
Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

‒ 31 ‒

Debugging Cloud Continuum Blueprint
Primitives with an ML-based Steering Method
Toward Extreme Conditions

Robert Lovas
Institute for Computer Science and Control (SZTAKI), Hungarian Research
Network (HUN-REN), Kende u. 13-17, H-1111 Budapest, Hungary;
robert.lovas@sztaki.hun-ren.hu

John von Neumann Faculty of Informatics, Óbuda University, Bécsi út 96/B,
H-1034 Budapest, Hungary; lovas.robert@nik.uni-obuda.hu

Abstract: Debugging high-dimensional state spaces in cloud continuum environments poses
significant challenges, particularly when investigating extreme conditions such as high
latency, competing on resources, or configuration anomalies. This paper presents a novel
supervised machine learning-based approach to efficiently assist the debugging process by
steering toward potential fault states in an automated way. Leveraging typical blueprint
primitives, such as load balancers and temporal data storage in the presented case studies,
Multi-Layer Perceptron (MLP) and Dense Neural Networks (DNN) were trained to predict
the distance to extreme situations. The trained model informs a traversal mechanism that
explores the state space using this heuristic, minimizing the time and consumed resources
required to detect actual faults. The first experiments conducted with two foundational
blueprint primitives (buffers and multi-tier load balancers) demonstrate the promising
effectiveness of the approach in locating potential fault states. By integrating this method
into cloud-edge debugging tools, developers can enhance not only fault localization but
reliability and performance as well, particularly for extreme timing conditions. Future work
will explore a wider set of primitives, as well as adjacency matrix representations and
convolutional techniques, to improve applicability, scalability and robustness of the
presented solution.

Keywords: Cloud computing; Debugging; Machine Learning; Fault Detection; Markov
chains; State Space Explorations

1 Introduction and Background
Cloud blueprint primitives [1] serve as foundational components in orchestrating
cloud-based systems, enabling (among others) seamless deployment and scaling of
platform or applications. Temporal data storage and load balancers [2] play crucial

R. Lovas Debugging Cloud Continuum Blueprint Primitives with an
 ML-based Steering Method Toward Extreme Conditions

‒ 32 ‒

roles in the cloud-edge continuum [3] as blueprint primitives due to the widely
applied data stream-oriented processing mechanisms. However, extreme conditions
such as high latency, competing on resources, or configuration anomalies can
disrupt these primitives, often decreasing system reliability and performance as
well. Localization of related faults is a cumbersome process [4]. This article
proposes a smart steering mechanism designed to debug cloud blueprint primitives
under such extreme timing conditions. During the modelling phase I focused on the
conditions where a component is starving (e.g. there is no data in the buffer), or
overloaded (e.g. the data buffer is full).

The presented work builds upon our previous study [5], where we analyzed
debugging issues concerning the Producer-Consumer primitive, used as our
baseline model. We extended the scope to include more complex topologies with
load balancers (advanced use cases involving multiple Producers and/or
Consumers) and state-of-the-art service meshes.

In our previous work, we proposed an advanced, ML-enhanced debugging
framework for cloud services (see Figure 1). The selected modeling toolset —
including the PRISM language, simulator, and model checker [6] — has proven
effective for handling relatively large transition graphs and state spaces. It also
enabled the generation of training datasets by leveraging the formal descriptions of
Markov Chains and Decision Processes.

Figure 1

Proposed framework for smart debugging with formal modelling and ML tools [5]

We successfully conducted autoencoder-supported anomaly (fault) detection
experiments on Producer-Consumer primitive-based topologies of gradually
increasing complexity (see ML tools on Figure 1). These experiments provide a
foundation for steering mechanisms for cloud debuggers featuring replay and active

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

‒ 33 ‒

control mechanisms. Our Graph Neural Network (GNN) based fault detection also
produced promising results. However, experiments using an advanced steering
mechanism based on Long Short-Term Memory (LSTM) did not lead to satisfactory
results.

