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Abstract: Debugging high-dimensional state spaces in cloud continuum environments poses 
significant challenges, particularly when investigating extreme conditions such as high 
latency, competing on resources, or configuration anomalies. This paper presents a novel 
supervised machine learning-based approach to efficiently assist the debugging process by 
steering toward potential fault states in an automated way. Leveraging typical blueprint 
primitives, such as load balancers and temporal data storage in the presented case studies, 
Multi-Layer Perceptron (MLP) and Dense Neural Networks (DNN) were trained to predict 
the distance to extreme situations. The trained model informs a traversal mechanism that 
explores the state space using this heuristic, minimizing the time and consumed resources 
required to detect actual faults. The first experiments conducted with two foundational 
blueprint primitives (buffers and multi-tier load balancers) demonstrate the promising 
effectiveness of the approach in locating potential fault states. By integrating this method 
into cloud-edge debugging tools, developers can enhance not only fault localization but 
reliability and performance as well, particularly for extreme timing conditions. Future work 
will explore a wider set of primitives, as well as adjacency matrix representations and 
convolutional techniques, to improve applicability, scalability and robustness of the 
presented solution. 

Keywords: Cloud computing; Debugging; Machine Learning; Fault Detection; Markov 
chains; State Space Explorations 

1 Introduction and Background 
Cloud blueprint primitives [1] serve as foundational components in orchestrating 
cloud-based systems, enabling (among others) seamless deployment and scaling of 
platform or applications. Temporal data storage and load balancers [2] play crucial 
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roles in the cloud-edge continuum [3] as blueprint primitives due to the widely 
applied data stream-oriented processing mechanisms. However, extreme conditions 
such as high latency, competing on resources, or configuration anomalies can 
disrupt these primitives, often decreasing system reliability and performance as 
well. Localization of related faults is a cumbersome process [4]. This article 
proposes a smart steering mechanism designed to debug cloud blueprint primitives 
under such extreme timing conditions. During the modelling phase I focused on the 
conditions where a component is starving (e.g. there is no data in the buffer), or 
overloaded (e.g. the data buffer is full). 

The presented work builds upon our previous study [5], where we analyzed 
debugging issues concerning the Producer-Consumer primitive, used as our 
baseline model. We extended the scope to include more complex topologies with 
load balancers (advanced use cases involving multiple Producers and/or 
Consumers) and state-of-the-art service meshes. 

In our previous work, we proposed an advanced, ML-enhanced debugging 
framework for cloud services (see Figure 1). The selected modeling toolset — 
including the PRISM language, simulator, and model checker [6] — has proven 
effective for handling relatively large transition graphs and state spaces. It also 
enabled the generation of training datasets by leveraging the formal descriptions of 
Markov Chains and Decision Processes. 

 
Figure 1 

Proposed framework for smart debugging with formal modelling and ML tools [5] 

We successfully conducted autoencoder-supported anomaly (fault) detection 
experiments on Producer-Consumer primitive-based topologies of gradually 
increasing complexity (see ML tools on Figure 1). These experiments provide a 
foundation for steering mechanisms for cloud debuggers featuring replay and active 
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control mechanisms. Our Graph Neural Network (GNN) based fault detection also 
produced promising results. However, experiments using an advanced steering 
mechanism based on Long Short-Term Memory (LSTM) did not lead to satisfactory 
results. 

In this article, I show a strategy to overcome the limitations of our previous work 
[5] and I present a method based on supervised machine learning principles that can 
guide the debugger tool toward potential fault states within a high-dimensional state 
space, see the highlighted ‘steering engine’ on Figure 1. This novel method aids in 
selecting states for further debugging and testing where the possibility of 
discovering faults is higher. This procedure is particularly useful when the state 
space is too large to exhaustively traverse and test all possible states individually. 
The proposed Multi-Layer Perceptron (MLP) and Dense Neural Network (DNN) 
model-based methods present an approach that can effectively tackle this problem. 
Through a selected example dataset, I demonstrate how this procedure can be 
applied in practice. 

The steering mechanism is to be incorporated into debuggers that support advanced 
active control and replay techniques, including our DIWIDE debugger for parallel 
and distributed applications [7], or other cloud debuggers designed for Terraform 
cloud orchestrator [8] [9] or for microservice meshes [5]. 

The paper is structured as follows. In this section, I introduced and outlined the 
problem, providing justification for the relevance of my approach and some 
important background information on our previous results in debugging complex 
parallel and distributed systems. Section 2 provides a review on research findings 
and methods that overlap with and/or relate to the results presented in this paper. In 
Section 3, I present the methodology used to address the problem, explaining its 
steps in detail, and how they contribute to solving the addressed problem. Section 4 
showcases the results achieved on two basic but crucial test scenarios using the 
proposed method. The paper concludes with Section 5. 

2 Related Work 
The presented methods in this section particularly lack a systematic approach for 
guided traversal toward potential fault state. In contrast, our work combines Markov 
chain modeling with supervised ML-based heuristic steering, enabling efficient 
exploration and efficient fault localization in high-dimensional state spaces for 
cloud-edge debuggers. 
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2.1 ML-based Log and Time-Series Analysis for Anomaly 
Detection 

Gan et al. [10] introduced SAGE, an unsupervised ML-driven framework for 
performance debugging that is effectively scalable for inspecting microservice 
architectures. However, their focus is primarily on performance debugging related 
to Quality-of-Service (QoS) violations, without a formal modeling background. 

