the entire 
spectrum of decisions to be taken. The mining industry is one of the most 
resource-intensive sectors, generating vast amounts of waste that pose serious 
environmental and economic challenges [2]. As global sustainability efforts 
intensify, the need for efficient reverse supply chains (RSCs) in mining has 
become more evident [3]. 

Reverse supply chains, which focus on the collection, recycling, and reuse of 
waste materials, play a crucial role in reducing environmental impact and 
improving resource efficiency [4], [5]. In the automotive sector [6], [7], they 
facilitate the remanufacturing of used components, reducing production costs and 
minimizing waste. The electronics industry [8], [9] benefits from improved e-
waste management, enabling the recovery of valuable materials such as rare earth 
metals. Additionally, in the pharmaceutical sector [10] reverse supply chains 
ensure proper disposal and recycling of expired or unused medications, preventing 
environmental contamination and promoting regulatory compliance. Despite their 
proven benefits in various industries, RSCs remain largely unexplored in the 
context of Kazakhstan's mining sector, where waste management practices are 
underdeveloped, and recycling efforts are minimal [11]. 
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Previous studies demonstrate that reverse supply chain optimisation in mining 
generates substantial environmental benefits. At the operational level, proactive 
waste reprocessing reduces acid mine drainage risks and prevents uncontrolled 
metal leaching [12], [13]. Recycling and remanufacturing approaches within 
reverse logistics contribute to lowering carbon emissions, reducing landfill 
volumes, and conserving non-renewable resources [14]. Integrative strategies also 
highlight broader ecological advantages, including enhanced land rehabilitation 
and the creation of secondary raw materials for other industries [15]. Together, 
these findings reinforce the view that reverse supply chain models extend beyond 
cost-efficiency to deliver measurable pollution prevention and resource recovery 
outcomes, thereby aligning the mining sector with global sustainability goals. 

Reverse supply chain optimisation in mining extends beyond operational 
efficiency to governance and policy-making. Studies highlight that incorporating 
recycling and secondary sourcing into mineral supply requires new forms of 
institutional coordination and international governance mechanisms to ensure 
responsible resource use [16]. At the national level, integrative mineral policy 
strategies demonstrate that reverse logistics can foster horizontal policy 
integration, participatory decision-making, and adaptive learning, thereby 
increasing both legitimacy and effectiveness of mineral governance [17]. 
Consequently, RSC optimisation serves not only as a technical solution but also as 
a governance instrument that supports sustainable regional development and 
regulatory innovation. 

Kazakhstan is one of the world's leading producers of raw minerals, yet its mining 
industry lacks an established framework for waste recovery and reutilization [18]. 
Most mining waste is either stockpiled or discarded, contributing to environmental 
degradation and inefficiencies in resource use [19]. Unlike manufacturing or 
consumer goods industries, where reverse logistics is well studied, the mining 
sector faces unique challenges such as hazardous materials handling, regulatory 
constraints, and high transportation costs [20]. However, no existing research 
systematically investigates the potential for reverse supply chain optimization in 
Kazakhstan’s mining sector. This study aims to fill this gap by exploring how 
data-driven optimization methods can enhance waste collection logistics, making 
RSCs both feasible and cost-effective [11]. 

One of the key challenges in RSC implementation is the strategic placement of 
waste collection centers to minimize transportation costs while ensuring 
accessibility to mining sites. Optimizing collection center locations is essential to 
improve logistical efficiency and reduce the financial burden of waste recovery 
operations [21], [22]. This study explores three well-established optimization 
techniques: 

₋ Center of Gravity (CoG) Method – A mathematical approach that 
determines the optimal facility location based on demand and 
transportation costs [22]; 
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₋ Voronoi Diagrams – A spatial partitioning technique used to allocate 
regions to the nearest collection center efficiently [23]; 

₋ K-Means Clustering Algorithm – A machine learning method that groups 
mining sites based on their proximity, optimizing collection center 
placement [24]. 

By applying these methodologies to Kazakhstan’s mining industry, this study 
seeks to demonstrate how advanced optimization techniques can make reverse 
supply chains viable. The research also aims to identify best practices from 
successful implementations in other industries and adapt them to the unique 
constraints of the mining sector. Given the lack of prior studies in this area, the 
findings could serve as a foundation for future policy recommendations and 
practical implementations of RSCs in Kazakhstan. 

