
Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

– 215 –

Avoiding Bad Programming Practices in
Education and Profession — Initial
Considerations

Robert Logozar
University North, Croatia, Dpt. of Electrical Engineering,
104. brigade 3, HR-42000 Varazdin, Croatia, EU
robert.logozar@unin.hr

Matija Mikac
University North, Croatia, Dpt. of Electrical Engineering,
104. brigade 3, HR-42000 Varazdin, Croatia, EU
matija.mikac@unin.hr

Abstract: In contemporary computer programming and various presentations thereof in all
sorts of media, one can witness the emergence of several bad programming practices such
as undermining the abstractness and generality of programs, poor commenting and
input/output messaging, bad identifiers, brute-force computations that ignore closed-form
results from elementary mathematics, indolence toward computational optimality, and many
more. Several of those are also found in the programs produced by the GenAI (Generative
Artificial Intelligence) tools, such as the freely available ChatGPT that we used here for
comparison. We analyze those bad practices and discuss how to avoid and correct them by
providing parallel exemplary programs, which are based on the best algorithms and
implemented in C/C++ in a textbook, scholarly way. Drawbacks of bad program code range
from hard readability and reusability to significantly and even drastically lower efficiency.
This last, very degrading downside of bad programming is shown by measuring the execution
times of inferiorly conceived and realized C/C++ functions for a few common programming
examples, and by comparing them to the corresponding well-written functions with proper
algorithms. The main reasons for bad programming habits and inferior source code quality
are low prerequisite knowledge and skills, a weak foundation in mathematics and computer
science, and a lack of intellectual and working discipline in both teachers and learners of
computer programming. With more and more bad source code examples available on the
Web, the future AI-generated programs could comprise considerable amounts of
programming code of bad quality and low efficiency, or even code that gives incomplete or
wrong results. This will happen unless the AI tools' input sources are supervised by experts.

Keywords: computer programming; bad programming practices; program form
deficiencies; program formal and functional correctness; program code readability;
influence on performance

mailto:robert.logozar@unin.hr
mailto:matija.mikac@unin.hr

R. Logozar et al. Avoiding Bad Programming Practices in Education and Profession — Initial Considerations

– 216 –

1 Introduction

As computer programming is becoming ubiquitous today, there is more and more
content on this subject in all types and forms: from short instructions, more
elaborate tutorials, to full teaching materials. Many of those are free and easily
accessible. The ease of distributing such content to a wider audience is especially
enhanced by the possibility of publishing those materials on the Web, often with
little or no reviewing. The authors of such content possess various levels of
programming knowledge and skills, as well as different levels of formal education
in computer science. In the same manner, their attitude toward the necessity for
critical considerations of their work can vary and is often insufficient. A popular
belief and even an educational tendency today that “everybody can and must
program” also contributes to the notion that anybody can also teach programming
or at least freely disseminate her or his programming ideas and solutions to others.

To object to such an easy-going approach, here we outline bad programming
practices often found in unrevised texts, videos, posts, and comments, mostly
published on the Web, but after some time, also appearing in student and even
professional works. Certain malpractices can also be found in otherwise solid
textbooks that are over-pretentious in “demystifying” programming and making it
“very easy for everybody”. Consequently, such bad examples and explanations can
and do appear in the computer programs programmed by novices, students, and
even professionals who uncritically adopt them just because they seem easier to
grasp than those from a proper teaching textbook. Because of all the above, the
overall awareness of the importance of good programming practices and exemplary
programming style seems to be on the decline these days.

Adopting good programming principles does require some discipline and effort, and
many programmers, from beginners up, might think that it is not worth the effort.
However, that is not true, and showing that argumentatively is the main motivation
for concocting this paper.

An appropriate innuendo for this agenda would be to correctly interpret the motto
promoted in the title of the famous D. Knuth’s textbook: The Art of Computer
Programming [1]. Programming certainly isn’t a rigidly proscribed technical
discipline, but the mentioned artistry should be taken rather conservatively! Every
reader of this book will—immediately after opening it—realize that the title
certainly does not refer to any sort of “free art.” Namely, D. Knuth wrote all the
algorithms and programs in that book in an assembly language that he invented
specially for that purpose. In that way, he was enforcing the idea that every true
programmer should also be familiar with the basic level of programming to learn
the importance of thinking about every single machine instruction that she or he
write. Thus, the art in that title is not in having freedom in everything, but in finding
possibly different and still elegant solutions in the given, strictly proscribed logical
and technical form of good computer programming. While doing that, the

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

– 217 –

programmer should also follow standard technical and engineering principles of
clarity, accuracy, and consistency.1

To address the aforementioned problems and expose the solutions to them, in
Section 2, we start with an overview of the “basic” and very common bad
programming practices that include the loss of the abstractness and generality of the
written program code. In Section 3, we argue on the problem of teaching practical
programming to learners without sufficient theoretical background and discuss how
bad examples — emanating from the bad programming practices — deteriorate the
programming discipline. Section 4 illustrates the abuse of brute-force to calculate
tasks that could be mathematically solved much more elegantly, and warns about
the constant need to analyze the complexity and efficiency of the written code.
Finally, in Section 0, we provide the concluding remarks on the subject.

The examples in the text are given in C++, as a common language of choice for
introductory programming courses in the studies of computer science and electrical
and electronic engineering. We hope that they are readable and comprehensible, as
well as that the readers who program in other programming languages will be able
to implement the presented general ideas in their work, too.

2 Basic and Common Bad Programming Practices

In this section, we start by addressing the problem of a possible violation of basic
programming principles under the pretext of realizing “simpler” and “easier to
understand” programming examples or even professional solutions. Hidden behind
such an approach is most often the path of least resistance that originated from
indolence and ignorance.

2.1 Undermining the Basic Principles of Programming —
Abstractness and Generality

The fundamentals of programming are algorithms and data structures, and both of
them are abstract notions. Once an algorithm and the corresponding data structures
are correctly programmed in a desired programming language, the obtained
program should correctly solve all imaginable concrete problems of that type,
including special cases and exceptions. It should do it efficiently and in a transparent
manner that is easy to understand for programming professionals. The novices must
be introduced to this fact right from the beginning of their study of computer
programming. There should be no excuses for not doing so. Children adopt their

1 We discussed the importance of knowing the basics of programming in low-level languages

in our educational paper [2].

R. Logozar et al. Avoiding Bad Programming Practices in Education and Profession — Initial Considerations

– 218 –

first abstract mathematical concepts very early, when still in elementary school.
They learn to describe geometric objects and their properties by using mathematical
symbols and then calculate different quantities by general formulas that use those
symbols. Teachers of programming must continue using fully abstract notions also
in programming, showing their students that this discipline builds on the
mathematical foundations they have learned earlier.

Those who ignore the need to keep everything exact, abstract, and formally correct
might have their program code filled with several bad forms. One of them is the use
of the so-called magic numbers. These are the explicit number constants written in
the program expressions and statements, most often completely unexplained [3],
[4]. Of course, the “starting” integers, i.e., those with the least absolute values, 0
and 1, perhaps even 2 or 3, whose (mathematical) meaning is obvious from the
context, are not considered to be magic numbers. Although writing magic numbers
in the program code is syntactically allowed by the standard computer languages,
one of the basic rules of good programming is that they must be replaced with
variables of the appropriate type and declared as constants to which their explicit
numerical values are immediately assigned. After such a declaration — done in one
place — those variables can be used as many times as needed, while the change of
their value or even type is done only in the line of their declaration.

The even worse example of the use of magic numbers that can, unfortunately, also
be found in many tutorials and teaching materials, is putting them in the condition
or loop expressions, especially of the ever-present for-loop. The alleged excuse
that this is done “for the sake of simplicity” should not be justified at any level of
programming education. The number of iterations in a general program must not be
expressed by a fixed numerical value of 5 or 10, just because we might love those
numbers! Similarly, in professional programming, no magic numbers should appear
anywhere in the source code, as in the array declarations or the loop heads.

The loss of program generality and abstractness caused by magical numbers is
illustrated in Listing I.A. A program code that performs the same task but is
formally correct, clear, and easily maintainable is in Listing I.B. In those and in all
the following pieces of the program code presented here in which it is needed, we
assume the prior use of the statement: using namespace std;. It was omitted for the
sake of brevity.

2.2 Incomplete and Unclear Source Code Comments and
Descriptions of the Input and Output Data

The lack of comments and descriptions of the data to be input or output, or the
imprecise formulations thereof, are notorious problems of badly written programs.
Many of our students find excuses such as, “I intended to add the comments when
the program is finished.” Of course, it’s not a big surprise if such students never
finish their programs in the first place. If they cared to divide the given task into

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

– 219 –

precisely defined and described sections and then explain to themselves what they
were doing and with what variables and functions by properly commenting on all
of them (clarity as a conditio sine qua non), they might be more successful. Or, in
the opposite case, students might have a program that works more or less well, but
they cannot explain its parts because they do not understand them. That may also
be — at least partly — caused by a nonchalant, genuine author of the program who
didn’t bother to write the necessary comments. Besides the general indolence of
students and programmers, the omission of proper comments may as well be a
consequence of yet another and quite prosaic reason: their bad typing skills. This
problem shouldn’t be ignored, especially in countries in which keyboard typing is
not part of the regular school curriculum.

Regarding the program comments used in teaching examples, it is good to stress
that at the beginning of the programming education, those can contain explanations
of the language syntax and the meanings of statements. However, once the
programming language or some of its parts are mastered and when students are
given to solve concrete programming tasks, they must be explicitly warned that
the comments in those programs should generally not contain reinterpretations of
the written source code or explanations of other things that are obvious to language
connoisseurs. They must — in the same way as it is done in “professional”
programming — explain the specifics of a particular problem and, if needed,
elaborate on the language tools used to solve that problem.