In another related work, Huang et al. [11] proposed log-based anomaly detection 
methods to troubleshoot faults in complex cloud systems. Their method automates 
log parsing to identify anomalies, focusing primarily on root cause analysis but 
lacking predictive fault distance estimation and active steering. 

Shahane [12] outlined the use of both supervised and unsupervised ML for not only 
automated failure detection but also anomaly prediction in cloud infrastructure. 
Their high-level approach aligns with our work in many aspects; however, the 
author only presents a conceptual framework without concrete implementation. 

Additionally, Yu et al. [13] elaborated MLPing, a proactive fault detection system 
for large-scale distributed networks. While MLPing focuses on anomaly detection 
and real-time alerting, our approach extends fault detection by incorporating 
heuristic steering in high-dimensional state spaces. 

Han et al. [14] proposed FRAPpuccino, a runtime fault detection framework with 
functionalities to capture a comprehensive view of program activities at the 
Platform as a Service level using a directed acyclic graph (DAG) representation. Its 
dynamic sliding window algorithm, combined with clustering, proves effective for 
runtime anomaly detection. However, it lacks an active and supervised ML-based 
steering mechanism for navigating extreme situations. 

Kumar et al. [15] introduced LSTM models for early fault detection through system 
log analysis. While this method effectively identifies anomalies in time-series data, 
it does not integrate probabilistic modeling or a steering mechanism, as 
demonstrated in our approach. 

2.2 Markovian Methods 
Cao and Niu [16] explored higher-order Markov graphs for fault detection, 
specifically analyzing cloud deployments and big data logs to detect anomalies. 
Their method proves effective for identifying complex patterns; however, it lacks 
an active control and guidance mechanism to steer the system toward potential 
faults. 

Cotroneo et al. [17] extended fault injection methods by applying higher-order 
Markov models to investigate traditional cloud infrastructures under various 
scenarios, including systems under workload and idle conditions. While their 
solution shares many goals and methods with my work, my approach specifically 
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targets extreme conditions and incorporates a smart steering mechanism tailored for 
the cloud-edge continuum. 

2.3 Query-based and Test Case Generation Methods 
Dogga et al. [18] introduced Revelio, an ML-based assistant trained on historical 
bug reports and system logs. The assistant generates debugging queries by 
leveraging the basic functionalities of existing tools and can inject faults into 
distributed systems to actively manipulate their behavior. However, their approach 
is broader in scope, lacks a formal foundation, and does not provide proven use 
cases directly related to my work. 

Pontillo et al. [19] proposed FERRARI, a failure reproduction tool that generates 
test cases and analyzes stack traces to identify faults. While their tool efficiently 
aids in reproducing failures for manual debugging, it does not focus on ML-guided 
debugging or incorporate a formal modeling background as presented in my work. 

2.4 Further Related Works 
More related work has been described in our latest related paper [5], this section 
highlighted additional recent and relevant contributions in a complementary and 
structured manner. 

3 Methodology 

3.1 Overview and Problem Statement 
The applied procedure consists of several steps: (i) First, simulations are performed 
based on the system model, and the collected log data is used for machine learning 
purposes. (ii) Based on the labelled simulation data, a supervised training process 
is carried out for the ML model. (iii) Once the model has been trained, it is used to 
guide the traversing process for the debugger, and (iv) I demonstrate how the 
estimated distance values provided by the model inform the subsequent search 
directions. (v) Finally, the method is validated to ensure its effectiveness. 

The presented procedure is based on the principle that while certain faults are 
deterministic, their occurrence and manifestation follow a stochastic process with 
an unknown probability distribution. Furthermore, it is assumed that a fault can be 
repeatedly reproduced by traversing the same nodes in the state space based on 
replay techniques (see examples in [8] [9]). However, the same fault can also be 
triggered through alternative means, i.e. they might be reached in various paths 
during actively controlled debugging sessions. 
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3.2 The Base-Line Model 
To provide clear understanding, I have selected a basic example to demonstrate the 
procedure as follows. 

The Producer-Buffer-Consumer primitive [5] in cloud continuum blueprints 
(elementary part of load balancers and temporary data storage) was analyzed for 
debugging purposes with the PRISM modelling and simulation tool [6] described 
as a discrete-time (t = 1, 2, ..., T) stochastic process, where the state (Producer, 
Buffer, Consumer) changes in unpredictable manner over time. 

Let 𝑆𝑆𝑡𝑡 = (𝑃𝑃𝑡𝑡 ,𝐵𝐵𝑡𝑡 ,𝐶𝐶𝑡𝑡)  represent the state space at time 𝑡𝑡, where: 

𝑃𝑃𝑡𝑡: the state of the Producer at the 𝑡𝑡-th time step, 

𝐵𝐵𝑡𝑡: the state of the Buffer at the 𝑡𝑡-th time step (number of elements), 

𝐶𝐶𝑡𝑡: the state of the Consumer at the 𝑡𝑡-th time step. 