Efficient supply chain management is critical for reducing costs, improving 
sustainability, and optimizing logistics networks. One key aspect of supply chain 
optimization is facility location selection, which significantly impacts 
transportation costs, resource utilization, and environmental impact [10]. Several 
models have been proposed to determine the number and placement of facilities to 
minimize operational costs [25]. These models consider both forward and reverse 
supply chain dynamics, incorporating multiple objectives such as cost efficiency, 
environmental impact, and service quality. Ene & Öztürk (2014) [26] developed a 
multi-stage, multi-period optimization model for an open-loop RSC, determining 
the optimal location of collection, recycling, and disposal centers. Their findings 
emphasize the importance of strategic facility placement in minimizing 
operational costs and improving efficiency. Facility Location Problems (FLPs) 
focus on determining the most strategic positions for distribution centers, 
warehouses, or collection hubs to enhance efficiency and minimize transportation 
costs [21]. 

In reverse supply chains, particularly in industrial waste management, selecting 
the optimal waste collection center location is crucial for ensuring cost-effective 
logistics. Traditional methods for facility placement include mathematical 
programming, heuristic models, and clustering techniques. Among these, the 
Center of Gravity (CoG) method, Voronoi diagrams, and k-Means clustering have 
gained popularity due to their efficiency in handling large datasets and real-world 
logistics constraints [27], [28]. 

This section reviews relevant studies that have applied these three optimization 
techniques in supply chain logistics, highlighting their strengths and limitations. 
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2 Methodological Background 

2.1 The used Methodology from the Literature 

2.1.1 Center of Gravity (CoG) Method in Supply Chain Optimization 

The Center of Gravity (CoG) method is widely used for facility location problems, 
as it identifies the optimal location of logistics hubs by minimizing total 
transportation costs. This method has been applied in various industries, including 
reverse logistics and waste management [21]. Choudhary and co-authors [27] 
proposed a carbon-sensitive optimization model, integrating both forward and 
reverse logistics to reduce costs and emissions. Their study demonstrated how 
CoG-based facility placement can contribute to sustainability by optimizing not 
just financial efficiency but also carbon footprint reduction. Li [29] enhanced the 
CoG method by integrating clustering techniques, which improved cost efficiency 
by incorporating geographical pricing considerations. Similarly, Cai and co-
authors [28] combined k-Means clustering with CoG, dividing demand points into 
clusters before applying CoG for better accuracy in facility placement. 

 

 

(1) 

 

where: 
 x_i,y_i – Cartesian coordinates of mining site i; 
 n – total number of sites (tailing dams); 
 ω_i– waste volume at site i; 

2.1.2 Voronoi Diagram-Based Approaches 

Voronoi diagrams offer a spatial partitioning method for logistics optimization by 
dividing a region into service areas based on proximity. This method is useful in 
scenarios where demand points must be allocated to the nearest facility [23]. Huo 
and Zhang [30] improved k-Means clustering by incorporating Voronoi diagrams 
to optimize logistics network design. Their model resulted in more balanced 
cluster formations, reducing supply chain inefficiencies. Zheng and co-authors 
[31] applied Voronoi diagrams in metro-based freight logistics and successfully 
reducing transportation costs. Their findings show that Voronoi-based facility 
allocation significantly improves cost efficiency in urban logistics settings. 

The Voronoi method divides the region into Voronoi polygons, where each 
mining site is assigned to the nearest facility. This ensures that each site transports 
waste to its closest collection center, reducing overall costs. Let S={s1,s2,...,sk} 
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be the set of candidate facility locations. The Voronoi region Vk assigned to each 
facility Sk is defined as: 

 
(2) 

where: 

is the Euclidean distance between any point  and facility Sk; 

Each site belongs to the nearest facility’s Voronoi region. 

2.1.3 K-Means Clustering for Supply Chain Optimization 

K-Means clustering is a machine learning method widely used in logistics to 
group locations into clusters for improved facility placement [24]. It helps in 
demand point segmentation, which is essential for reverse logistics and waste 
collection planning. Yin and co-authors [32] proposed a k-Means clustering 
approach for supply chain risk management, embedding network connectivity 
constraints to identify at-risk clusters in large supply networks. Their work 
highlights how clustering techniques can enhance resilience in supply chains, 
particularly in high-risk industries like mining. 