Concerning the position in the source code, there are two general types of
comments:

i. Those written at the beginning of the separate parts of the code, announcing
and perhaps shortly explaining their functionality and performance. Such
comments are usually preceded by an empty line and are written starting from
the same column as the statements below them. To emphasize that they refer
to several lines below them, we usually end them with a semicolon.

ii. Those explaining a single statement or a line in a statement, which are written
after the statement or in an appropriate position close to that.

The examples of comments — those written badly and those written correctly for
the same programming task — are also presented in parts A and B of Listing I. In
Listing I.A, we have probably exaggerated in writing only the obvious and thus
completely unnecessary descriptions, but the intention was to illustrate what
shouldn’t be done. In Listing I.B, all that was remedied: the comments are
informative and complete, and because of that, indispensable.

In bad programming, we also find unclear or imprecise descriptions of the input and
output data from the user’s standpoint. Starting with the former, we stress to our
students that every input of the data in procedural programming must be preceded
by a clear, precise, and concise description of what kind of data, in what form and
range, is expected to be entered by the user in that input. Of course, that same
information must be presented also in the programs with GUIs (Graphical User

R. Logozar et al. Avoiding Bad Programming Practices in Education and Profession — Initial Considerations

– 220 –

Listing I.A An example of a source code with magic numbers, inappropriate variable names,
accompanied by useless or imprecise code comments and output descriptions.

// AN ILLICIT PROGRAMMING STYLE!
//
float a[1000]; // For storing decimal numbers.
int b; // An integer number.
// The use of a do-while loop:
do
{

cout << "Enter integer: "; cin >> b;
} while (b > 1000);

// Input with a for loop:
cout << "\nInput of decimal values:\n"

<< "==========================\n";
for(int c = 0; c < b; c++)
{

cout << "Enter decimal num.: "; cin >> a[c];
}
//
int d[6]; // For storing integers.
// Input with a for loop:
cout << "\nData for the 6 grades:\n"

<< "\n===========================\n";
for(int e = 0; e < 6; e++)
{

cout << "Number of grades " << e << ": "; cin >> d[e];
} //

Interfaces), but presented in a different, suitable manner. Here, to make everything
clear, the programmer must graphically organize the input and output boxes into
logical groups, described by some additional text. If needed, this should be
additionally supported by pop-up textboxes.
In Listing I.A, we again depict how it shouldn’t be, and in Listing I.B, how it should
be done in procedural or functional programming. When entering the array data, it
is obligatory to specify the ordinal number of each entry. For a standard user, the
counting should start from number 1, though in C/C++ and C-like languages, this
first entry will be stored in the array element with index 0. Furthermore, bigger
inputs (outputs) of data, usually made into (from) the arrays or other data structures,
should be preceded by an appropriate common message, informing the user what
kind of data and how much of it she or he will be prompted to enter.

2.3 Bad Identifiers

Laziness in forming proper identifiers is a common bad practice in computer
programming. Many of the programmers who indulge in this coding sin — starting
from beginners and students, and ending with experienced professionals — might

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

– 221 –

Listing I.B Source code with the same functionality as in Listing I.A, but written in a correct
manner, which assures easy readability, updating, and reusability.

//
// Declarations and initializations:
const int ciNEl = 1000; // Number of elements in fX.
float fX[ciNEl]; // Array fX for storing values "X", where X = ...

// (a concrete specification needed).
int iN; // The number of numbers to be entered in fX.
const int ciNGrds = 6; // Number of grades.
int iGrdHist[ciNGrds]; // Array for the exam grade histogram, which

 // stores the number of achieved grades:
// not attended = 0, exam grades = 1, 2, ... , 5.

// Input filter for iN:
do
{

cout << "How many values X do you wish to enter? N <= " << ciNEl

 << ", N = "; cin >> iN;
} while(iN > ciNEl);

// Inputting iN decimal X-values:
cout << "\nInput " << iN << " decimal X-values:\n"

<< "=====================================\n";
for(int i = 0; i < iN; i++)
{

cout << "fX(" << i + 1 << ") = "; cin >> fX[i];
}
//
// Inputting the grade histogram values:
cout << "\nNumber of appearances of the " << ciNGrds << " grades:\n"

<< "==\n";
for(int i = 0; i < ciNGrds; i++)
{

cout << "Grade " << i << ", num. of apprncs. = ";
cin >> iGrdHist[i];

} //

argue that identifiers will be obfuscated after compilation and that the only thing
that matters here is the correct performance of the program! However, by saying
that, they ignore the fact that dealing with unintuitive and even misleading names
presents an unnecessary mental burden. In our educational practice, we have noted
that after bad names are replaced with good ones, many students manage to correct
the logical mistakes they have made in their programs. After the first code-writing
sessions — during which everything is still fresh — poor names become an even
worse problem. In the checking, improving, and upgrading phases, as well as in the
possible reusing of the program code in other projects, well-chosen names of all
programming entities are of utmost importance for the clarity and readability of the
source code. A good practical rule is that if a programmer cannot figure out the
purpose of a variable or a function from their name alone, by using only common
mathematical and programming knowledge supported by some intuition, then those
names are bad and should be changed to better ones.

R. Logozar et al. Avoiding Bad Programming Practices in Education and Profession — Initial Considerations

– 222 –

We have illustrated a bad naming style in Listing I.A. There, the programmer
reduced the lengths of the variable names to the minimum of only one (alpha)
character. A plausible explanation for such minimalism could be the programmer’s
typing incompetence (cf. also the previous subsection, §2.2). Furthermore, there we
see a “wise” solution on how to elude the effort for inventing the proper identifiers:
the first variable has the name a, the second one b, the third one c, etc. We encounter
such and other similar “ingenious” naming systems in our educational practice and
spend quite some time warning our students against it. Every programmer will
experience the bad side of such variable naming as soon as she or he has to use
those variables in a meaningful way.2 That is why several naming conventions have
been introduced in computer programming [5].

In a nutshell, the variable names should follow the Latin maxim “Nomen est omen“
(the name is a sign). Following that idea, we always suggest the use of names close
to the symbols common in mathematics, physics, engineering, and other areas to
which the corresponding programming task belongs. If those symbols are well-
known, there is no need to write the full name of a particular quantity. To these
common symbols, one should add additional parts that resemble the specifics of
those quantities, which are normally written as subscripts, sometimes also as
superscripts. For example, good names for three types of velocities, the initial, final,
and average ones — with alternative writing of uppercase and lowercase letters to
emphasize different name parts in the PascalCase [5] — would be:

Vinit (or V0), Vfin, Vavg.
The same names with only lowercase letters and the underscores for separating the
different word parts would be:

v_init (or v_0), v_fin, v_avg.
We stick to the previous style because it is shorter.

The final touch of a good naming convention would be to include a short indication
of the variable data type or the object class name at the beginning of an identifier.
It often suffices to put there only the first letter of that type or, for the instances of
some specific class objects, two or more. With this, a programmer knows the
variable type immediately from its name, which makes the consideration of their
types and possible type casting easier.

All the above rules together are encompassed within the naming convention known
as Hungarian notation [6],[7]. It originates from and is now the official choice of

2 There is a saying that one professor of a basic programming course at the Faculty of

Electrical Engineering and Computing of the University of Zagreb (https://www.
fer.unizg.hr/en), which all the authors of this paper attended, wrote a program that the lazy
students to write proper names had to explain. In it, the first variable was named “_”, the
second one “__”, the third one “___”, etc. That was a clear warning to them about what
source code can turn into if the identifiers are not treated as they should.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

– 223 –

the software giant Microsoft®. It is simple and intuitive, and many programmers,

including the first author of this paper, are using it systematically.3
For instance, if the variables in the previous example were all of the double-
precision floating-point type, in C/C++ declared as double, and if we additionally
apply the so-called camelCase style of writing names [5] — which we usually do —
those identifiers would become:

dVinit (or dV0), dVfin, dVavr.
By writing the type-designating letter in lowercase, it is visually more distinctive
from the rest of the name.
Hungarian notation applies to all other language entities. Since the class objects are
essentially compound variables, their names are also written in camelCase,
preceded by the class name abbreviation. As for the function names, some people
would stick to the camelCase, especially if they indicate the function's return type
at the beginning of its name. It may be useful, because function name overloading
is not valid if the only difference between them is in the return type. However, not
many programmers do that, and in that case, the PascalCase style is more common.
Finally, for the class names, the PascalCase dominates.
It is good to remind the readers — especially the younger ones, who might not be
familiar with the legacy computer languages — that the idea of connecting variable
names with their types is not at all new. The old FORTRAN has an implicit
assignment of data types to all the variables that are not declared explicitly, which
is based on their names. [8] This implicit typing follows the usual mathematical
convention that the symbols (starting with) 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙,𝑚𝑚,𝑛𝑛 are standardly reserved for
natural numbers and integers, while the remaining letters are used for the quantities
that belong to the other number sets. Even the youngest readers of this paper should
recognize that from their elementary mathematics courses. If not, then
they — together with those who write their identifiers as in Listing I.A — should be
aware of their overall mathematical illiteracy.
The use of Hungarian notation for the variable identifiers is illustrated in Listing
I.B. A reader can note that the names presented there are not at all long. This is
partially because of the above-depicted naming style, which assures good
readability without the insertion of underscores. Another reason is that the words
that the names consist of are considerably abbreviated. A good practice is to start
with longer names, containing even the full-length words, and then shorten them till
the abbreviations are still easily recognizable in the programming context. We do
this in the following example for the name of a single-precision floating-point
variable, in C/C++ declared as float:

fCircleCircumference → fCrclCrcmfrnc → fCrcmf.

3 The first author of this paper has been using this notation even before it was proclaimed as

such, but without the specification of the data types.