In this article, I show a strategy to overcome the limitations of our previous work
[5] and I present a method based on supervised machine learning principles that can
guide the debugger tool toward potential fault states within a high-dimensional state
space, see the highlighted ‘steering engine’ on Figure 1. This novel method aids in
selecting states for further debugging and testing where the possibility of
discovering faults is higher. This procedure is particularly useful when the state
space is too large to exhaustively traverse and test all possible states individually.
The proposed Multi-Layer Perceptron (MLP) and Dense Neural Network (DNN)
model-based methods present an approach that can effectively tackle this problem.
Through a selected example dataset, I demonstrate how this procedure can be
applied in practice.

The steering mechanism is to be incorporated into debuggers that support advanced
active control and replay techniques, including our DIWIDE debugger for parallel
and distributed applications [7], or other cloud debuggers designed for Terraform
cloud orchestrator [8] [9] or for microservice meshes [5].

The paper is structured as follows. In this section, I introduced and outlined the
problem, providing justification for the relevance of my approach and some
important background information on our previous results in debugging complex
parallel and distributed systems. Section 2 provides a review on research findings
and methods that overlap with and/or relate to the results presented in this paper. In
Section 3, I present the methodology used to address the problem, explaining its
steps in detail, and how they contribute to solving the addressed problem. Section 4
showcases the results achieved on two basic but crucial test scenarios using the
proposed method. The paper concludes with Section 5.

2 Related Work
The presented methods in this section particularly lack a systematic approach for
guided traversal toward potential fault state. In contrast, our work combines Markov
chain modeling with supervised ML-based heuristic steering, enabling efficient
exploration and efficient fault localization in high-dimensional state spaces for
cloud-edge debuggers.

R. Lovas Debugging Cloud Continuum Blueprint Primitives with an
 ML-based Steering Method Toward Extreme Conditions

‒ 34 ‒

2.1 ML-based Log and Time-Series Analysis for Anomaly
Detection

Gan et al. [10] introduced SAGE, an unsupervised ML-driven framework for
performance debugging that is effectively scalable for inspecting microservice
architectures. However, their focus is primarily on performance debugging related
to Quality-of-Service (QoS) violations, without a formal modeling background.

In another related work, Huang et al. [11] proposed log-based anomaly detection
methods to troubleshoot faults in complex cloud systems. Their method automates
log parsing to identify anomalies, focusing primarily on root cause analysis but
lacking predictive fault distance estimation and active steering.

Shahane [12] outlined the use of both supervised and unsupervised ML for not only
automated failure detection but also anomaly prediction in cloud infrastructure.
Their high-level approach aligns with our work in many aspects; however, the
author only presents a conceptual framework without concrete implementation.

Additionally, Yu et al. [13] elaborated MLPing, a proactive fault detection system
for large-scale distributed networks. While MLPing focuses on anomaly detection
and real-time alerting, our approach extends fault detection by incorporating
heuristic steering in high-dimensional state spaces.

Han et al. [14] proposed FRAPpuccino, a runtime fault detection framework with
functionalities to capture a comprehensive view of program activities at the
Platform as a Service level using a directed acyclic graph (DAG) representation. Its
dynamic sliding window algorithm, combined with clustering, proves effective for
runtime anomaly detection. However, it lacks an active and supervised ML-based
steering mechanism for navigating extreme situations.

Kumar et al. [15] introduced LSTM models for early fault detection through system
log analysis. While this method effectively identifies anomalies in time-series data,
it does not integrate probabilistic modeling or a steering mechanism, as
demonstrated in our approach.

2.2 Markovian Methods
Cao and Niu [16] explored higher-order Markov graphs for fault detection,
specifically analyzing cloud deployments and big data logs to detect anomalies.
Their method proves effective for identifying complex patterns; however, it lacks
an active control and guidance mechanism to steer the system toward potential
faults.

Cotroneo et al. [17] extended fault injection methods by applying higher-order
Markov models to investigate traditional cloud infrastructures under various
scenarios, including systems under workload and idle conditions. While their
solution shares many goals and methods with my work, my approach specifically

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

‒ 35 ‒

targets extreme conditions and incorporates a smart steering mechanism tailored for
the cloud-edge continuum.