The state space (𝑆𝑆𝑡𝑡) thus represents the actual state of the Producer-Buffer-
Consumer system, where: 

𝑆𝑆𝑡𝑡 = (𝑃𝑃𝑡𝑡 ,𝐵𝐵𝑡𝑡 ,𝐶𝐶𝑡𝑡), 𝑃𝑃𝑡𝑡 ,𝐶𝐶𝑡𝑡 ∈ ℕ, 𝐵𝐵𝑡𝑡 ∈ {0,1, … ,𝐾𝐾}.  (1) 

The state transition probabilities, which describe the system's evolution, are 
determined by stochastic events:  

 𝑃𝑃( 𝑆𝑆𝑡𝑡+1 ∣∣ 𝑆𝑆𝑡𝑡 ): the transition probability from state 𝑆𝑆𝑡𝑡 → 𝑆𝑆𝑡𝑡+1  (2) 

The state transitions (𝑆𝑆𝑡𝑡 → 𝑆𝑆𝑡𝑡+1) meet the following rules: 

If 𝑃𝑃𝑡𝑡 = 1, then 𝐵𝐵𝑡𝑡+1 = 𝐵𝐵𝑡𝑡 + 1, if 𝐵𝐵𝑡𝑡 < 𝐾𝐾.    (3) 

If 𝐶𝐶𝑡𝑡 = 1, then 𝐵𝐵𝑡𝑡+1 = 𝐵𝐵𝑡𝑡 − 1, if 𝐵𝐵𝑡𝑡 > 0.   (4) 

The activation of 𝑃𝑃𝑡𝑡, 𝐵𝐵𝑡𝑡 , and 𝐶𝐶𝑡𝑡 occurs randomly, with probabilities following a 
uniform distribution. 

The Buffer has a limited capacity, defined as  

𝐵𝐵𝑡𝑡 ∈ { 0,1,2, … ,𝐾𝐾}.      (5) 

According to our previous studies [5], a class of faults can be efficiently captured 
by applying autoencoders, particularly when a buffer reaches or exceeds its storage 
capacity or becomes empty. Such potentially erroneous situations can be labeled (or 
registered) using autoencoders in complex cases (even without any knowledge on 
the topology), or this simple rule can be applied if the relevant system configuration 
details (including topology) are known: 

𝐹𝐹𝑡𝑡 = �1 if 𝐵𝐵𝑡𝑡 ≥ 𝐾𝐾 or if 𝐵𝐵𝑡𝑡 < 0 
0 otherwise

    (6) 

Based on the fault occurrence, we define a derived variable 𝐷𝐷𝑡𝑡  as Distance to Fault. 
At each time step 𝑡𝑡, the distance to the fault can be computed as follows: 
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If 𝐹𝐹𝑡𝑡 = 1, then 𝐷𝐷𝑡𝑡 = 0 (a fault has occurred). 

Otherwise, 𝐷𝐷𝑡𝑡  represents the distance to    (7) 

the fault in terms of time steps. 

Since the states of the Producer-Buffer-Consumer primitive change in discrete time 
and transitions occur probabilistically, the process can be modeled as a discrete-
time Markov chain. In this model, the state of the system at time 𝑡𝑡, depends only on 
the previous state 𝑡𝑡 − 1, i.e.,  

𝑷𝑷( 𝑆𝑆𝑡𝑡+1 ∣∣ 𝑆𝑆𝑡𝑡 , 𝑆𝑆𝑡𝑡−1, … , 𝑆𝑆0 ) = 𝑷𝑷( 𝑆𝑆𝑡𝑡+1 ∣∣ 𝑆𝑆𝑡𝑡 ).   (8) 

The state of the system is determined by the states of the Producer, Buffer, and 
Consumer. The state transition probabilities are governed by the transition matrix 
𝑷𝑷( 𝑆𝑆𝑡𝑡+1 ∣∣ 𝑆𝑆𝑡𝑡 ), which specifies the likelihood of moving from one state to another. 
The state transitions follow these rules: 

If the Producer is activated: 𝑃𝑃𝑡𝑡+1 = 𝑃𝑃𝑡𝑡 + 1  (9) 

If the Buffer is activated:  
𝐵𝐵𝑡𝑡+1 = 𝐵𝐵𝑡𝑡 + 1
𝑃𝑃𝑡𝑡+1 = 𝑃𝑃𝑡𝑡 − 1   (10) 

If the Consumer is activated and 𝐵𝐵𝑡𝑡 > 0,  

then the new state is: 
𝐵𝐵𝑡𝑡+1 = 𝐵𝐵𝑡𝑡 − 1
𝐶𝐶𝑡𝑡+1 = 𝐶𝐶𝑡𝑡 + 1  (11) 

Therefore, in this model, state transitions occur probabilistically, and the extreme 
condition (with potential fault) arises when the buffer reaches or exceeds its 
maximum capacity 𝐾𝐾 or becomes empty. The derived variable 𝐷𝐷𝑡𝑡  measures 
proximity to the potentially fault state, allowing an analysis of how close the system 
is to failure at any given time step. 

The goal of the simulation is data generation, which serves as a data collection 
process describing the dynamics of the Producer-Buffer-Consumer primitive. 
During the simulation phase, the primary focus is to gather data on the system's 
behavior. Throughout the simulation, the following dataset is collected: 

(𝑆𝑆𝑡𝑡 ,𝐷𝐷𝑡𝑡)        (12) 

where 𝑆𝑆𝑡𝑡 = (𝑃𝑃𝑡𝑡 ,𝐵𝐵𝑡𝑡 ,𝐶𝐶𝑡𝑡) represents the system state, and 𝐷𝐷𝑡𝑡  is the distance to the 
potential fault. 