R. Logozar et al. Avoiding Bad Programming Practices in Education and Profession — Initial Considerations

– 224 –

The possible introduction of slightly longer names by using this convention should
have no influence whatsoever on the execution times of programs written in any of
the compiled languages (C/C++, Pascal, FORTRAN/Fortran, ALGOL, …), as well
as for the execution of the bytecode of intermediary compiled languages (Java, C#,
Python). It does not affect the execution time of the programs and could just slightly
slow down their compilation time, which cannot be considered a disadvantage. For
the normal, not excessively long names, the direct interpretation of the programs
written in the interpreted languages, as is the console interpretation of Python
programs and the standard BASIC code, can be slowed down a bit [9].4

Although widely known and without any real disadvantages, the Hungarian notation
is not generally accepted in the literature and is even less present in programming
practice — of course, except in Microsoft! Many professional programmers use
only some of its rules or completely ignore the notation. Some authors in this area
even criticize it, but without real arguments. Again, it might be that they are just
trying to mask their indolence in concocting proper names or the lack of typing
proficiency, in this case, the fast switching between lowercase and uppercase letters.
All this justifies one of the aims of this paper: to strongly recommend the use of
Hungarian notation to our readers, just as we suggest it to our students.5

2.4 GenAI Programming Practices — or the Lack of Them

In our educational paper [10], we put ChatGPT version 3.5, as one of the initial and
still most popular GenAI (Generative Artificial Intelligence) tools, to a test of basic
programming knowledge. From a series of C++ source codes that this version, and
later on, also version 4.0 provided, we learned that:

a) ChatGPT kept the overall abstractness and generality of its programming, i.e.,
there were no bad programming practices described in §2.1.

b) It sometimes writes and sometimes does not write code comments, which
depends on the sources it has taken and “learned” the solutions from. Such an
inconsistency can be considered a bad programming practice (cf. §2.2).

c) ChatGPT regularly provides correct descriptions of the required input and the
provided output data for program users. Those descriptions are in a style that
is less mathematically inclined and precise than we would suggest, but which
is acceptable for the wider range of users (confer the examples in [10]).

4 We could not find concrete data about how (very) long identifiers slow down BASIC

interpreters. Still, most casual comments suggest that this is insignificant if the names are
within a reasonable length.

5 Though Hungarian notation is proclaimed here, we know that things are easier said than
done! It is fair to admit that only the first author of this paper uses this naming convention
strictly and consistently in his programs. The second author uses it only partly. Similarly,
only a portion of our students really adopt the Hungarian notation in their programming
style.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

– 225 –

d) ChatGPT normally constructs identifiers as would be expected from a
common programmer. The names are easily understandable because they
mostly consist of full words, as in the following examples:
variables: validInput, mean, sumSquares /sumSquared;

arrays: numbers, text;
functions: inputNumbers, getDecimalNumbers, calculateMean,

calculateStandardDeviation, removeExtraSpaces, … .

Here we see the camelCase-style names as are often used in the Hungarian
notation, but without the designation of the data types. Such complete words
might at least be partial justification for the frequent omission of their proper
comments [cf. point c)]. However, such long names are often very clumsy, and
with only a little effort, one can shorten them while preserving their
readability, for instance, as follows: valIn, sumSqrs, getDecNums, calcMean,
calcStDev, … .
Despite the above-stated clumsiness, ChatGPT has surprised us from time to
time with better naming in its programs. This can be seen in the following
examples:

variables: n_1, n_2, n_a, n_b, n1, n2, xl, xh, N_num, min, max,
squareDiffSum, correctedStdDev;

arrays: str;
functions: gcd.

These names are shorter and handier, but again without the designations of the
data types at their beginnings. After urging ChatGPT several times to apply
Hungarian notation correctly — which often looked as if it didn’t know what
that really was — it managed to provide a solution with satisfactory identifiers.
However, some of the variable names were still a bit long (cf. §III.B.3, Fig. 2,
and §III.C in [10]):

variables: iN1, iN2, dD, dXc, dXl, dXh, dUserInput,
bIsValidInput.

In this solution, the comments above the specific source code sections were
correct, but behind the individual statements, there were no comments at all.
Thus, although the meaning of the above variables could be guessed by an
educated reader, those short and mathematically nicely looking names
remained without explicit explanations.

Generally, we can give ChatGPT a satisfactory grade for programming style and for
avoiding the basic programming malpractices, depicted here in §2.1 and §2.3.
However, one can criticize its lack of consistency and a constant urge to change
both the programming style and solutions, sometimes from better to worse. More
comments on this are given in [10].

R. Logozar et al. Avoiding Bad Programming Practices in Education and Profession — Initial Considerations

– 226 –

3 Inadequate Theoretical Background and
Bad Examples

After elaborating on the common bad practices that concern the basic principles of
good programming (Sec. 2), here we warn against the nowadays quite frequent
easy-going and learning-by-example only approach to programming, as well as the
consequences it can cause for the knowledge of both students and professionals,
especially the former and beginners.

3.1 Teaching and Learning Only “What’s Needed to Make the
Program Work”

The general problem of today’s easily accessible partial information on different
subjects is the underlying idea that one can get straight to the final solution to some
task without even attempting to learn and understand the broader context needed to
comprehend the problem and its solution systematically. Such a shortened, straight-
to-the-solution approach, often required by modern learners, misleads the writers of
programming tutorials to act in the same line of least resistance. Thus, they tend to
ignore or just do not emphasize enough the need for prerequisite knowledge, skip
the “unimportant previous chapters” that were considered essential just yesterday,
and explain everything in the “easiest possible”, but often imprecise way. In such
an approach, there is no place for the ideas of D. Knuth about the necessity of a
thorough learning method in programming, mentioned in our introduction (Sec. 1).

In other words, there should be a steady pace in the teaching and learning process
of the novices, which balances between today’s standard of the early hands-on
approach and the necessity to pass all the introductory chapters. We advocate the
classical order: first introducing the concept of an algorithm and different forms of
its presentation, then learning the basic syntax of a computer language, and existing
data types and operators. After that comes the implementation of the programming
structures (sequence, selection, and iteration) with the tools available in the chosen
language, as the basis to go further on with arrays, pointers, functions, etc. In short,
the all-important introductory chapters of the old-school teaching method should
not be skipped over just because they might be less interesting to novices.

Our population of college students is very diverse, with rather different prior
programming knowledge and skills. Because of that, the introductory computer
exercises — which accompany the introductory lecture chapters that are logically
and programming-wise less demanding — are used to strengthen the needed initial
skills in writing the source code and getting used to the chosen IDE. This is
accompanied by learning the language syntax and solving simpler programming
tasks that include a good understanding of data types and operators. The students
must acquire those fundamentals before they get to the implementation of the
programming structures of selection (branching) and iteration (looping). These

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

– 227 –

crucial topics for the program execution control and implementation of algorithms
are then elaborated from the simplest and most general to the more complex and
specialized forms.

For instance, in C/C++, one should first teach the while loop, because it is the basic
and yet most general form of a loop in those and other higher-level languages.
Although the simplest one, it enables the implementation of every imaginable
iteration. Logically, after the while loop, one would explain the do-while loop. Only
after that, follow the famous for loop. Such was the order of explaining the loops in
the “C Bible,” by B. Kernighan and D. Ritchie [11], where the execution of the for
loop was additionally explained by implementing its functionality using the while
loop. No other approach to explaining those essential iteration tools could be better
for the novices, although we have witnessed the attempts of other approaches
among our fellow lecturers. The situation is different in the books that are meant for
seasoned programmers, where the authors may expose their ideas more freely, not
paying so much attention to the basic formalities (cf., e.g., [12]).

After mastering those programming fundamentals, the learners should be
acquainted with the basic data structure — the array. Only then, the other,
“advanced” topics should follow, such as pointers and functions. Of them, the
former prepares the ground for the latter by assuring understanding of the argument-
passing mechanisms that provide their addresses. Interchanging this classical order
of teaching programming with some ad-hoc introduced novelties may and will
result in gaps in students’ knowledge, particularly those with little or no prior
understanding of programming and computer science.

3.2 The Curse of Bad Examples

If the program examples are designed with the sole criterion of being “simple and
easy to understand,” they may turn out to be computationally and mathematically
misleading. For instance, to avoid the need for input data in explaining the use of
the for loop, we might reach for the members of the well-known countable sets: the
set of natural numbers and the set of integers. The simplest such task that comes to
our minds might be the following:

Probl. 1 Find the sum of the first 𝑛𝑛 natural numbers.

Indeed, isn’t this an excellent example of the for loop usage, which simplifies the
loop body to a minimum, leaving the emphasis on the three expressions in the for
loop head? Well, it would be a good example of the use of that loop if the brute-
force summing of the consecutive numbers is not needed to get this result in the
first place! In other words, if we know that we could get this sum by a formula for
the arithmetic series, this is very good for us and our students (see APPENDIX A)!
Then this example can clearly show how the for loop calculates this in 𝑛𝑛 steps of
iterative summing, corresponding to the summation under the summing symbol in
the next formula:

R. Logozar et al. Avoiding Bad Programming Practices in Education and Profession — Initial Considerations

– 228 –

𝑆𝑆𝑛𝑛 = �𝑖𝑖 = 𝑛𝑛 (𝑛𝑛 + 1) 2⁄
𝑛𝑛

𝑖𝑖=1

 . (1)

On the other hand, the usage of the rightmost side of the formula does the same task
in just “one step.”

6 Thus, the time complexity of the for-loop summing in big O
notation is 𝑂𝑂(𝑛𝑛), and that of the one-step arithmetic expression calculation 𝑂𝑂(1)
(see e.g., [13]). Although the former uses only the simplest, addition operation, and
the latter uses one addition, i.e., incrementation, one multiplication, and one
division, the latter is computationally superior because it is independent of 𝑛𝑛.
The correct approach to solving Probl. 1 is illustrated in Listing II. The abundant
educational comments serve the purpose of warning future programmers never to
calculate such a sum by adding consecutive numbers, but by applying the closed-
form formula. Appendix A serves to further remind them that all other imaginable

Listing II. Finding the sum of the first 𝑛𝑛 natural numbers (Probl. 1) by: a) summing them in a for loop
[complexity 𝑂𝑂(𝑛𝑛)] and b) by evaluating a closed-form formula [𝑂𝑂(1)]. Without the latter, this would

be a bad programming example exposing the programmer’s mathematical ignorance.