2.3 Query-based and Test Case Generation Methods
Dogga et al. [18] introduced Revelio, an ML-based assistant trained on historical
bug reports and system logs. The assistant generates debugging queries by
leveraging the basic functionalities of existing tools and can inject faults into
distributed systems to actively manipulate their behavior. However, their approach
is broader in scope, lacks a formal foundation, and does not provide proven use
cases directly related to my work.

Pontillo et al. [19] proposed FERRARI, a failure reproduction tool that generates
test cases and analyzes stack traces to identify faults. While their tool efficiently
aids in reproducing failures for manual debugging, it does not focus on ML-guided
debugging or incorporate a formal modeling background as presented in my work.

2.4 Further Related Works
More related work has been described in our latest related paper [5], this section
highlighted additional recent and relevant contributions in a complementary and
structured manner.

3 Methodology

3.1 Overview and Problem Statement
The applied procedure consists of several steps: (i) First, simulations are performed
based on the system model, and the collected log data is used for machine learning
purposes. (ii) Based on the labelled simulation data, a supervised training process
is carried out for the ML model. (iii) Once the model has been trained, it is used to
guide the traversing process for the debugger, and (iv) I demonstrate how the
estimated distance values provided by the model inform the subsequent search
directions. (v) Finally, the method is validated to ensure its effectiveness.

The presented procedure is based on the principle that while certain faults are
deterministic, their occurrence and manifestation follow a stochastic process with
an unknown probability distribution. Furthermore, it is assumed that a fault can be
repeatedly reproduced by traversing the same nodes in the state space based on
replay techniques (see examples in [8] [9]). However, the same fault can also be
triggered through alternative means, i.e. they might be reached in various paths
during actively controlled debugging sessions.

R. Lovas Debugging Cloud Continuum Blueprint Primitives with an
 ML-based Steering Method Toward Extreme Conditions

‒ 36 ‒

3.2 The Base-Line Model
To provide clear understanding, I have selected a basic example to demonstrate the
procedure as follows.

The Producer-Buffer-Consumer primitive [5] in cloud continuum blueprints
(elementary part of load balancers and temporary data storage) was analyzed for
debugging purposes with the PRISM modelling and simulation tool [6] described
as a discrete-time (t = 1, 2, ..., T) stochastic process, where the state (Producer,
Buffer, Consumer) changes in unpredictable manner over time.

Let 𝑆𝑆𝑡𝑡 = (𝑃𝑃𝑡𝑡 ,𝐵𝐵𝑡𝑡 ,𝐶𝐶𝑡𝑡) represent the state space at time 𝑡𝑡, where:

𝑃𝑃𝑡𝑡: the state of the Producer at the 𝑡𝑡-th time step,

𝐵𝐵𝑡𝑡: the state of the Buffer at the 𝑡𝑡-th time step (number of elements),

𝐶𝐶𝑡𝑡: the state of the Consumer at the 𝑡𝑡-th time step.

The state space (𝑆𝑆𝑡𝑡) thus represents the actual state of the Producer-Buffer-
Consumer system, where:

𝑆𝑆𝑡𝑡 = (𝑃𝑃𝑡𝑡 ,𝐵𝐵𝑡𝑡 ,𝐶𝐶𝑡𝑡), 𝑃𝑃𝑡𝑡 ,𝐶𝐶𝑡𝑡 ∈ ℕ, 𝐵𝐵𝑡𝑡 ∈ {0,1, … ,𝐾𝐾}. (1)

The state transition probabilities, which describe the system's evolution, are
determined by stochastic events:

 𝑃𝑃(𝑆𝑆𝑡𝑡+1 ∣∣ 𝑆𝑆𝑡𝑡): the transition probability from state 𝑆𝑆𝑡𝑡 → 𝑆𝑆𝑡𝑡+1 (2)

The state transitions (𝑆𝑆𝑡𝑡 → 𝑆𝑆𝑡𝑡+1) meet the following rules:

If 𝑃𝑃𝑡𝑡 = 1, then 𝐵𝐵𝑡𝑡+1 = 𝐵𝐵𝑡𝑡 + 1, if 𝐵𝐵𝑡𝑡 < 𝐾𝐾. (3)

If 𝐶𝐶𝑡𝑡 = 1, then 𝐵𝐵𝑡𝑡+1 = 𝐵𝐵𝑡𝑡 − 1, if 𝐵𝐵𝑡𝑡 > 0. (4)

The activation of 𝑃𝑃𝑡𝑡, 𝐵𝐵𝑡𝑡 , and 𝐶𝐶𝑡𝑡 occurs randomly, with probabilities following a
uniform distribution.

The Buffer has a limited capacity, defined as

𝐵𝐵𝑡𝑡 ∈ { 0,1,2, … ,𝐾𝐾}. (5)

According to our previous studies [5], a class of faults can be efficiently captured
by applying autoencoders, particularly when a buffer reaches or exceeds its storage
capacity or becomes empty. Such potentially erroneous situations can be labeled (or
registered) using autoencoders in complex cases (even without any knowledge on
the topology), or this simple rule can be applied if the relevant system configuration
details (including topology) are known:

𝐹𝐹𝑡𝑡 = �1 if 𝐵𝐵𝑡𝑡 ≥ 𝐾𝐾 or if 𝐵𝐵𝑡𝑡 < 0
0 otherwise

 (6)

Based on the fault occurrence, we define a derived variable 𝐷𝐷𝑡𝑡 as Distance to Fault.
At each time step 𝑡𝑡, the distance to the fault can be computed as follows:

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

‒ 37 ‒

If 𝐹𝐹𝑡𝑡 = 1, then 𝐷𝐷𝑡𝑡 = 0 (a fault has occurred).

Otherwise, 𝐷𝐷𝑡𝑡 represents the distance to (7)

the fault in terms of time steps.

Since the states of the Producer-Buffer-Consumer primitive change in discrete time
and transitions occur probabilistically, the process can be modeled as a discrete-
time Markov chain. In this model, the state of the system at time 𝑡𝑡, depends only on
the previous state 𝑡𝑡 − 1, i.e.,

𝑷𝑷(𝑆𝑆𝑡𝑡+1 ∣∣ 𝑆𝑆𝑡𝑡 , 𝑆𝑆𝑡𝑡−1, … , 𝑆𝑆0) = 𝑷𝑷(𝑆𝑆𝑡𝑡+1 ∣∣ 𝑆𝑆𝑡𝑡). (8)

The state of the system is determined by the states of the Producer, Buffer, and
Consumer. The state transition probabilities are governed by the transition matrix
𝑷𝑷(𝑆𝑆𝑡𝑡+1 ∣∣ 𝑆𝑆𝑡𝑡), which specifies the likelihood of moving from one state to another.
The state transitions follow these rules:

If the Producer is activated: 𝑃𝑃𝑡𝑡+1 = 𝑃𝑃𝑡𝑡 + 1 (9)

If the Buffer is activated:
𝐵𝐵𝑡𝑡+1 = 𝐵𝐵𝑡𝑡 + 1
𝑃𝑃𝑡𝑡+1 = 𝑃𝑃𝑡𝑡 − 1 (10)

If the Consumer is activated and 𝐵𝐵𝑡𝑡 > 0,

then the new state is:
𝐵𝐵𝑡𝑡+1 = 𝐵𝐵𝑡𝑡 − 1
𝐶𝐶𝑡𝑡+1 = 𝐶𝐶𝑡𝑡 + 1 (11)

Therefore, in this model, state transitions occur probabilistically, and the extreme
condition (with potential fault) arises when the buffer reaches or exceeds its
maximum capacity 𝐾𝐾 or becomes empty. The derived variable 𝐷𝐷𝑡𝑡 measures
proximity to the potentially fault state, allowing an analysis of how close the system
is to failure at any given time step.