Using the trained model, I employ the data generated by the simulation (or data 
derived from it) to train a neural network in a supervised manner. The task of the 
neural network is to estimate the distance to the possible fault state for each system 
state. 

The decision making rule, which determines how the state space should be explored, 
and which directions are worth pursuing to move closer to potential faults, works 
as follows. 
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With the help of the trained model, in any given state (selected as the starting point), 
the distance to potential faults is estimated for all possible next states. Based on 
these estimates, the next state is chosen such that it minimizes the distance to a 
suspicious state to be debugged. This approach enables the exploration of the state 
space in the direction most likely to encounter a fault. 

3.3 Conceptions for ML Model Training 
Let us assume a system with a state space so large that it cannot be fully explored, 
but certain parts of it can still be observed. From these observations, a dataset is 
generated, which includes the system states and a corresponding target variable. 

The target variable represents the distance to a potential fault state and is measured 
as follows: for each observed state, the target variable quantifies how far the state 
is from a potential fault, providing a meaningful numerical measure of proximity to 
failure. This distance serves as the basis for further analysis and exploration of the 
state space. 

3.4 ML Model Training to Estimate Distance to Faults 
Based on the collected data, the next step was formulated as a supervised learning 
task. The objective of this task is to estimate the distance to the suspicious state (i.e., 
the number of steps remaining until a fault may occur in extreme conditions) based 
on the system's states. To achieve this, the data generated during the simulation was 
transformed into training data. 

Specifically, during the simulation, I conducted 300 independent runs, where each 
run consisted of 70 steps. At every step, the current state (𝑃𝑃𝑡𝑡 ,𝐵𝐵𝑡𝑡 ,𝐶𝐶𝑡𝑡) was recorded, 
along with a value 𝛥𝛥𝑡𝑡, which represents the temporal distance to the potential fault 
state. Thus, the training dataset was structured such that each row was represented 
in the form 

(𝑋𝑋𝑡𝑡 ,𝛥𝛥𝑡𝑡)       (13) 
where: 

𝑋𝑋𝑡𝑡 = (𝑃𝑃𝑡𝑡 ,𝐵𝐵𝑡𝑡 ,𝐶𝐶𝑡𝑡), represents the system state at time 𝑡𝑡, 
Δt ∈ ℕ, represents the number of steps remaining until the fault occurs, if 

it occurred at all. 

Therefore, this structure enabled the development of a supervised learning model 
that uses system states to predict the temporal proximity to potential fault states. 

The complete training dataset consisted of 300 × 70 = 21,000 samples taking into 
consideration the size of the given state space and some preliminary experimental 
results. However, cases that occurred after a detected fault in the simulation were 
excluded. As a result, the final training dataset contained 18,192 observations, each 
corresponding to a system state and its associated distance to the fault state. 
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The prepared training data was used to train a Multi-Layer Perceptron (MLP) neural 
network. The MLP architecture consisted of two hidden fully connected layers, 
followed by an output layer that produced a scalar estimate for 𝛥𝛥𝑡𝑡. The first hidden 
layer contained 20 neurons, and the second hidden layer contained 10 neurons 
leveraging on some preliminary experiments. For training, I applied standard 
gradient-based optimization (SGD), with the learning process being monitored on a 
pre-separated validation set to ensure the model's generalization capability.  
The neural network employed the LeakyReLU activation function (with an alpha 
value of 0.1) between the MLP layers, allowing it to represent outputs in both linear 
and nonlinear ranges. At the output layer, a linear activation function was used, as 
the target variable 𝛥𝛥𝑡𝑡 is a continuous value ranging between -1 and 70. This choice 
ensures that the output can appropriately capture the temporal distance to the 
potential fault state. 

The training process was conducted iteratively using batch size of 512, determined 
empirically through trial and error. This batch size provided a balance between fast 
convergence and smooth error reduction. The learning rate was initially set to 0.001, 
and the model was trained for 100 epochs. After each epoch, the model's 
performance (error) was evaluated on the validation set, which comprised 20% of 
the total dataset. The number of epochs was determined based on the principle that 
training should stop when the error on the validation set begins to increase, 
indicating potential overfitting. This stopping criterion was also established 
empirically. 

Before training, MinMax normalization was applied to both the input and output 
data to accelerate the neural network's learning process. Specifically, the original 
data was transformed into the 𝑋𝑋[0,1] while preserving the data's monotonicity.  
The transformation was performed as follows: 

𝑥𝑥′ = 𝑥𝑥−𝑥𝑥min
𝑥𝑥max−𝑥𝑥min

      (14) 

where  𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥  present the minimum and maximum values of the states 𝑆𝑆  
(or the target variable) within the training dataset. This normalization was necessary 
because the optimization process, which updates the neural network's weights, is 
more effective when both the input data and the output values are on a similar 
scale—such as the [0,1] range. By scaling the data to this range, the training process 
became more efficient and stable, ensuring better convergence of the model. 