//
// Declaration and initialization of variables:
unsigned int uN; // A natural number, uN = n.
unsigned int uSumN = 0; // Sum of first n natural nums.
unsigned int uSumN_AS; // Sum of the first n natural numbers

 // obtained as the arithmetic series.
// A message to the user:

cout << "Finding the sum of first n natural numbers\n"
<< "=======================================\n\n"
<< "Input n >= 1, n = "; cin >> uN;

 // a) Brute-force approach: summing of the first n natural numbers
// in a for-loop, which requires n summing operations:

for(unsigned int uI = 1; uI <= uN; uI++)
uSumN += uI;

 // b) Calculation of the above sum by the formula for the sum S_n
 // of n members of the arithmetic series, S_n = n(n + 1)/2, which
// requires 1 summing, 1 multiplying and 1 dividing operation,
// independent of the number n.

uSumN_AS = uN*(uN + 1)/2;
// Output of the results:
cout << '\n'
<< "Sum of nums. from i = 1 to i = n = " << uN << '\n'
<< "==\n"
<< " -- by adding: S_n = " << uSumN << '\n'
<< " -- by formula: S_n = " << uSumN_AS << '\n'
<< endl;

//

6 The mathematical legend says that young Gauss found that very formula while he was in

elementary school [14], which means that programmers who don’t know it nowadays, some
250 years later, really lag with their elementary math.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

– 229 –

arithmetic series must also be calculated by closed-form formulas. There, we have
provided such formulas for the sums of the first 𝑛𝑛 odd and even natural numbers,
which also often appear in programming examples.

Good use cases for the for and other loops in problems of the above type are to
provide different numbers of the chosen data type being input by the user. In the
early examples, they need not be stored, and later on, they can be stored in an array.
Then all sorts of checks and calculations on those numbers must be done on each
of them, one by one, within some sort of a loop. When doing that, a programmer
would have to recall the basic knowledge of when to use which loop, which is quite
often forgotten or at least ignored, even among professionals. Before reminding us
of that rule, let us observe the following elementary programming problem:

Probl. 2 Realize the input of an unknown number of numbers of some data type into
an appropriate static array. The input is stopped after entering a negative number,
which must not be inserted into the array, or after the array is filled. After finishing
the input, the number n of entered elements must be determined and stored. For the
concrete implementation, let the data type be the standard integer and let the array
have 1000 elements.

We asked ChatGPT to solve this problem again.7 According to the source code it
provided, given in Listing III.A, it also does not know when to use and when not to
use the for loop. Namely, in this case, the latter applies, because the rule is: of the
two general loops in C/C++, while and for (where “general” means that they can
have an arbitrary number of passages through the loop body, starting from zero),
the while loop should be used whenever the number of passages is not known in
advance, and the for loop should be used whenever the number of passages, i.e., the
allowed values of the loop index are known in some way, either by being input by
the user or obtained by some calculation. As for the non-general, do-while loop,
one should use it on the same occasions as the while loop, but when the loop body
is to be executed at least once, i.e., when the loop control (head) is better suited after
(the first passage of) the loop body.

Being armed with those rules, we can inspect ChatGPT’s solution more critically.
Although it will give a correct result, one can immediately notice that the for loop
condition is incomplete because it only checks the upper value of the loop/element
index. The non-negativity of the number entered into the array is assured later, by a
conditional break statement inside the loop body, which stops the iteration if the
number is negative. This is formally a bad solution because the break and continue
statements within a loop body disrupt the given loop structure. Furthermore, there
are no ordinal numbers before the input entries, which is an obligatory assistance in
a properly designed input. However, it is worth noting that this time, ChatGPT

7 As in [10], we used the free, ChatGPT 3.5 version. However, when asked about that, it

replied that it uses “v2”, but “…my underlying model is part of OpenAI's GPT-4 family.”,
“… more capable than GPT-3.5 in handling complex tasks, reasoning, and maintaining
context across conversations.”

R. Logozar et al. Avoiding Bad Programming Practices in Education and Profession — Initial Considerations

– 230 –

Listing III.A A bad example of the usage of a for loop to solve Probl. 2, because the while loop is
better suited here. Programmed by ChatGpt ver. 3.5, and a similar solution by ver. 4 (cf. footnote 7).

//
const int ntot = 1000; // Maximum size of the array
int arr[ntot]; // Array to store integers
int n = 0; // Number of valid elements entered

cout << "Enter up to " << ntot << " non-negative integers”
<< “ (input ends with a negative number): \n";
<< “==\n";

for (int i = 0; i < ntot; i++) {
int num;
cin >> num;

if (num < 0) {
break; // Stop input on a negative number

}
arr[n] = num; // Store the valid number in the array
n++; // Increment the count of valid elements

}
// Print the number of valid elements and the array
cout << "\nNumber of elements entered: " << n << "\n";
cout << "Elements: ";
for (int i = 0; i < n; i++) {

cout << arr[i] << " ";
}
cout << endl;
//

provided comments for several statements. Also, although not required in the
problem, after displaying the number of entered numbers, ChatGPT programmed
the output of all the entered numbers. Still, it aligned them one after another in a
row, again without their ordinal numbers.

After being prompted that a for loop is not the best choice for this algorithm,
ChatGPT offered its 2nd solution. In it, the for loop was changed to a while loop that
uses a predefined index, but with the same incomplete condition that required the
conditional break in the loop body. When warned about that, ChatGPT made a
solution similar to the one in Listing III.A, which first checked if the input number
was non-negative in an if-else statement at the end of the block, and if not (else), it
raised the loop index to the limit value (i = ntot) to force the loop exit in the very
next step — the condition test. However, that was just a masked and
overcomplicated version of the break functionality. All in all, the additional two
ChatGPT solutions that were explicitly prompted by us had only cosmetic changes,
which did not contribute to either the formal or functional improvement of the
produced source code.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

– 231 –

Listing III.B Exemplary solution to Probl. 2. It uses a while loop with a condition that checks
both the number non-negativity and the index range, avoiding the need for the break statement.

 //
// Declarations and initializations:
const int ciNEl = 1000; // Num. of elements of iArrX.
int iArrX[ciNEl]; // Array with ciNEl int elements, where

// X = ... (a concrete specification).
int iHlp; // Helping var. for accepting input values.
int iN = 0; // Loop and array index. At the end of input, it will

 // contain the number of entered numbers.

// Description of the input and how to stop it:
cout << "Input up to " << ciNEl << " integers >= 0 "

 << "(to end, enter a negative number):\n";
// Initial input to be checked by the while loop cond.:
cout << "iX(" << iN + 1 << ") = "; cin >> iHlp;
// while loop for entering the input values:
while(iHlp >= 0 && iN < ciNEl)
{

iArrX[iN++] = iHlp; // iN++ = postincrmenting.
cout << "iX(" << iN + 1 << ") = "; cin >> iHlp;

}
// Output of the results:
cout << "\nNumber of entered el., n = " << iN << '\n';
cout << "\nList of the " << iN << " entered integers:\n"

 << "=======================================\n";
for (int i = 0; i < iN; i++)

cout << "iX(" << i + 1 << ") = " << iArrX[i] << '\n';
cout << endl;
//

Then, on a quite surprising initiative of its own, ChatGPT offered “A Cleaner
Approach.” However, that was a flaw because the code was as in the 2nd solution,
but now without the index incrementation, and therefore incorrect. We had to
prompt it again about the mistake. Finally, the 5th ChatGPT’s solution had the two
needed relational expressions in the while loop condition, but with the parenthesized
input operation clumsily crammed in between the multiple AND operations:

while(n < ntot && (cin >> num) && num >= 0) { … }

Quite astonishingly, this while loop is syntactically correct and works well, but
again, without a proper message to the user about which element is being input.

The above strange solution provoked us to improve it: to ensure the right message
before the input, the logical expression after that, and all of those separated by
commas, as multiple expressions should be. This gave the following while head:

while(cout << "num(" << n + 1 << ") = ", cin >> num,
num >= 0 && n < ntot)) { … }

It also turned out to be correct C++ code. Except for being cluttered and hard to
read, it is functionally the same as our textbook example in Listing III.B. A careful

R. Logozar et al. Avoiding Bad Programming Practices in Education and Profession — Initial Considerations

– 232 –

reader has probably noted that both here and in Listing III.B, we have changed the
order of the relational expressions. By putting the relation that is more likely to be
false first, one takes advantage of the short-circuit evaluation of the AND operation
in C/C++.

Any of the above solutions with the number input buried in the while loop condition
cannot be recommended to anyone, not even to experienced programmers. In
contrast to them, Listing III.B contains an exemplary solution. The need to write
the combined “input line”, with the cout and cin statements, twice is a small
sacrifice for the achieved clarity. Also, after being incited by the self-initiated and
not required(!) printout of the entered elements in ChatGPT’s solution, we provided
the same thing in the light gray font at the end of Listing III.B. It gives the numbered
list of the entered integers in a way that it should always be when the array elements
are output.

We have briefly checked what solutions of the same, Probl. 2, would give the newly
available GenAI models. ChatGPT-5 and Gemini were giving solutions based on a

for-loop with an early break sentinel. Claude Sonet 4 and Grok produced a while-
loop formulation but still relied on the break statement for the early termination of
the loop. Obviously, the clumsy solutions of this problem, containing break
statements are widespread in the AI knowledge bases, and because of that, all these
tools deviate from the exemplary and optimal solution. On the other hand, all those
cumbersome program solutions work quite efficiently and thus mislead an
uneducated user into adopting a formally inferior and sloppy way of programming.