The goal of the simulation is data generation, which serves as a data collection
process describing the dynamics of the Producer-Buffer-Consumer primitive.
During the simulation phase, the primary focus is to gather data on the system's
behavior. Throughout the simulation, the following dataset is collected:

(𝑆𝑆𝑡𝑡 ,𝐷𝐷𝑡𝑡) (12)

where 𝑆𝑆𝑡𝑡 = (𝑃𝑃𝑡𝑡 ,𝐵𝐵𝑡𝑡 ,𝐶𝐶𝑡𝑡) represents the system state, and 𝐷𝐷𝑡𝑡 is the distance to the
potential fault.

Using the trained model, I employ the data generated by the simulation (or data
derived from it) to train a neural network in a supervised manner. The task of the
neural network is to estimate the distance to the possible fault state for each system
state.

The decision making rule, which determines how the state space should be explored,
and which directions are worth pursuing to move closer to potential faults, works
as follows.

R. Lovas Debugging Cloud Continuum Blueprint Primitives with an
 ML-based Steering Method Toward Extreme Conditions

‒ 38 ‒

With the help of the trained model, in any given state (selected as the starting point),
the distance to potential faults is estimated for all possible next states. Based on
these estimates, the next state is chosen such that it minimizes the distance to a
suspicious state to be debugged. This approach enables the exploration of the state
space in the direction most likely to encounter a fault.

3.3 Conceptions for ML Model Training
Let us assume a system with a state space so large that it cannot be fully explored,
but certain parts of it can still be observed. From these observations, a dataset is
generated, which includes the system states and a corresponding target variable.

The target variable represents the distance to a potential fault state and is measured
as follows: for each observed state, the target variable quantifies how far the state
is from a potential fault, providing a meaningful numerical measure of proximity to
failure. This distance serves as the basis for further analysis and exploration of the
state space.

3.4 ML Model Training to Estimate Distance to Faults
Based on the collected data, the next step was formulated as a supervised learning
task. The objective of this task is to estimate the distance to the suspicious state (i.e.,
the number of steps remaining until a fault may occur in extreme conditions) based
on the system's states. To achieve this, the data generated during the simulation was
transformed into training data.

Specifically, during the simulation, I conducted 300 independent runs, where each
run consisted of 70 steps. At every step, the current state (𝑃𝑃𝑡𝑡 ,𝐵𝐵𝑡𝑡 ,𝐶𝐶𝑡𝑡) was recorded,
along with a value 𝛥𝛥𝑡𝑡, which represents the temporal distance to the potential fault
state. Thus, the training dataset was structured such that each row was represented
in the form

(𝑋𝑋𝑡𝑡 ,𝛥𝛥𝑡𝑡) (13)
where:

𝑋𝑋𝑡𝑡 = (𝑃𝑃𝑡𝑡 ,𝐵𝐵𝑡𝑡 ,𝐶𝐶𝑡𝑡), represents the system state at time 𝑡𝑡,
Δt ∈ ℕ, represents the number of steps remaining until the fault occurs, if

it occurred at all.

Therefore, this structure enabled the development of a supervised learning model
that uses system states to predict the temporal proximity to potential fault states.

The complete training dataset consisted of 300 × 70 = 21,000 samples taking into
consideration the size of the given state space and some preliminary experimental
results. However, cases that occurred after a detected fault in the simulation were
excluded. As a result, the final training dataset contained 18,192 observations, each
corresponding to a system state and its associated distance to the fault state.

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

‒ 39 ‒

The prepared training data was used to train a Multi-Layer Perceptron (MLP) neural
network. The MLP architecture consisted of two hidden fully connected layers,
followed by an output layer that produced a scalar estimate for 𝛥𝛥𝑡𝑡. The first hidden
layer contained 20 neurons, and the second hidden layer contained 10 neurons
leveraging on some preliminary experiments. For training, I applied standard
gradient-based optimization (SGD), with the learning process being monitored on a
pre-separated validation set to ensure the model's generalization capability.
The neural network employed the LeakyReLU activation function (with an alpha
value of 0.1) between the MLP layers, allowing it to represent outputs in both linear
and nonlinear ranges. At the output layer, a linear activation function was used, as
the target variable 𝛥𝛥𝑡𝑡 is a continuous value ranging between -1 and 70. This choice
ensures that the output can appropriately capture the temporal distance to the
potential fault state.