In the training dataset, the input 𝑋𝑋 consists of states generated by the simulation: 

𝑋𝑋 = {𝑆𝑆𝑡𝑡 = (𝑃𝑃𝑡𝑡 ,𝐵𝐵𝑡𝑡 ,𝐶𝐶𝑡𝑡)}     (15) 

The output 𝑦𝑦 corresponds to the distance to the potential fault state for each system 
state: 

𝑦𝑦 = {𝐷𝐷𝑡𝑡}      (16) 
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Initially, I employed an MLP model to learn the mapping 𝑋𝑋 → 𝑦𝑦. The model's task 
is to estimate 𝐷𝐷𝑡𝑡  for each state: 

𝐷𝐷�𝑡𝑡 = model(𝑆𝑆𝑡𝑡)      (17) 

As this is a regression task, the Mean Squared Error (MSE) was used as loss 
function during training. The MSE is computed as follows: 

MSE = 1
𝑁𝑁
∑ ( 𝑦𝑦𝑚𝑚 − 𝑦𝑦�𝑚𝑚)2𝑁𝑁
𝑚𝑚=1 ,     (18) 

where 𝑁𝑁 is the number of samples, 𝑦𝑦𝑚𝑚  is the true or observed output value, and 𝑦𝑦�𝑚𝑚 is 
the predicted output value by the model. 

3.5 Steering Method towards Extreme Situations 
The steering process can be summarized in 3 steps: 

1. Identify Possible Next States 𝑆𝑆𝑡𝑡+1 

  Starting from a given state 𝑆𝑆𝑡𝑡,  we determine all possible next states based on 
the following rules: 

  If 𝑃𝑃𝑡𝑡 > 0 and 𝐵𝐵𝑡𝑡 < 𝐾𝐾, then 𝑆𝑆𝑡𝑡+1
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = (𝑃𝑃𝑡𝑡 − 1,𝐵𝐵𝑡𝑡 + 1,𝐶𝐶𝑡𝑡) (19) 

  If 𝐵𝐵𝑡𝑡 > 0, then 𝑆𝑆𝑡𝑡+1𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝐵𝐵𝑚𝑚𝐵𝐵𝐵𝐵 = (𝑃𝑃𝑡𝑡 ,𝐵𝐵𝑡𝑡 − 1,𝐶𝐶𝑡𝑡 + 1)  (20) 

  𝑆𝑆𝑡𝑡+1𝑃𝑃𝐵𝐵𝐶𝐶𝑃𝑃𝐵𝐵𝑃𝑃𝐵𝐵𝐵𝐵 = (𝑃𝑃𝑡𝑡 + 1,𝐵𝐵𝑡𝑡 ,𝐶𝐶𝑡𝑡)      (21) 

In general cases, all the enabled state transitions must be taken into account 
as we described in [7] [8] [9]. 

2. Distance Estimation 𝐷𝐷�𝑡𝑡+1 

Using the trained model, the estimated distance to the potential fault is 
calculated for all possible 𝑆𝑆𝑡𝑡+1 states: 

𝐷𝐷�𝑡𝑡+1 = model(𝑆𝑆𝑡𝑡+1)     (22) 

3. Decision Rule 

Among all possible 𝑆𝑆𝑡𝑡+1, we select the state that minimizes the estimated 
distance to the suspicious state: 

𝑆𝑆𝑡𝑡+1∗ = argmin
𝑆𝑆𝑡𝑡+1

𝐷𝐷�𝑡𝑡+1     (23) 

       where: 

(𝑃𝑃𝑡𝑡 ,𝐵𝐵𝑡𝑡 ,𝐶𝐶𝑡𝑡): current state 

model(⋅): trained MLP model that estimates the distance to the fault state 

𝐾𝐾: max. capacity of the Buffer, by or beyond which a fault may occur 

𝑆𝑆𝑡𝑡+1∗ : the best next state that minimizes the estimated distance to the fault  
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Algorithm 1 
Steering method for state space exploration toward suspicious conditions 

 

Therefore, this approach (see Algorithm 1) systematically explores the state space 
by evaluating all possible next states and choosing the one most likely to bring the 
system closer to a potentially fault condition, as predicted by the trained model. 

4 Experiments and Measurements 

4.1 First Stage of Experiments (Use Cases 1 and 2) 
Two use cases are examined based on the previously discussed Producer-Buffer-
Consumer primitive: 

1. Use Case 1 (P – B – C) 

In this scenario, a single Buffer connects the Producer and the Consumer.  
The extreme condition (potential fault state) was defined such that a fault 
occurs if the Buffer’s current value drops below 0 or reaches/exceeds 20. 

2. Use Case 2: P – (B1, B2) – C 
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In this scenario, two buffers, B1 and B2, are placed in parallel between the 
Producer and the Consumer. The Producer can send data to either buffer, and 
the Consumer can extract data from any buffer that is not empty. The extreme 
condition was defined similarly to Use Case 1 but applied to both buffers. 
Specifically, a fault occurs if the value of either buffer falls below 0 or 
reaches/exceeds 20. 

In summary, Use Case 1 examines a single buffer for faults, while Use Case 2 
involves two parallel buffers for the same conditions. 

 
Figure 2 

Estimated distances from potential fault for Use Case 1: P-B-C 

In this example, the initial state was defined as P=10, B=10, C=10 to ensure clarity 
and interpretability. The buffer's value was initialized equidistant from both 
potential fault thresholds, which were defined as occurring when the buffer value 
falls below 0 or reaches/exceeds 20. 