Unlike CoG and Voronoi method the k-clustering used for multi-facility 
placement scenarios. Given k clusters, the objective is to minimize the intra-
cluster sum of squared distances: 

 

(3) 

where: 
 Cj = Cluster j containing sites assigned to collection center j. 
 μj = Centroid (optimal facility location) of cluster j. 
 d(xi,μj) = Distance between mining site i and cluster center j. 

The k-Means method requires pre-defining the number of clusters (k). To 
determine the optimal number of collection centers, the Elbow Method [33] was 
applied, plotting the total transportation cost against different k-values.  
The optimal k was chosen at the point where adding more facilities did not 
significantly reduce cost. Additionally, the Silhouette Score [34], was calculated 
to measure clustering efficiency, ensuring that facilities were optimally placed 
with minimal intra-cluster transportation distances. The final selection of k=2 was 
based on the balance between cost reduction and infrastructure feasibility. 

Beyond cost-efficiency, RSC optimisation carries broader implications for 
sustainable regional development. Effective facility location contributes not only 
to reducing operational expenditures but also to mitigating environmental risks by 
lowering carbon emissions and preventing uncontrolled waste accumulation.  
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In the context of emerging economies, such as Kazakhstan, optimised RSC 
networks may also serve as instruments of governance, enabling authorities to 
establish transparent monitoring systems and integrate waste recovery into 
national sustainability strategies. Previous studies have noted that infrastructural 
development, regulatory enforcement, and community engagement are critical 
elements linking reverse logistics practices with long-term socio-economic and 
environmental benefits. 

2.2 Research Gap 

Despite the extensive body of literature on supply chain optimization, several 
critical gaps remain in the context of reverse logistics for the mining industry, 
particularly in Kazakhstan. The following key distinctions and limitations provide 
the foundation for the present study: 

2.2.1 Lack of Research on Reverse Logistics in Mining 

Most existing studies primarily focus on traditional supply chains rather than 
reverse supply chains in mining operations [35]. The unique challenges of 
handling mine tailings, including material transport, environmental constraints, 
and long-distance logistics, are rarely addressed in optimization models. 

2.2.2 Geographical and Logistical Complexity in Kazakhstan 

Unlike previous studies that analyze supply chain networks in compact industrial 
areas, our research focuses on widely dispersed mining sites across Kazakhstan. 
The long distances between tailing dams and processing facilities introduce 
significant transportation costs and logistical challenges that are often overlooked 
in conventional models. Kazakhstan lacks an established practice for optimizing 
tailings transportation, making this study an essential contribution to developing a 
structured, cost-efficient reverse logistics framework. 

2.2.3 Variation in Waste Generation Across Sites 

Prior studies typically assume uniform waste generation rates, whereas in our 
case, each mining site produces a different volume of waste, ranging from small-
scale to large-scale outputs. This variability affects the optimal location of 
collection centers, requiring a dynamic and adaptable model that can 
accommodate different production levels. 
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2.2.4 Integration of Multiple Optimization Methods 

Few studies combine multiple facility location optimization techniques, such as 
the Center of Gravity (CoG) method, Voronoi diagrams, and k-Means clustering, 
to improve collection efficiency [28]. Existing research often applies these 
methods separately, while our study aims to evaluate their comparative 
performance and potential integration for enhanced accuracy and cost reduction. 

2.3 Research Design 

This study employs a quantitative optimization approach to determine the optimal 
locations for waste collection centers in Kazakhstan’s mining sector. The research 
integrates three facility location methods ‒ the Center of Gravity (CoG) method, 
Voronoi diagrams, and k-Means clustering ‒ to minimize transportation costs and 
improve reverse supply chain efficiency. The study follows a comparative 
modeling framework, where each method is applied to the same dataset, and their 
performance is evaluated based on cost efficiency, geographical coverage, and 
clustering effectiveness. 

2.4 Research Framework 

The research is structured into the following stages: 

₋ Data Collection – Gathering geographic and operational data from 
Kazakhstan’s mining sector; 

₋ Data Preprocessing – Preparing and normalizing location and waste 
volume data; 

₋ Application of Optimization Methods – Implementing CoG, Voronoi 
diagrams, and k-Means clustering; 

₋ Performance Evaluation – Comparing results based on cost minimization 
and logistical efficiency. 