The training process was conducted iteratively using batch size of 512, determined
empirically through trial and error. This batch size provided a balance between fast
convergence and smooth error reduction. The learning rate was initially set to 0.001,
and the model was trained for 100 epochs. After each epoch, the model's
performance (error) was evaluated on the validation set, which comprised 20% of
the total dataset. The number of epochs was determined based on the principle that
training should stop when the error on the validation set begins to increase,
indicating potential overfitting. This stopping criterion was also established
empirically.

Before training, MinMax normalization was applied to both the input and output
data to accelerate the neural network's learning process. Specifically, the original
data was transformed into the 𝑋𝑋[0,1] while preserving the data's monotonicity.
The transformation was performed as follows:

𝑥𝑥′ = 𝑥𝑥−𝑥𝑥min
𝑥𝑥max−𝑥𝑥min

 (14)

where 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 present the minimum and maximum values of the states 𝑆𝑆
(or the target variable) within the training dataset. This normalization was necessary
because the optimization process, which updates the neural network's weights, is
more effective when both the input data and the output values are on a similar
scale—such as the [0,1] range. By scaling the data to this range, the training process
became more efficient and stable, ensuring better convergence of the model.

In the training dataset, the input 𝑋𝑋 consists of states generated by the simulation:

𝑋𝑋 = {𝑆𝑆𝑡𝑡 = (𝑃𝑃𝑡𝑡 ,𝐵𝐵𝑡𝑡 ,𝐶𝐶𝑡𝑡)} (15)

The output 𝑦𝑦 corresponds to the distance to the potential fault state for each system
state:

𝑦𝑦 = {𝐷𝐷𝑡𝑡} (16)

R. Lovas Debugging Cloud Continuum Blueprint Primitives with an
 ML-based Steering Method Toward Extreme Conditions

‒ 40 ‒

Initially, I employed an MLP model to learn the mapping 𝑋𝑋 → 𝑦𝑦. The model's task
is to estimate 𝐷𝐷𝑡𝑡 for each state:

𝐷𝐷�𝑡𝑡 = model(𝑆𝑆𝑡𝑡) (17)

As this is a regression task, the Mean Squared Error (MSE) was used as loss
function during training. The MSE is computed as follows:

MSE = 1
𝑁𝑁
∑ (𝑦𝑦𝑚𝑚 − 𝑦𝑦�𝑚𝑚)2𝑁𝑁
𝑚𝑚=1 , (18)

where 𝑁𝑁 is the number of samples, 𝑦𝑦𝑚𝑚 is the true or observed output value, and 𝑦𝑦�𝑚𝑚 is
the predicted output value by the model.

3.5 Steering Method towards Extreme Situations
The steering process can be summarized in 3 steps:

1. Identify Possible Next States 𝑆𝑆𝑡𝑡+1

 Starting from a given state 𝑆𝑆𝑡𝑡, we determine all possible next states based on
the following rules:

 If 𝑃𝑃𝑡𝑡 > 0 and 𝐵𝐵𝑡𝑡 < 𝐾𝐾, then 𝑆𝑆𝑡𝑡+1
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = (𝑃𝑃𝑡𝑡 − 1,𝐵𝐵𝑡𝑡 + 1,𝐶𝐶𝑡𝑡) (19)

 If 𝐵𝐵𝑡𝑡 > 0, then 𝑆𝑆𝑡𝑡+1𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝐵𝐵𝑚𝑚𝐵𝐵𝐵𝐵 = (𝑃𝑃𝑡𝑡 ,𝐵𝐵𝑡𝑡 − 1,𝐶𝐶𝑡𝑡 + 1) (20)

 𝑆𝑆𝑡𝑡+1𝑃𝑃𝐵𝐵𝐶𝐶𝑃𝑃𝐵𝐵𝑃𝑃𝐵𝐵𝐵𝐵 = (𝑃𝑃𝑡𝑡 + 1,𝐵𝐵𝑡𝑡 ,𝐶𝐶𝑡𝑡) (21)

In general cases, all the enabled state transitions must be taken into account
as we described in [7] [8] [9].