Figure 2 illustrates the surface plot generated by the trained MLP model. It shows 
the estimated distance to an extreme situation (potential fault state) under different 
combinations of Buffer (B) and Producer (P) states, with the Consumer (C) state 
value fixed at 10. The surface reveals how the model predicts the distance to a 
suspicious situation based on variations in Buffer levels and Producer activity. 

One of the key observations related to the behavior of the Buffer: the model predicts 
that as the buffer value decreases toward 0 or increases toward 20, the estimated 
distance to the potential fault state also decreases. This aligns with the fault 
thresholds and reflects the expected system behavior, i.e. the closer the buffer value 
is to either extreme, the fewer steps are required for a fault to occur. 

Another observation shows the independence from the Producer: the model's 
predictions are unaffected by changes in the producer's value. This demonstrates 
that the Producer state is irrelevant for estimating the distance to the potential fault 
state under the given conditions. This behavior matches the expected system 
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dynamics since the Buffer's state alone determines proximity to a fault in this 
example. 

In summary, the results confirm that the trained MLP model is able to predict the 
distance to a potential fault. It captures the key relationships between the buffer state 
and fault proximity while correctly identifying that the producer's state does not 
influence the outcome. 

Table 1 
Steering in action toward a potential fault in Use Case 1: P-B-C 

Ste
 

P B C Distanc
 

 P B C Distanc
 

 P B C Distanc
 0 1

0 
1
0 

1
0 

85.29  3 1
5 

1
0 

32.02  3 7 10 77.35 
1 9 1

1 
1
0 

79.09  2 1
6 

1
0 

27.10  3 6 11 69.00 
2 8 1

2 
1
0 

70.68  1 1
7 

1
0 

22.18  3 5 12 57.80 
3 7 1

3 
1
0 

62.22  0 1
8 

1
0 

17.25  3 4 13 46.76 
4 6 1

4 
1
0 

53.76  1 1
8 

1
0 

16.52  3 3 14 35.63 
5 5 1

5 
1
0 

45.30  0 1
9 

1
0 

11.60  3 2 15 24.24 
6 4 1

6 
1
0 

36.84  1 1
9 

1
0 

10.87  3 1 16 12.91 
7 3 1

7 
1
0 

28.38  0 2
0 

1
0 

5.94  3 0 17  1.58 
8 2 1

8 
1
0 

19.92  1 2
0 

1
0 

5.22      
9 1 1

9 
1
0 

11.46           
10 0 2

0 
1
0 

5.00           

If we want to analyze, based on the trained model, the direction we should take to 
reach a potential fault starting from any arbitrary initial state, the process can be 
carried out as follows. In this example, three test cases with different initial states 
(see Step 0 in Table 1) are examined. 

Table 1 shows the actual steering paths of states as determined by the algorithm. It 
is presented top to bottom, where each row represents a consecutive state, see 
Columns P, B, and C. For each state, the trained model calculates the estimated 
Distance to the potential fault for all possible neighboring states. The table only 
displays the selected states, i.e. the best paths (shortest route to decrease the distance 
from the potential fault state). 

In Use Case 2, the primitive has been extended to provide a higher level of 
availability or throughput: one Producer (P); two Buffers (Buffer1, Buffer2) for 
storing elements independently and in parallel; one Consumer (C). 
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Figure 3 

Estimated distances from potential fault for Use Case 2: P-(B1-B2)-C 

The results on Figure 3 and Table 2 demonstrate that, starting from any arbitrary 
initial state, the steering process consistently directs the state space traversal toward 
the nearest extreme state based on the model's predictions. In this example, a 
potential fault occurs if any of the following conditions are met: Buffer1 drops 
below 0 or reaches/exceeds 20, or Buffer2 drops below 0 or reaches/exceeds 20. 
When both buffers have values of 10, the system is at its maximum distance from a 
potential fault state, representing a point of equilibrium. However, moving in any 
direction along the buffer values brings the system closer to an extreme condition 
at an accelerating rate. 

An important observation is that estimated fault distances by the model do not need 
to be perfectly accurate for the steering algorithm to be effective. The model 
remains capable of determining the correct direction to move within the state space, 
minimizing the distance to a potential fault state with each step. This highlights the 
robustness of the trained model: even if the distance predictions are slightly off, the 
model successfully identifies the best path to approach extreme conditions. 

Table 2 
Steering in action toward a potential fault in Use Case 2: P-(B1-B2)-C 

 Step P B1 B2 C Distance P B1 B2 C Distance 
 0 10 11 10 10 86.47 5 6 10 10 83.03 
 1  9 12 10 10 85.48 5 5 10 11 72.34 
 2  8 13 10 10 84.48 5 4 10 12 61.65 
 3  7 14 10 10 72.95 5 3 10 13 50.96 
 4  6 15 10 10 59.38 5 2 10 14 40.27 
 5  5 16 10 10 45.81 5 1 10 15 29.57 
 6  4 17 10 10 32.24 5 0 10 16 9.75 
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 7  3 18 10 10 18.67      
 8  2 19 10 10  5.10      
 9  1 20 10 10 -8.47      

The interpretation of the distance to a potential fault in this simulation requires 
careful consideration due to the system's probabilistic nature. For instance, in Use 
Case 2, where two buffers operate in parallel, the results indicate that the estimated 
distance to an extreme condition for Buffer1 can be approximately 5.1 or 29.57 
steps, even when it appears that the system is deterministically just one step away 
from an extreme condition. This phenomenon arises from the probabilistic nature 
of the system. Since Buffer1 has relatively low chance of being selected in each 
step, and the Consumer’s actions may further influence the Buffer’s state, the real 
distance to the potential fault increases. 