2.4.1 Data Collection and Processing 

The study considers 10 tailings dams (mining sites) and a central processing 
facility in Kazakhstan’s mining sector. Table 1 presents the distances from each 
tailing dam (mining site) to the central processing facility, along with the annual 
waste generation for each site. These parameters are key for assessing 
transportation costs and optimizing facility location decisions. 

 

 



Acta Polytechnica Hungarica Vol. 22, No. 5, 2025 

 – 327 – 

Table 1 
Mining Site Distances, Waste Generation, and Processing Facility Data [36] 

Tailing 
Dam(Mining site) 

Mining site 
index, 

n 

Distance to 
Processing 

Facility (km) 

Waste 
generated 
(Mt/year) 

Ridder 1 1205.5 7 
Jairem 2 1149.7 5,8 
Maleevka 3 1263.9 1,9 
Kokshetau 4 1541.2 1,2 
Ust'-Kamenogorsk 5 1081.7 1,9 
Temirtau 6 1053.5 16,3 
Balkhash 7 637.7 0,6 
Aktogai 8 688.4 53,4 
Bozshakol 9 1292.1 32,4 
Bozymchak 10 1092.5 1,2 

2.4.2 Data Preprocessing 

The mining site locations were initially recorded using geographic coordinates 
(latitude and longitude). However, for accurate distance calculations in the 
optimization models, it is necessary to convert these coordinates into a Cartesian 
coordinate system. 

While latitude and longitude are effective for mapping, they are based on a 
spherical representation of the Earth, making direct Euclidean distance 
calculations inaccurate due to the curvature of the Earth. The UTM system divides 
the globe into a series of zones, each using a locally optimized Mercator 
projection, ensuring that measurements within a zone are more precise.  
The conversion follows the standard formulas: 

X=R×λcos(φ_0) (4) 

Y=R×ln tan(π/4+φ/2) (5) 

where 
R is the Earth's radius (≈ 6371 km), 
λ is longitude, 
φ is longitude, 
φ_0 is the reference latitude. 

This transformation ensures that distance calculations remain accurate when 
applying the CoG and clustering models. The conversion from latitude/longitude 
to UTM follows a standard mathematical transformation, which is implemented 
using geospatial libraries such as pyproj in Python. Each site’s location is 
projected into UTM Zone [XX], the appropriate zone for Kazakhstan, to obtain X, 
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Y coordinates in meters. This transformation enables accurate distance 
calculations for supply chain optimization models, including Voronoi clustering 
and the Center of Gravity method. A summary of the transformed geospatial data 
is presented in Table 2, showing both the original geographic coordinates and their 
UTM equivalents. 

Table 2 
Geospatial and Operational Data for Mining Sites 

№ Latitude Longitude 
Waste 

Generated 
(kg/day) 

Transport 
Cost ($/km 

per 5000 
kg) [37] 

X 
(UTM 

meters) 

Y 
(UTM 

meters) 

1 50,338 83,509 19178 0,43 1,105,111.39 5,610,918.54 
2 48,329 70,157 15890 0,43 141,086.42 5,364,211.77 
3 49,812 84,314 5205 0,67 1,169,603.99 5,559,474.80 
4 53,288 69,401 3288 0,83 1,269,239.99 5,918,941.99 
5 49,971 82,597 5205 0,82 1,044,503.95 5,563,122.27 
6 50,051 72,969 44658 0,53 354,603.52 5,546,277.08 
7 46,843 74,973 1644 0,76 497,941.30 5,187,717.86 
8 48,315 74,984 146301 0,76 498,813.76 5,351,312.25 
9 50,91 71,645 88767 0,43 264,153.39 5,645,178.82 

10 41,259 71,069 3288 0,53 170,660.38 4,574,965.94 

To ensure consistency and compatibility with the optimization models, the waste 
generation data, originally provided in millions of tons per year, was converted 
into kilograms per day. This transformation allows for a more precise estimation 
of transportation costs and logistical requirements in the reverse supply chain 
model. 