In conclusion to this deliberation on the program codes in Listing III, we will
comment shortly on what some readers might consider as our unjustified ban on the
break statement.8 Their first argument could be why the language creators provided
such a statement if it should not be used. The simple answer is that the break
generally serves to get the program control immediately behind the block it is placed
in. It does it in a similar way the goto statement would do, but without requiring a
label in front of the first statement after the block. Furthermore, the break
statements are indispensable for the regular functioning of the switch branching.
However — as we have just illustrated in the relatively simple case above — they
are not needed in the loop blocks. This can also be shown for other positions of the

8 The simplest case is the one with the conditional break statement at the beginning of the

loop block, when the negated condition can be moved to the loop condition. When it is at
the end, the rearrangement is also straightforward, but with an outward if-statement. When
the break statement is in the middle of the block and some statements can be rearranged so
that the break moves at the top of the block, this leads to our case in Listing III.A. Some
specially constructed cases, with several break statements inserted among other statements,
could be hard to rearrange, but not harder than the code with many goto statements that
could be rearranged to a well-structured program code, e.g., using a switch statement.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

– 233 –

break statement within a loop block, but the analysis of those cases exceeds the
scope of this paper.9

The next bad example comes from the “repository of solutions” collected by our
students who would rather rely on other people’s programs than on writing their
own. This one solves an elementary task described in Probl. 3.

Probl. 3 Write a C/C++ function that finds the minimal and maximal value of 𝑛𝑛
numbers of a given data type entered in an appropriate array, with the total of 𝑛𝑛𝑒𝑒𝑒𝑒
elements, where 𝑛𝑛 ≤ 𝑛𝑛𝑒𝑒𝑒𝑒 . Let the data type in the first implementation be double.

In Listing IV.A, we have sketched a solution to this problem according to a code
snippet that we find from time to time in our students’ test solutions, because it
spreads around widely. It gives correct results, but in a very unwise manner. Anyone
who submits such source code indicates clearly that she or he either haven’t even
read it or don’t understand it. Namely, the first if statement stubbornly examines the
loop index equality with zero for the whole range of index values, although it should
be clear that i = 0 occurs only once — in the first iteration. Because of that, the
relatively expensive comparison operation is repeated in every single iteration of
the for loop. After that, there is an inept doubling of the if statements, which
separately check if the same array element is less than the minimal and greater than
the maximal value, which cannot happen simultaneously. Instead, one should use
the else-if construct, as in Listing IV.B.

We have already used one ChatGPT’s solution to Probl. 3 in our previous paper
[10], within task 4 (LIST I). There, we didn’t show this function, just commented on
it (in §III.B.4), noting that it is data-type and platform dependent. Here, we show it
in the upper part of Listing IV.B. In its lower part, there is our simpler and universal
solution, which also has one iteration less. For the sake of completeness, we mention
that ChatGPT used the same initialization of the min and max values as ours in one
of its other solutions, where the finding of the extremal values was written among
several other tasks of a larger function. We have described this variability and
wavering in ChatGPT’s programming, as well as its inability to stick to better
solutions and build strictly upon them, in [10].

Another frequent bad example concerns the usage of C/C++ functions. Among
other sources, we found it also in a voluminous textbook on programming in C++.
The book’s title suggests the authors’ intention to make the subject very easy, and
this idea was pursued further in their “friendly” and quite free writing style. As a
starting example of a C-style function within procedural programming, there was
the following function declaration and definition:

float square(float x) {return x*x;} // DON’T!

9 In several Web forums, there are fiery discussions about the use of break and continue

statements. Some programming “practitioners” eagerly defend this (ab)use wherever it
suits them, including the bodies of the structured loops (see e.g. [15]). We invite them to
send us examples of such code to be rearranged without a single break or continue.

R. Logozar et al. Avoiding Bad Programming Practices in Education and Profession — Initial Considerations

– 234 –

Listing IV.A A bad solution to Probl. 3, as programmed by an unknown author (presumably a student
from a nearby college). We have put the solution in the function and applied ChatGPT’s programming

style from above.

// Function for finding the minimal and maximal el.
void findMinMax1(double nums[], int n, double& min, double& max) {

for (int i = 0; i < n; i++) {
if (i == 0) {

min = nums[i];
max = nums[i];

}
if (nums[i] < min) {

min = nums[i];
}
if (nums[i] > max) {

max = nums[i];
}

}
}

Listing IV.B Correct solutions of Probl. 3. Above: One ChatGPT’s version, which is data-type
and platform dependent. Below: our exemplary solution, which is universal and has one iteration

less than the previous one.

// A ChatGPT's ver. (except for the exact writ. style):
void findMinMax2(const double numbers[], int num, double& min,

double& max) {
min = std::numeric_limits<double>::max();
max = std::numeric_limits<double>::lowest();
for (int i = 0; i < num; ++i) {

if (numbers[i] < min) {
min = numbers[i];

}

if (numbers[i] > max) {
max = numbers[i];

}

}
}

// Exemplary version:
void findMinMaxInArr(const double dArrX[], int iN, double& dMin,

double& dMax)
{

dMin = dArrX[0]; // Initial values of dMin
dMax = dArrX[0]; // and dMax.
for (int i = 1; i < iN; i++)

if(dArrX[i] < dMin)
dMin = dArrX[i];

else if(dArrX[i] > dMax)
dMax = dArrX[i];

}

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

– 235 –

While some benevolent readers could consider this an ingeniously simple example,
we would rather call it an anti-example, because it shows what a true function
should not be used for. Namely, although functions are allowed to perform even
very simple tasks if they are distinctive and general, the function calling mechanism
should not be wasted for what can be done “in place” by a simple calculation, as is
the multiplication x*x in this case. Even the C++ inline attribute cannot help save
the above declaration because such functions should not be used in theory,
education, or practice, except if a reduced case of a broader solution, e.g. with
complex numbers We do not remember if the authors emphasized the absurdity of
their oversimplified example — perhaps they even did — but one would still ask
why use it in the first place. On the other hand, a general power function for finding
the n-th power of a number, let’s say for a non-negative n in its first version, would
still be a relatively simple but good instance that depicts a calculation for which a
function ought to be organized. It could be declared by the following prototype:

double dPow(float dX, unsigned short int usiN);

4 Brute Force Calculations That Ignore Elementary
Mathematical and Programming Facts

4.1 Investigating the Well-Known Discrete Number Sets

In §3.2, we have already presented an example where a closed-form formula must
replace the iterative summing of natural numbers (Probl. 1, Listing II). The well-
known countable sets of natural and integer numbers often present a sort of
“investigational challenge” for programmers who are — to put it mildly — less
inclined to mathematics. As an example, let us present the following problem that
can be frequently found as an illustration of the usage of the modulo operation:

Probl. 4 Write a C++ function that outputs all integer numbers 𝑖𝑖, 𝑛𝑛1 ≤ 𝑖𝑖 ≤ 𝑛𝑛2, which
are divisible by 𝑚𝑚 ≥ 1 (𝑖𝑖, 𝑚𝑚, 𝑛𝑛1, 𝑛𝑛2 ∈ ℤ).

Listing V.A gives the “usual, straightforward” solution, which busily checks the
divisibility of every single integer in the given range. It comes as no surprise that
ChatGPT gave a similar one, which performs all those unnecessary calculations.
Namely, elementary mathematics says that neighboring numbers divisible by 𝑚𝑚 are
𝑚𝑚-apart from each other. This rudimentary fact governs the second,
computationally optimal algorithm, presented in Listing VI.B. A formal proof of
that, together with the definition of the modulo operation, is in Appendix B. Thus,
the only remaining task is to find the first number 𝑖𝑖1 ≥ 𝑛𝑛1, divisible by 𝑚𝑚, i.e., such
that 𝑖𝑖1 mod 𝑚𝑚 = 0. This is best done by the three-case formula presented in Listing
VI.B. We leave the proof of this formula for some future paper or for programmers
who have recognized the importance and power of a mathematical approach. A
much less elegant alternative would be to use the while loop that stops after finding

R. Logozar et al. Avoiding Bad Programming Practices in Education and Profession — Initial Considerations

– 236 –

Listing V.A A simple but redundant algorithm for finding integers divisible by 𝑚𝑚 (Probl. 4)

void printNumsDivsblByK(int n1, int n2, int m) {
// The divisor (m) must be a natural number, m >= 1.

cout << "Numbers between " << n1 << " and " << n2 << " divisible by "
<< m << ":" << endl;

for (int i = n1; i <= n2; i++) {
if(i % m == 0) {

cout << i << " ";
}

}
cout << endl;

}

Listing VI.B Mathematically and computationally optimal algorithm for Probl. 4.

void outputNumsDivsblByK(int iN1, int iN2, int iM)
{

int iN11 = iN1 % iM; // iM >= 1! iN11 init. value.

if(iN11 == 0) // iN1 >= iN and iN1 mod iM = 0:
iN11 = iN1;

else if (iN1 < 0) // Case when iN1 < 0.
iN11 = iN1 - iN11;

else // Case when iN >= 0.
iN11 = iN1 - iN11 + iM;

cout << "Natural numbers from " << iN1 << " to " << iN2
<< " divisible by " << iM << ":\n";

for (int i = iN11; i <= iN2; i += iM)
cout << i << " ";

cout << endl;
}

the first such integer by applying the modulo operation. After 𝑖𝑖1 is known, all other
required numbers present an arithmetic progression of integers: 𝑖𝑖𝑛𝑛 = 𝑖𝑖1 +
(𝑛𝑛 − 1)𝑚𝑚 (cf. Appendix A).

To illustrate how a badly conceived algorithm can influence the program
performance, we have measured the execution times of the functions implemented
in Listing V.A and Listing VI.B, which we shortly denote as 𝑓𝑓𝐴𝐴 and 𝑓𝑓𝐵𝐵. The typical
results are given in Table 1. The measurements of the algorithm execution times
are elaborated in our earlier papers [16] [17], and also in our recent paper [18]. The
first two rows in Table 1 show that the inferior solution (𝑓𝑓𝐴𝐴) is slower, but for the
chosen input parameters only insignificantly: 2.9% and 0.7%. This is because the
the advantage of the proper solution (𝑓𝑓𝐵𝐵) in avoiding the unnecessary repetition of

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

– 237 –

Table 1
Execution times for functions 𝑓𝑓𝐴𝐴 (Listing V.A) and 𝑓𝑓𝐵𝐵 (Listing VI.B), and their reduced versions

𝑓𝑓𝐴𝐴(𝐵𝐵)
′ and 𝑓𝑓𝐴𝐴(𝐵𝐵)

′′

Func.
ver.