In summary, the results confirm that the trained model successfully steers the 
system toward potential fault states by predicting distances with sufficient accuracy 
to guide the search. While the fault distance estimates may not always align 
perfectly with deterministic expectations, they reflect the probabilistic behavior of 
the system dynamics. This ensures that the model remains reliable in identifying 
directions in the state space that bring the system closer to extreme conditions. 

In order to examine the effectiveness of the elaborated steering method, test 
scenarios have been designed and examined with Use Case 2 (with half size 
buffers). The simulation space was defined such that components P, B1, B2, and C 
could take arbitrary integer values between 1 and 9 as initial state. (Concerning B1 
and B2, the values of 0 and 10 were excluded because the extreme condition would 
have been immediately detected under those circumstances.) The measurement 
involved 300 test cases, where the mean number of steps to reach an extreme 
condition was 3.937, with a standard deviation of 2.361 (see Figure 4). 

 
Figure 4 

Histogram of required steps toward potential faults based on 300 test cases 
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4.2 Experiments with Multi-Tier Load Balancer Topology 
In order to evaluate our approach and efficiency of the steering process in more 
complex use cases, I conducted experiments using a multi-tier load balancer 
topology (see Figure 5), where the load balancers (LB1, LB2, and LB3) can buffer 
only a limited number of items (B1, B2, and B3). This use case was studied in our 
previous work [5] using LSTM model without significant results. 

 
Figure 5 

Topology of Use Case 3 with multi-tier load balancers 

For this Use Case 3, a more complex 7-layer Dense Neural Network (DNN) 
architecture was applied after some preliminary experiments (instead of the 2-layer 
Fully Connected MLP). Each layer contained 10 neurons with SELU activation 
functions, and the network had a single output node at the end, estimating the 
distance from the error. In Use Case 3, there were three error conditions: B1, B2, or 
B3 > 10. 

Considering from a steering perspective, only the simulation cases that resulted in 
errors are highly relevant. Consequently, I performed the training using only the 
data derived from these error-prone simulation runs. Considering the complexity 
and state space of the analyzed topology, the number of error cases used for training 
was based on 3,559 simulation runs that resulted in some form of error. This formed 
the training dataset, which contained a total of 486,408 observed states. 

The training spanned 5×30 epochs on the same neural network, with an increasing 
learning rate (0.0001, 0.001, 0.002, 0.005, 0.01) and a decreasing batch size (3200, 
800, 320, 80, 32). 
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Figure 6 
Learning curves (Use Case 3) 

Figure 6 illustrates the learning curves for the first and second rounds of training. 
On the left, the results correspond to a learning rate of 0.0001 and a batch size of 
3200, while on the right, they correspond to a learning rate of 0.001 and a batch size 
of 800. 

By the end of the training, the results for the actual and predicted distance values 
can be seen in Figure 7. 

 

Figure 7 
Accuracy of estimation (Use Case 3) 

The model becomes increasingly accurate as the system approaches the error state 
(value of 0). In contrast, the model is less accurate in states farther from the error 
reflecting the fact that in states farther from the error, there are more possible routes 
to avoid the error or transition to states where no error occurs. The metrics 
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describing the prediction accuracy were as follows: the Mean Absolute Error 
(MAE) was 23.102, the Root Mean Square Error (RMSE) was 29.660, the Mean 
Absolute Percentage Error (MAPE) was 0.71%, the R² value was 0.628, and 
Pearson’s Correlation Coefficient was 0.793. 

The validation of the trained model on unseen data was performed. For testing the 
steering algorithm, I conducted a series of 100 measurements, where the initial state 
represented an operationally observable but previously unseen valid starting 
condition that had not yet resulted in an error. In this dataset, the distance to the 
error varied from relatively large to minimal values, and the initial states were 
selected following a uniform random distribution. Starting from these initial states, 
the model had to steer the traversing toward a potential fault state, within 20 steps 
available. If the model managed to steer to the error state within 20 steps, the 
steering process concluded with a "Successful" outcome. Otherwise, it resulted in a 
"Failed" outcome. 

In this test, the model successfully steered the traversing to an error in 76 cases and 
failed in 24 cases. Among the cases where it found the error, the model required an 
average of 4.72 steps for LB1, 9.5 steps for LB2, and 9.875 steps for LB3 to exceed 
a value of 10 (i.e., for the internal buffers to saturate). I also conducted additional 
tests to examine how the steering success rate would change if the model were given 
40 or 50 possible steps instead of 20. However, no significant difference was 
observed in the results. This demonstrates that the model consistently progressed 
toward the potential fault state along the shortest path available to it. 

To illustrate how the steering process actually unfolded with the trained model, I 
present a specific example in Table 3. 