2.5 Optimization Methods for Facility Location 

This section presents the mathematical formulation of the three facility location 
methods ‒ Center of Gravity (CoG), Voronoi Diagrams, and k-Means Clustering ‒ 
and explains how each method is applied to the Kazakhstan mining waste 
collection case study. The objective is to identify the optimal location(s) for waste 
collection centers to minimize transportation costs while ensuring efficient waste 
allocation from tailing dams to the processing facility. 

These methods were selected due to their ability to address different aspects of 
facility location optimization. The CoG method provides a simple mathematical 
approach to minimizing transportation cost based on weighted averages, making it 
effective for centralized networks. The Voronoi method ensures that each mining 
site is assigned to the closest facility, reducing individual transportation distances 
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while maintaining a static regional partition. k-Means clustering offers a more 
dynamic allocation, grouping mining sites based on both proximity and waste 
generation levels. This flexibility makes k-Means particularly suitable for 
scenarios with geographically dispersed waste sources and varying production 
rates, which are key characteristics of the study region. 

2.6 Problem Definition and Assumptions 

Objective Function 

The overall goal is to minimize the total transportation cost, defined as: 

 

(6) 

where: 
 n = number of mining sites (10 tailing dams), 
 d_i = road distance from mining site i to the collection center (km), 
 w_i= waste generated at site i (kg), 
 c_i= transportation cost per km per 5000 kg of waste from site i. 

Assumptions for Optimization Models 

₋ Facility location coordinates are optimized based on minimizing 
transportation cost. 

₋ No external disruptions (e.g., road conditions, weather) are included in 
calculations. 

₋ Single-facility vs. multi-facility analysis: CoG and Voronoi assume a 
single optimal, while k-Means allows multiple facilities. 

For the CoG method, distances are computed as Euclidean distances, while for k-
Means and Voronoi, real-world road distances are considered. This distinction is 
critical, as CoG assumes straight-line travel, which may not reflect actual 
transportation conditions. 

While the models developed in this study incorporate geographical dispersion and 
waste generation variability, road network constraints and infrastructure quality 
were not included in the optimisation process. In Kazakhstan, however, mining 
sites are often located in remote regions where limited road access and seasonal 
disruptions significantly affect transportation efficiency. Incorporating these 
constraints in future models would provide a more realistic approximation of 
logistical feasibility and could strengthen the applicability of the findings for 
decision makers. 
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3 Results 

This section presents the results obtained from applying the Center of Gravity 
(CoG), Voronoi Diagrams, and k-Means Clustering methods to determine the 
optimal waste collection center locations for Kazakhstan’s mining waste 
management. The results are analyzed in terms of cost efficiency, facility 
placement accuracy, and transportation cost reduction. The Figure 1 shows the 
single collection center determined by the CoG method, which places the facility 
at the weighted average location of all mining sites based on waste generation. 
Where blue circles are mining sites (tailing dams) and red star is optimal 
collection center (weighted centroid). 

  
Figure 1 

Center of Gravity (CoG) Facility Placement and Assigned Mining Sites 

The method minimizes the total transportation cost assuming straight-line 
distances (Euclidean distances). All mining sites are assigned to this single 
facility, requiring all transportation routes to converge at this point. The method 
works well for supply chain systems where demand points are centralized and 
distances between sites are not extreme. While the CoG method provides a quick 
estimation of an "optimal" central location, its inability to consider real-world 
logistics, road networks, and facility capacity constraints makes it less suitable for 
large, geographically dispersed mining operations like those in Kazakhstan. In 
contrast, Figure 2 presents the Voronoi-based facility allocation, demonstrating a 
clear reduction in transportation distances through strategic partitioning. 
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Figure 2 
Voronoi-Based Waste Collection Regions and Optimal Facility Placement 

A single collection center is placed, and each mining site is assigned to its nearest 
collection facility based on straight-line distance. Where gray lines present 
boundaries of supply areas for each site. The Voronoi diagram partitions the 
region into distinct service areas, ensuring each mining site is linked to the closest 
collection center. Compared to CoG the Voronoi method present significant 
reduction in transportation distances. The Voronoi method provides a more 
practical and cost-effective alternative to CoG by reducing distances and 
improving efficiency. However, its rigid assignment of service regions can lead to 
imbalanced facility loads, making it less adaptable to real-world fluctuations in 
waste generation. 