𝑛𝑛1(−),
𝑛𝑛2(+)

𝑚𝑚
Δ𝑡𝑡 ms⁄ Δ𝑡𝑡(𝑓𝑓𝐴𝐴)

Δ𝑡𝑡(𝑓𝑓𝐵𝐵)
𝑓𝑓𝐴𝐴, 𝑓𝑓𝐴𝐴′, 𝑓𝑓𝐴𝐴′′ 𝑓𝑓𝐵𝐵 , 𝑓𝑓𝐵𝐵′ ,𝑓𝑓𝐵𝐵′′

𝑓𝑓 ∓106 17 53 317.3 51 797.7 1.029
 ∓106 1 023 1 103.2 1 095.7 1.007
 ∓2 × 109 10 037 531 19 550.7 383.2 51.020

𝑓𝑓′ ∓108 113 1 067.8 7.3 146.274
𝑓𝑓′′ ∓106 1023 12.7 2.6 4.885

 ∓108 113 858.6 6.0 143.100
 ∓108 1023 813.9 2.6 313.038
 ∓109 1023 8 170.9 7.9 1 034.291

the relatively complex modulo operation is completely dominated by the extremely
time-consuming output via the cout object of the ostream class.10

The third row in Table 1, with 𝑚𝑚 ≈ 107, clearly shows this when the number of
outputs is diminished. Then 𝑓𝑓𝐴𝐴 is more than 50 times slower than 𝑓𝑓𝐵𝐵. To better
investigate this, we have changed the output statement, cout << i << " ";, with the
statements in which a predeclared (and predefined) variable is assigned a new value:

iTmp = i; // In the 𝑓𝑓𝐴𝐴(𝐵𝐵)
′ function versions.

iCnt++; // In the 𝑓𝑓𝐴𝐴(𝐵𝐵)
′′ function versions.

This is similar to a solution in which the numbers found by the function would be
stored in an array.

The results for the modified functions show that 𝑓𝑓𝐵𝐵′ and 𝑓𝑓𝐵𝐵′′ are significantly faster
than 𝑓𝑓𝐴𝐴′ and 𝑓𝑓𝐴𝐴′′: at first for the factor of around 5, and after that for the factor of the
order of magnitude 102 and even 103.

Further analysis of these two algorithms, which would also include the inspection
of their assembly code as was done in [18], exceeds the scope of this paper.

There are many variations of Probl. 4, and some of them may seem a bit enigmatic
at first glance. However, they are all reducible to the solution presented in Listing
VI.B. We gave one of them in task 2 in [10], which ChatGPT failed to solve in
general. Another such example, with a mathematically weakly formulated text and
bad naming, appeared in a high school test that we obtained by chance. Its edited
version is as follows:

10 A rough analysis of the assembly language code shows that the output statement cout <<
i << " " requires more than 10KiB of memory (roughly more than 3500 instructions). The
short substituting statement for function 𝑓𝑓𝐴𝐴,𝐵𝐵

′ (𝑓𝑓𝐴𝐴,𝐵𝐵
′′) require only 3 (4) instructions, placed

in 8B (10B). This suggests that the output via cout is more than 1000 times slower.

R. Logozar et al. Avoiding Bad Programming Practices in Education and Profession — Initial Considerations

– 238 –

Probl. 5 Write a program that first inputs only three-digit natural numbers, 𝑛𝑛1, 𝑛𝑛2,
and 𝑘𝑘, where 𝑛𝑛1 ≤ 𝑘𝑘 ≤ 𝑛𝑛2. Then, by using a for loop, it lists all natural numbers 𝑖𝑖,

𝑛𝑛1 ≤ 𝑖𝑖 ≤ 𝑛𝑛2, divisible by the two-digit number obtained from 𝑘𝑘 by removing its digit
that represents hundreds, i.e., the leading one. If the two-digit number is zero, the
program displays a warning about an illegal division by zero.

Here, we shall only briefly outline the program that solves this problem properly.
The main function does the usual managing tasks, starting with the message about
what the program does, and organizes the input of the required natural numbers. To
ensure that the input values are as needed, there must be an input filter that prohibits
integers less than 1, and an additional function that checks the number of digits in
the input numbers. This is, of course, assumed in the ordinary sense, without leading
zeros. Because of that, there are two preparatory functions in our version of the
program:

int iPow(int iB, int iK); // iB^iK needed in the next function.
bool bIsLDgtNum(int iB, int iL, int iN); // True if iN has iL digits

 // in the base iB posit. sys.

The second function can check the numbers from an arbitrary positional system
with base iB >= 2. After the input is completed, the program calls the function
implemented in Listing VI.B by inserting the input 𝑛𝑛1, 𝑛𝑛2 values for parameters
iN1, iN2, and 𝑘𝑘 mod 102 for iM.

In [10], under task number 2, we provided a similar example that “explores the
properties of integers.” It requires finding the integers within the given
limits — including also the negative ones — that are odd and divisible by five. The
solution provided by ChatGPT back then was a brute-force checking of every
number in the given interval, in the same way it has been done now, a year and a
half later (§4.1). Moreover, despite our several hints, it just could not make that
solution work correctly when the lower limit was negative. ChatGPT has not even
come close to the optimal solution given in Listing VI.B. In our optimal solution
(Listing II in [10]), the formula for the initial number that is in the given range and
that satisfies the above condition is a bit more complex than the one used in Listing
VI.B. Of course, this is because Probl. 4 refers to the basic such task. However, the
formula still requires a straightforward mathematical derivation. A more detailed
overview of this problem is given in [10].

At the end of this subsection, we hope that readers have realized that there is no
need to computationally “investigate” the well-known discrete, ordered, and regular
sets — such as the set of integers and the set of natural numbers — one number at a
time. The problems of this kind should be reformulated to explore the properties of
non-regular sets of numbers that are input by the user or already stored in an array.
Then the numbers must be checked one at a time, in a loop with the usual minimal
incrementation or decrementation of the loop index.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

– 239 –

4.2 Ignoring Computational Optimality

Programmers who are not acquainted with the basics of computer science and do
not know how the programs and the parts thereof are executed will often fall into
the trap of coding something in a way that might look appealing and simple, without
realizing that they produce inefficient and even detrimental programming results.
Namely, if a computer language allows some programming construction, it does not
automatically mean that this construction is suitable for a concrete program, nor that
it is computationally justified. This is why future programmers should not skip a
single chapter of their introductory programming courses, starting with the basic
syntax, data types, operators, and so on.

To illustrate this, let us observe the following elementary example of a function
performing a simple task on a C-string.

Probl. 6 Write a C/C++ function that replaces lowercase letters in a C-string with the
corresponding uppercase letters and returns the number of performed changes.

One solution to this problem “that works!” — meaning only that it gives a correct
result — is presented in the upper part of Listing VII.A. By the way, we spotted this
solution in “somebody’s” teaching materials! It shows a blatant misuse of the
overall freedom of programming constructions in the C/C++ languages. First of all,
the author of this programming bravura obviously did not know the rule that for an
unknown number of iterations, the while loop is better (cf §3.2, Probl. 2), and turns
to the use of the omnipresent for loop. However, this is almost nothing compared
to the worst part of this code — which was possible because just about everything
can stand in the C/C++ loop-head expressions (cf. comments on the ChatGPT’s
solution to Probl. 2). That is, the upper limit of the index was regulated by the call
of the often-abused function, strlen(char*). Certainly, such a shortening saved the
programmer from declaring a new variable and writing one more statement in front
of the loop. However, this indolence produced a slow algorithm with the time
complexity of 𝑂𝑂(𝑛𝑛2), for a task that can be simply solved by an algorithm of only

𝑂𝑂(𝑛𝑛) complexity. Thus, in each of the 𝑛𝑛 passages of the for loop, where 𝑛𝑛 is the
unknown number of ASCII characters in the given C-string, function strlen is
called to find that 𝑛𝑛. To do that, it needs 𝑛𝑛 iterations. Thus, this function performs
in total 𝑛𝑛 × 𝑛𝑛 iterations.

As already suggested, the simplest correction to the above bad solution is to call the
strlen function once and store its result in an integer variable, as is done in the lower
part of Listing VII.A. However, this is still not the best possible solution, because
the character array that contains the C-string need not be passed twice in the search
for the terminating, null character ('\0'). The function in Listing VII.B shows how
it ought to be done. Its while loop head resembles the one in the strlen function.

R. Logozar et al. Avoiding Bad Programming Practices in Education and Profession — Initial Considerations

– 240 –

Listing VII.A Inferior solutions to Probl. 6. Top: very bad, with time complexity 𝑂𝑂(𝑛𝑛2). Bottom: time
complexity corrected to 𝑂𝑂(𝑛𝑛).

int toUpper1(char cTxt[]) {

int nchg = 0; // Number of changes
for (int i = 0; i < strlen(cTxt); i++)

if(cTxt[i] >= 'a' && cTxt[i] <= 'z') {
cTxt[i] -= 32;

nchg++;
}
return nchg;

}

int toUpper2(char cTxt[]) {
int nchg = 0; // Number of changes
int iStrL = (int) strlen(cTxt); // Single func. call!
for (int i = 0; i < iStrL; i++)

// As above … …
return nchg;

}

Listing VII.B Exemplary solution to Probl. 6, with a single passage through the C-string

int lwrToUpprcsLttrs(char cTxt[])
{

int iSC = 0; // iSC = the number of changed letters.
int i = 0; // The array and loop index.
while (cTxt[i] != '\0')
{

if(cTxt[i] >= 'a' && cTxt[i] <= 'z')
{

cTxt[i] -= 0x20; // 'a' – 'A' = 20h.
iSC++;

}
i++;

}
return iSC;

}

In fact, a modified version of this function can return the same value as strlen if one
removes the statements with the declaration and incrementation of the iSC variable
and changes the return statement to

return i; // Returns the C-string length.