Table 3 
Steering in action toward a potential fault in Use Case 3 

 Ste
p 

P
1 

P
2 

P
3 

B1 
(LB

 

B2 
(LB

 

B3*
↓ 

 

C
1 

C
2 

C
3 

C1
1 

..
. 

C2
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Dist
. 

 0* 0 3 1 3 2 2 1 1 2 0  5  
 1 0 3 1 2 2 2 1 1 3 0  5 164.

0  2 0 3 1 2 2 3 1 1 2 0  5 158.
4  3 0 3 1 2 2 4 1 1 1 0  5 142.
8  4 0 3 1 2 2 5 1 1 0 0  5 117.
7  5 0 3 1 1 2 5 1 1 1 0  5 103.
1  6 0 3 1 1 2 6 1 1 0 0  5 74.9 

 7 0 3 1 0 2 6 1 1 1 0  5 60.3 
 8 0 3 1 0 2 7 1 1 0 0  5 35.5 
 9 0 2 1 1 2 7 1 1 0 0  5 30.0 
 10 0 2 1 0 2 7 1 1 1 0  5 25.6 
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 11 0 2 1 0 2 8 1 1 0 0  5 19.5 
 12 0 1 1 1 2 8 1 1 0 0  5 17.0 
 13 0 1 1 0 2 8 1 1 1 0  5 15.8 
 14 0 1 1 0 2 9 1 1 0 0  5 10.7 
 15 0 0 1 1 2 9 1 1 0 0  5 9.7 
 16 0 0 1 0 2 9 1 1 1 0  5 5.08 
 17 0 0 1 0 2 10 1 1 0 0  5 3.07 

I highlighted some cells to indicate which two (coupled) states changed in a given 
step (i.e., which states had a transaction between them compared to the previous 
step). The table does not include C12, C13, C21, and C22, as their values remained 
constant throughout the steering process. 

From the table, the following observations can be made: 

• Until the 4th step, the process was relatively straightforward, as LB3 only 
needed to take elements from C3. 

• However, once C3 was emptied, a different mechanism (pattern) was 
triggered: C3 first took an item from LB1, and in the next step, LB3 
received an item from C3. This pattern repeated as long as there were 
elements in LB1. 

• When LB1 was also emptied in the 10th step, the steering process adopted 
a third repetitive pattern: LB1 took an element from P2, then C3 took an 
element from LB1, and finally, LB3 took an element from C3. This 
sequence is repeated until LB3 reached a value of 10, i.e. an extreme 
condition. 

5 Limitations and Future Work 
Due to the nature and complexity of the presented work, one of the limitations is 
related to the modeling errors: (i) If the simulation fails to sufficiently cover the real 
state space, the trained model may not generalize well to unseen states. This could 
lead to unreliable predictions when the system encounters conditions not 
represented in the training data. (ii) The model may inaccurately estimate distances 
to potential fault states if the training data is not representative of the full range of 
system behaviors. In such cases, the model might overfit to certain patterns in the 
training data, i.e. reducing its ability to perform well on diverse or unexpected 
inputs. 

Addressing these limitations requires careful design of the formal model-based 
simulation to ensure comprehensive coverage of the state space and representative 
training data, as well as rigorous validation of the model’s predictions. 
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Future extensions of this approach could involve representing the system states and 
their transitions to subsequent states using an adjacency matrix. In this context, the 
adjacency matrix would describe the relation of interacting components. This 
representation captures all possible relationships between participants and can be 
used to construct multidimensional time series. 

Such a structured representation would provide a more informative input for 
learning the dynamics of state transitions. For instance, relationships between states 
could be effectively captured and learned using models like Convolutional Neural 
Networks (CNNs), which are well-suited for recognizing spatial and temporal 
patterns in structured data. This enhancement could improve the accuracy and 
efficiency of the model when predicting distances to extreme states, especially in 
systems with complex interdependencies and higher number of primitives what we 
plan to investigate as part of our future work. 

Conclusions 

In this work, I presented a novel supervised machine learning-based approach to 
guide debuggers in navigating large, high-dimensional state spaces toward potential 
fault states. By leveraging a Multi-Layer Perceptron (MLP) and Dense Neural 
Network (DNN) neural networks, the method effectively predicts the distance to 
suspicious states and determines optimal directions for exploration. The results 
from a cloud continuum primitive, including both single and dual-buffer 
configurations, demonstrate that the proposed method successfully steers the search 
process toward extreme conditions. The presented approach and its efficiency in the 
steering process were evaluated using a more complex use case involving a multi-
tier load balancer topology. 

The proposed approach offers benefits in addressing the challenges of fault 
detection and debugging in systems where exhaustive state-space exploration is 
infeasible. The model systematically estimates fault distances and directs search 
efforts, reducing time and computational costs in debugging cloud continuum 
environments. 

However, limitations such as incomplete state-space coverage and model 
generalizability are subjects of further research. Future work will focus on 
enhancing the state representation using (among others) adjacency matrices and 
exploring graph-based learning techniques and CNNs. These advancements are 
expected to improve model accuracy and scalability, enabling more robust steering 
towards extreme circumstances in complex, real-world systems [20]. 

By integrating machine learning-driven exploration with state-space steering, this 
work lays the foundation for more intelligent, proactive fault detection techniques. 
It also may contribute to greater system reliability and performance under extreme 
conditions. 
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