Finally, Figure 5 displays the k-Means clustering results, where two optimized 
collection centers were identified, ensuring a more balanced distribution of waste 
among facilities. 
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Figure 3 
k-Means Clustering for Optimized Multi-Facility Waste Collection 

The algorithm adjusts facility placement dynamically based on both geographic 
proximity and waste generation. 

The k-Means clustering method achieved the lowest total transportation distance 
among all optimization approaches, reducing the total travel requirement to 2,630 
km. Unlike single-facility methods, k-Means effectively balances waste 
distribution across multiple collection centers, ensuring that no facility is 
overloaded while maintaining efficient logistics. By considering geographic 
spread, the method optimally minimizes intra-cluster distances, making it 
particularly suitable for dispersed mining networks where waste sources are 
widely distributed. Additionally, k-Means offers flexible clustering, meaning that 
if waste production fluctuates over time, the cluster assignments dynamically 
adjust to maintain efficiency ‒ an advantage over the Voronoi method, which 
operates with fixed service regions and cannot adapt to changes in waste 
generation patterns. The k-Means clustering approach is the most effective 
optimization method in this study. It successfully reduces transportation distances 
and balances waste loads while maintaining flexibility for future adjustments. 
However, its computational complexity and dependence on choosing the right k-
value must be considered. 

4 Discussion 

The results of this study highlight the varying effectiveness of different facility 
location optimization methods for mining waste collection in Kazakhstan. The k-
Means clustering method emerged as the most effective approach, achieving the 
lowest total transportation distance (2,630 km) while ensuring a balanced waste 
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distribution across multiple collection centers. Unlike single-facility models, such 
as the Center of Gravity (CoG) method, which assumes a centralized location and 
results in longer travel distances, or the Voronoi method, which divides the region 
into static service areas, k-Means offers a flexible and adaptive clustering 
approach. By dynamically adjusting facility assignments based on both 
geographic spread and waste generation rates, k-Means minimizes intra-cluster 
transportation distances while maintaining operational efficiency. These findings 
suggest that a multi-facility clustering strategy is preferable over rigid, single-
facility methods for optimizing reverse supply chains in the mining sector. 

Table 3 
Comparison of Optimization Methods for Waste Transportation 

Method Total cost, $ 
Total 

distances, 
km 

Number of 
Facilities 

Reduction 
Compared to 

Direct 
Transportation 

(%) 
Direct 

transportation to 
processing 

facility 

$36904.88 11000 Processing 
facility Baseline (0%) 

Center of 
Gravity $8715.89 4606 1 76.4% (cost), 

58.14% (distance) 

Voronoi method $5215.40 2820 1 85.87% (cost), 
74.36% (distance) 

k-mean 
clustering $8608.52 2630 2 76.68% (cost), 

76.09% (distance) 

The findings of this study demonstrate the varying effectiveness of different 
facility location optimization methods for waste collection in Kazakhstan’s mining 
sector. The Center of Gravity (CoG) method, despite its simplicity and ease of 
implementation, proved to be the least efficient approach for this case. As a 
single-facility placement method, CoG does not adequately account for the 
geographic dispersion of mining sites, leading to increased transportation 
distances and higher overall costs. This method is well suited for supply chain 
networks with a relatively centralized demand structure; however, in cases where 
facilities are widely distributed, such as in mining operations, its applicability is 
limited. The results indicate that the reliance on a single collection center results 
in suboptimal logistical efficiency, suggesting that alternative approaches should 
be considered for cost-effective and sustainable waste management. 

The Voronoi diagram method provided improved performance by dividing the 
study region into distinct service areas, ensuring that each mining site was 
allocated to the nearest collection center. This method effectively reduced overall 
transportation distances compared to CoG by distributing facilities strategically 
across the region. However, one notable limitation of the Voronoi approach is its 
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static spatial partitioning, which does not account for fluctuations in waste 
generation across different mining sites. As a result, some facilities may 
experience disproportionate waste loads, leading to inefficiencies in collection and 
processing. While Voronoi-based facility placement offers significant 
improvements in cost efficiency and logistical feasibility, its rigid assignment of 
service areas may not be suitable for dynamic supply chain environments where 
demand varies over time. 