Table 2 shows the average execution times of the three functions presented in
Listing VII. As predicted, the relative performance of the first solution (𝑓𝑓1)
compared to the performances of the other two functions (𝑓𝑓2 and 𝑓𝑓3) is very inferior.
Its concrete execution times are rising very close to the expected, quadratic
progression. Thus, for an increase of 𝑛𝑛 by a factor of 10 (100), the execution time

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

– 241 –

Table 2
Execution times for functions 𝑓𝑓1 and 𝑓𝑓2 (Listing VII.A upper and lower part), and 𝑓𝑓3 (Listing VII.B)

𝑛𝑛
Δ𝑡𝑡 ms⁄ Δ𝑡𝑡(𝑓𝑓1)

Δ𝑡𝑡(𝑓𝑓3)
Δ𝑡𝑡(𝑓𝑓2)
Δ𝑡𝑡(𝑓𝑓3)

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3
1 × 104 310.4 0.065 90 0.040 30 7 703. 1.635
1 × 105 31 464.7 0.657 62 0.381 26 82 528. 1.725
4 × 105 519 543.0 3.040 82 1.559 38 333 173. 1.950
1 × 106 3 295 500. 6.662 94 3.769 18 874 328. 1.768

increased roughly by a factor of 102 (104). The functions 𝑓𝑓2 and 𝑓𝑓3 are very close
to linear dependence in 𝑛𝑛, and 𝑓𝑓3 is, again as expected, superior and slightly less
than two times faster than 𝑓𝑓2.

An unnecessary repetition of statements within a (for) loop was also illustrated
earlier, in Listing IV.A. Although the time complexity of that code stays within

𝑂𝑂(𝑛𝑛), the slowdown is for a factor not far from two. Generally, every programmer
should carefully inspect the code she or he has written, and ensure that there are no
unnecessary repeating calculations in the loops. For instance, if a loop uses a
variable with an unchanged value (for instance, iC), and also needs some derived
value from it (iC ± 1, iC/2, …), this result should be stored in an additional variable
before the loop. Furthermore, for very short functions, a good practice is to declare
them as inline, because this forces the compiler to install the function operation in
the place of the function call instead of using the relatively expensive function-
calling mechanism. This is effectively similar to the use of macro statements, but
syntactically nicer. A good general guiding principle for every programmer is to
write and analyze the written program code as if it will be repeated millions and
billions of times.

Conclusions

After exposing several bad programming practices and presenting how to combat
and correct them, we start this section with a thought that will never lose its
importance: “There is no substitute for thinking.” In fact, in this new era of AI, we
should rephrase this saying as “There is no substitute for human thinking.” Also,
there is no substitute for the programmers’ solid prerequisite knowledge of
mathematics, computer science, the computer language they are programming in,
as well as the overall intellectual zeal and working discipline to write well-coded
computer programs. This equally refers to presenters and learners of programming
science and art.

Learning only by examples — especially the bad or dubious ones — is simply not
enough. In oversimplified pieces of program code, one can lose the abstractness and
generality, which are pillars of good programming. Furthermore, the lack of
working discipline can lead to unclear and incomplete comments in the source code,
poor descriptions of the input and output data, and badly composed identifiers. All

R. Logozar et al. Avoiding Bad Programming Practices in Education and Profession — Initial Considerations

– 242 –

of this together can obscure the meaning of the written program code and result in
programs that are hard to read, comprehend, and maintain.

Among the notoriously bad examples are those that “explore” the sets of integers
and natural numbers — as is checking their divisibility by some number, or
something similar — ignoring the facts that one should know about those well-
known sets from elementary mathematics. Finding a good example for a
presentation, or a problem for a home assignment, or a programming test, which is
not too easy and not too hard, might be tricky. However, ignoring the fact that there
exist more elegant, mathematically sound solutions is the wrong way, because such
solutions always assure superior programming code. We have illustrated that in this
work. Still, those bad examples can be easily improved to check the desired
properties for one number at a time in a loop, but for various integers input by the
user or stored in an array. Of course, this requires a few additional, preparatory
statements and thus a bit more complicated example, but this is what ought to be
done.

In short, many of the presented inadequate examples insist on simplifying things
that cannot and should not be simplified. A plausible explanation for such bad
practices is either due to the teacher’s or presenter’s ignorance or an attempt to
achieve some educational goals with minimal teaching effort.

In several aspects, those bad practices or the elements thereof can also be found in
the programs generated by the free version of ChatGPT, now a widely known and
available GenAI tool. Those programs served us as a reference to what might be
considered a common program code. We have shown that many of ChatGPT’s
solutions are far from being exemplary, hardly ever lucid, and — as we have
discussed more in our previous paper on this subject [10] — often inconsistent and
variable in quality. However, none of those solutions were so bad as to fail the big
O-notation time complexity of the exemplary algorithms. They were just possibly
slower by a certain, usually small factor. On the other hand, with more and more
“correct” but mediocre solutions on the Web, the quality of the ChatGPT- and other
GenAI-produced programming content could, besides improving, also deteriorate,
unless the collection of that content is strictly supervised by experts. Even the
newest versions of AI tools continue to show deficiencies in their “programming
practices” and the resulting source program code, suggesting that some prevalent
coding patterns, although suboptimal or just clumsy, stubbornly remain in those
GenAI systems, instead of being improved and substituted by better programming
models. However, we touched on this topic only lightly in this paper.

Finally, we have shown very bad and inefficient pieces of program code that could
result from hasty, thoughtless, and untested programming. The students must learn
from the beginning, and the professionals must always keep in mind that the aim of
programming is not just to obtain programs “that work!” This is simply not enough,
and a great deal of computer science is about teaching us just that. Programmers
have to pay attention to how well their programs are written, how efficient they are,

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

– 243 –

how easily they can be updated, and how successfully their procedures (functions)
can be reused. Without paying attention to every single step of the algorithms that
they implement in their programs, as well as the correctness and efficiency of every
single statement by which they implement those algorithms in their computer
programs, neither students nor programming professionals can achieve good results
in this discipline. A trivialized approach to learning programming cannot contribute
to anyone’s true programming knowledge and skills. It can only worsen their habits
in writing program code.

In addition to the basic and most common bad programming practices presented
herein, there are many more from all aspects of this area that are more subtle and
perhaps not so obvious. Well-educated and trained programmers should easily
recognize and avoid them. Hopefully, this might also refer to the careful readers of
this paper who were assiduous enough to come to the end of it. We leave the
exposition and analysis of those cases, as well as the study of their implementation
in some other computer languages, for a possible future continuation of this topic.

Acknowledgment

This work was supported by the authors’ affiliating institution, which is funded by
the Ministry of Science, Education, and Youth of the Republic of Croatia.

Contributions

The first author gave the concept of the paper and provided the majority of its
contents. The second author contributed to this research by checking the provided
program code, collecting the results produced by the GenAI tools, and measuring
the execution times of the analyzed code snippets.

References

[1] D. Knuth, The Art of Computer Programming, 3rd ed., Vol. 1, Addison-
Wesley, Reading, Mass., 1997

[2] R. Logozar, M. Horvatic, I. Sumiga, and M. Mikac, “Challenges in Teaching
Assembly Language Programming — Desired Prerequisites vs. Students’
Initial Knowledge,” 2022 IEEE Global Engineering Education Conference
(EDUCON), Tunis; p.p 1689-1698, doi: 10.1109/
EDUCON52537.2022.9766737. [↗]

[3] C. S. Horstmann, Mastering Object-Oriented Design in C++, John Wiley &
Sons, New York, 1995

[4] Wkp. article: “Magic number (programming)”
[https://en.wikipedia.org/wiki/ Magic_number_(programming)]

[5] Wkp. article: “Naming Convention (Programming)”
[https://en.wikipedia.org/ wiki/Naming_convention_(programming)]

[6] K. Gregory, Using Visual C++ 5 (Special Edition), Que Corporation,
Indianapolis, IN, 1997

https://ieeexplore.ieee.org/document/9766737
https://ieeexplore.ieee.org/document/9766737
https://www.researchgate.net/publication/360546152_Challenges_in_Teaching_Assembly_Language_Programming_-_Desired_Prerequisites_vs_Students'_Initial_Knowledge
https://en.wikipedia.org/wiki/Magic_number_(programming)
https://en.wikipedia.org/wiki/Naming_convention_(programming)

R. Logozar et al. Avoiding Bad Programming Practices in Education and Profession — Initial Considerations

– 244 –

[7] Wkp. article: “Hungarian Notation” [https://en.wikipedia.org/wiki/
Hungarian_notation]

[8] Wkp. article: “Fortran” [https://en.wikipedia.org/wiki/Fortran]

[9] Quora forum topic: “What impact does the length of variable names have in
different programming languages?” [↗]

[10] R. Logozar, M. Mikac, and J. Hizak, “ChatGPT on the Freshman Test in
C/C++ Programming,” 2023 IEEE 21st Jubilee International Symposium on
Intelligent Systems and Informatics (SISY), Pula; p. 255-264, doi:
10.1109/SISY60376.2023.10417871. [↗]

[11] B. W. Kernighan and D. M. Ritchie, C Programming Language (1st and 2nd
Editions, respectively), Englewood Cliffs, NJ: Prentice Hall.D. M., 1978,
1988

[12] B. Stroustrup, The C++ Programming Language, 3rd ed., AT&T Labs,
Murray Hill, New Jersey, 1997-2000 (2003)