A key limitation of this study is the exclusion of climatic and infrastructural 
constraints. In Kazakhstan, severe winters, seasonal flooding, and the uneven 
quality of regional road networks may alter the efficiency of facility location 
strategies derived from geometric optimisation methods. Future research should 
incorporate these variables to assess the robustness of the proposed models under 
realistic operating conditions. 

Among the three optimization methods, k-Means clustering yielded the most 
effective results in terms of both cost reduction and transportation efficiency. This 
approach allowed for a flexible and data-driven allocation of collection centers, 
ensuring that facilities were positioned in a manner that minimized intra-cluster 
transportation distances. Unlike Voronoi, which relies on predefined boundaries, 
k-Means clustering dynamically adjusts cluster assignments, allowing for a more 
balanced distribution of waste loads among collection centers. This characteristic 
makes k-Means particularly suitable for industrial applications where logistical 
requirements may fluctuate. However, the method's reliance on iterative 
computations increases its computational complexity, making its implementation 
more resource-intensive compared to CoG or Voronoi-based approaches. Despite 
this, the significant improvements in transportation cost efficiency justify its use 
in large-scale facility location problems. 

In Kazakhstan, harsh continental climate conditions and limited year-round road 
accessibility can significantly influence the feasibility of facility location 
decisions. For example, seasonal road closures and extreme winter temperatures 
may reduce the applicability of routes that are optimal in purely geometric terms. 
While these factors were not explicitly incorporated into the present model, 
acknowledging them highlights an important area for further research. Integrating 
climate and road conditions could provide a more realistic foundation for reverse 
supply chain optimisation in mining regions. 

From a policy perspective, the adoption of clustering-based optimisation methods 
has the potential to support national strategies for sustainable industrial 
development. By reducing transportation distances and costs, optimised RSC 
networks can incentivise investment into secondary processing facilities and 
promote regional infrastructure upgrades. Moreover, the integration of such 
optimisation approaches into waste management policy would align Kazakhstan’s 
mining sector with international sustainability commitments, bridging the gap 
between economic performance and environmental governance. 
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The comparative analysis of these optimization methods suggests that a multi-
facility approach is superior to a single-facility strategy for mining waste 
collection. The CoG method, while simple, fails to accommodate the geographic 
complexity of mining operations, leading to higher transportation costs and 
inefficiencies. The Voronoi approach improves upon CoG by establishing 
multiple service regions, yet its limitations in demand balancing may restrict its 
applicability in dynamic waste management systems. The k-Means method, by 
contrast, provides the most optimal facility placement due to its ability to cluster 
mining sites based on both proximity and waste generation patterns. As a result, 
this study recommends the adoption of multi-facility clustering techniques in 
designing cost-effective and operationally efficient reverse supply chain networks 
for mining waste management. 

Conclusion 

This study provides a comparative analysis of three facility location optimization 
methods ‒ CoG, Voronoi, and k-Means Clustering ‒ applied to mining waste 
collection in Kazakhstan. The results demonstrate that single-facility models, such 
as CoG, are inadequate for geographically dispersed mining operations, as they 
lead to longer transportation distances and higher costs. The Voronoi method 
improves efficiency by assigning mining sites to the nearest collection center, but 
its static partitioning fails to account for fluctuations in waste generation. In 
contrast, k-Means Clustering emerges as the most effective approach, dynamically 
adjusting facility placements based on proximity and waste distribution, resulting 
in a 76.7% cost reduction compared to direct transportation and the shortest total 
travel distance (2,630 km). 

Despite these advantages, k-Means requires computational resources and careful 
selection of the number of clusters (k) to achieve optimal results. The results 
demonstrate that data-driven optimisation approaches can substantially improve 
both economic and environmental outcomes of industrial waste management. In 
particular, multi-facility clustering strategies not only reduce costs but also 
provide a framework for policy makers to align mining logistics with 
sustainability objectives. Future research should explore the integration of road 
network constraints and real-time waste generation variations into facility location 
models. Additionally, investigating hybrid approaches that combine clustering 
with network-based optimization techniques could further improve efficiency. 

These findings provide a strong foundation for developing cost-effective and 
sustainable waste collection strategies in Kazakhstan’s mining industry. They also 
offer insights applicable to other industrial sectors requiring reverse supply chain 
optimisation. 
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