[13] T. H. Cormen et al., Introduction to Algorithms, 3rd edition, MIT Press
Cambridge MA, 2009

[14] Brilliant (Learn by doing) article: “Gauss: The Prince of Mathematics”
[https://brilliant.org/wiki/gauss-the-prince-of-mathematics]

[15] StackExchange forum question: “Are there any problems with using
continue or break?”
[https://softwareengineering.stackexchange.com/questions/434124/ are-
there-any-problems-with-using-continue-or-break]

[16] R. Logozar, “Recursive and Nonrecursive Traversal Algorithms for
Dynamically Created Binary Trees,” Computer Technology and Application
(David Publishing), Vol. 3, No. 5, May., pp. 374-382, 2012 [Avail. at:
http://bib.irb.hr/
datoteka/718251.RLogozar_RecrAndNonRecrsTravrAlgForDynCrtdBinTrs
.pdf]

[17] R. Logozar, “Algorithms and Data Structures for the Modeling of Dynamical
Systems by Means of Stochastic Finite Automata,” Technical Gazette
(Tehnički vjesnik), Vol. 19, No. 2, Apr. –Jun., pp. 227-242, 2012 [Available
at: https://hrcak.srce.hr/en/clanak/124744]

[18] R. Logozar, M. Mikac, D. Radosevic, “Exploring the Access to the Static
Array Elements via Indices and via Pointers — the Introductory C++ Case
Expanded,” Journal of Information and Organizational Sciences, Vol. 48 (1),
pp. 49-80, June 2024 [Available at: https://hrcak.srce.hr/en/317974]

https://en.wikipedia.org/wiki/Hungarian_notation
https://en.wikipedia.org/wiki/Hungarian_notation
https://en.wikipedia.org/wiki/Fortran
https://www.quora.com/%20What-impact-does-the-length-of-variable-names-have-in-different-programming-languages
https://ieeexplore.ieee.org/document/10417871
https://ieeexplore.ieee.org/document/10417871
https://www.researchgate.net/publication/360546152_Challenges_in_Teaching_Assembly_Language_Programming_-_Desired_Prerequisites_vs_Students'_Initial_Knowledge
https://brilliant.org/wiki/gauss-the-prince-of-mathematics
https://softwareengineering.stackexchange.com/questions/434124/are-there-any-problems-with-using-continue-or-break
https://softwareengineering.stackexchange.com/questions/434124/are-there-any-problems-with-using-continue-or-break
http://bib.irb.hr/datoteka/718251.RLogozar_RecrAndNonRecrsTravrAlgForDynCrtdBinTrs.pdf
http://bib.irb.hr/datoteka/718251.RLogozar_RecrAndNonRecrsTravrAlgForDynCrtdBinTrs.pdf
http://bib.irb.hr/datoteka/718251.RLogozar_RecrAndNonRecrsTravrAlgForDynCrtdBinTrs.pdf
https://hrcak.srce.hr/en/clanak/124744
https://hrcak.srce.hr/en/317974

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

– 245 –

 Arithmetic Progression and Series

An arithmetic progression or arithmetic sequence is a sequence of numbers, 𝑎𝑎1, 𝑎𝑎2, … ,𝑎𝑎𝑖𝑖 , …,
defined by the initial 𝑎𝑎1 term (member) of the progression, and the constant difference 𝑑𝑑 =
𝑎𝑎𝑖𝑖+1 − 𝑎𝑎𝑖𝑖 > 0 between the neighboring terms, both of which are real numbers: 𝑎𝑎1,𝑑𝑑 ∈ ℝ.
The 𝑛𝑛-th term of the arithmetic progression 𝑎𝑎𝑛𝑛 is

𝑎𝑎𝑛𝑛 = 𝑎𝑎1 + (𝑛𝑛 − 1)𝑑𝑑 . (𝐴𝐴. 1)
The sum 𝑆𝑆𝑛𝑛(𝑎𝑎𝑖𝑖 ,𝑑𝑑) of 𝑛𝑛 consecutive members of an arithmetic progression, from generally
𝑎𝑎1 = 𝑎𝑎𝑘𝑘 till and including 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑘𝑘+𝑛𝑛, where 𝑘𝑘,𝑛𝑛 ∈ ℕ, is called arithmetic series. It
amounts to

𝑆𝑆𝑛𝑛(𝑎𝑎𝑖𝑖 ,𝑑𝑑) = �𝑎𝑎𝑖𝑖 = 𝑛𝑛 (𝑎𝑎1 + 𝑎𝑎𝑛𝑛) 2⁄
𝑘𝑘+𝑛𝑛

𝑖𝑖=𝑘𝑘

. (𝐴𝐴. 2)

With 𝑎𝑎1 = 1 and 𝑑𝑑 = 1, geometric progression reproduces the set ℕ of natural numbers,
for which 𝑎𝑎𝑛𝑛 = 𝑛𝑛 and its arithmetic series is

𝑆𝑆𝑛𝑛(1,1) = �𝑎𝑎𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= � i
𝑛𝑛

𝑖𝑖=1

= 𝑛𝑛 (𝑛𝑛 + 1) 2⁄ . (𝐴𝐴. 3)

As a further example of the use of eq. A. 2, the sums of the first 𝑛𝑛 odd and 𝑛𝑛 even natural
numbers are:

𝑆𝑆𝑛𝑛(1,2) = �[1 + 2(𝑖𝑖 − 1)] = 𝑛𝑛2
𝑛𝑛

𝑖𝑖=1

. (𝐴𝐴. 4)

𝑆𝑆𝑛𝑛(2,2) = �[2 + 2(𝑖𝑖 − 1)] = 𝑛𝑛(𝑛𝑛 + 1)
𝑛𝑛

𝑖𝑖=1

. (𝐴𝐴. 5)

E.g., for the sum of odd integer numbers greater than or equal to −100 and less than or equal
to 300: 𝑎𝑎1 = −99, 𝑎𝑎𝑛𝑛 = 299 = 𝑎𝑎1 + (𝑛𝑛 − 1)𝑑𝑑 ⇒ 𝑛𝑛 = 200.

𝑆𝑆200(−99,2) = 200 (−99 + 299) 2⁄ = 20 000.
𝑆𝑆200(−99,2) = 𝑆𝑆100(101,2) = 100 (101 + 299) 2⁄ = 20 000.

For the sum of even numbers greater than or equal to −100 and less than or equal to 300:
𝑎𝑎1 = −100, 𝑎𝑎𝑛𝑛 = 300 ⇒ 𝑛𝑛 = 201.

𝑆𝑆201(−100,2) = 201 (−100 + 300) 2⁄ = 20 100.
𝑆𝑆201(−100,2) = 𝑆𝑆100(102,2) = 100 (102 + 300) 2⁄ = 20 100.

 Modulo Operation

Modulo operation (mod) is implicitly defined by the following expression,
 𝑘𝑘 = (𝑘𝑘 𝑚𝑚⁄) × 𝑚𝑚 + 𝑘𝑘 mod 𝑚𝑚 , (𝐵𝐵. 1)

in which 𝑘𝑘 and 𝑚𝑚 are integers, 𝑚𝑚 ≥ 1 (𝑘𝑘 ∈ ℤ, 𝑚𝑚 ∈ ℕ), and division is the integer division.

Definition: 𝑘𝑘 is divisible by 𝑚𝑚 if and only if 𝑘𝑘 mod 𝑚𝑚 = 0.

R. Logozar et al. Avoiding Bad Programming Practices in Education and Profession — Initial Considerations

– 246 –

Let 𝑘𝑘0 be divisible by 𝑚𝑚. Then the numbers that are also divisible by 𝑚𝑚 are 𝑘𝑘0 ± 𝑙𝑙𝑙𝑙, where

𝑙𝑙 = 1, 2, … .

Proof. The operation 𝑘𝑘 mod 𝑚𝑚 defines exactly 𝑚𝑚 classes of equivalence, with the results

𝑘𝑘 mod 𝑚𝑚 = 0, 1, … , 𝑚𝑚 − 1. If 𝑘𝑘0 mod 𝑚𝑚 = 0, then 𝑘𝑘0 = (𝑘𝑘0 𝑚𝑚⁄) × 𝑚𝑚, and also:
𝑘𝑘0 ± 𝑙𝑙𝑙𝑙 = (𝑘𝑘0 𝑚𝑚⁄) × 𝑚𝑚 ± 𝑙𝑙𝑙𝑙 = (𝑘𝑘0 𝑚𝑚⁄) × 𝑚𝑚 ± (𝑙𝑙𝑙𝑙 𝑚𝑚⁄) × 𝑚𝑚

 = [(𝑘𝑘0 ± 𝑙𝑙𝑙𝑙) 𝑚𝑚⁄] × 𝑚𝑚 .
This implies that 𝑘𝑘0 ± 𝑙𝑙𝑙𝑙 is divisible by 𝑚𝑚. Q.E.D.

The numbers 𝑘𝑘0,∓𝑚𝑚 divisible by 𝑚𝑚 and closest to 𝑘𝑘0 are those for 𝑙𝑙 = 1 : 𝑘𝑘0,∓𝑚𝑚 = 𝑘𝑘0 ∓ 𝑚𝑚.

	1 Introduction
	2 Basic and Common Bad Programming Practices
	2.1 Undermining the Basic Principles of Programming — Abstractness and Generality
	2.2 Incomplete and Unclear Source Code Comments and Descriptions of the Input and Output Data
	2.3 Bad Identifiers
	2.4 GenAI Programming Practices — or the Lack of Them

	3 Inadequate Theoretical Background and Bad Examples
	3.1 Teaching and Learning Only “What’s Needed to Make the Program Work”
	3.2 The Curse of Bad Examples

	4 Brute Force Calculations That Ignore Elementary Mathematical and Programming Facts
	4.1 Investigating the Well-Known Discrete Number Sets
	4.2 Ignoring Computational Optimality
	Appendix A. Arithmetic Progression and Series
	Appendix B. Modulo Operation