2. Distance Estimation 𝐷𝐷�𝑡𝑡+1

Using the trained model, the estimated distance to the potential fault is
calculated for all possible 𝑆𝑆𝑡𝑡+1 states:

𝐷𝐷�𝑡𝑡+1 = model(𝑆𝑆𝑡𝑡+1) (22)

3. Decision Rule

Among all possible 𝑆𝑆𝑡𝑡+1, we select the state that minimizes the estimated
distance to the suspicious state:

𝑆𝑆𝑡𝑡+1∗ = argmin
𝑆𝑆𝑡𝑡+1

𝐷𝐷�𝑡𝑡+1 (23)

 where:

(𝑃𝑃𝑡𝑡 ,𝐵𝐵𝑡𝑡 ,𝐶𝐶𝑡𝑡): current state

model(⋅): trained MLP model that estimates the distance to the fault state

𝐾𝐾: max. capacity of the Buffer, by or beyond which a fault may occur

𝑆𝑆𝑡𝑡+1∗ : the best next state that minimizes the estimated distance to the fault

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

‒ 41 ‒

Algorithm 1
Steering method for state space exploration toward suspicious conditions

Therefore, this approach (see Algorithm 1) systematically explores the state space
by evaluating all possible next states and choosing the one most likely to bring the
system closer to a potentially fault condition, as predicted by the trained model.

4 Experiments and Measurements

4.1 First Stage of Experiments (Use Cases 1 and 2)
Two use cases are examined based on the previously discussed Producer-Buffer-
Consumer primitive:

1. Use Case 1 (P – B – C)

In this scenario, a single Buffer connects the Producer and the Consumer.
The extreme condition (potential fault state) was defined such that a fault
occurs if the Buffer’s current value drops below 0 or reaches/exceeds 20.

2. Use Case 2: P – (B1, B2) – C

R. Lovas Debugging Cloud Continuum Blueprint Primitives with an
 ML-based Steering Method Toward Extreme Conditions

‒ 42 ‒

In this scenario, two buffers, B1 and B2, are placed in parallel between the
Producer and the Consumer. The Producer can send data to either buffer, and
the Consumer can extract data from any buffer that is not empty. The extreme
condition was defined similarly to Use Case 1 but applied to both buffers.
Specifically, a fault occurs if the value of either buffer falls below 0 or
reaches/exceeds 20.

In summary, Use Case 1 examines a single buffer for faults, while Use Case 2
involves two parallel buffers for the same conditions.

Figure 2

Estimated distances from potential fault for Use Case 1: P-B-C

In this example, the initial state was defined as P=10, B=10, C=10 to ensure clarity
and interpretability. The buffer's value was initialized equidistant from both
potential fault thresholds, which were defined as occurring when the buffer value
falls below 0 or reaches/exceeds 20.

Figure 2 illustrates the surface plot generated by the trained MLP model. It shows
the estimated distance to an extreme situation (potential fault state) under different
combinations of Buffer (B) and Producer (P) states, with the Consumer (C) state
value fixed at 10. The surface reveals how the model predicts the distance to a
suspicious situation based on variations in Buffer levels and Producer activity.

One of the key observations related to the behavior of the Buffer: the model predicts
that as the buffer value decreases toward 0 or increases toward 20, the estimated
distance to the potential fault state also decreases. This aligns with the fault
thresholds and reflects the expected system behavior, i.e. the closer the buffer value
is to either extreme, the fewer steps are required for a fault to occur.

Another observation shows the independence from the Producer: the model's
predictions are unaffected by changes in the producer's value. This demonstrates
that the Producer state is irrelevant for estimating the distance to the potential fault
state under the given conditions. This behavior matches the expected system

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

‒ 43 ‒

dynamics since the Buffer's state alone determines proximity to a fault in this
example.

In summary, the results confirm that the trained MLP model is able to predict the
distance to a potential fault. It captures the key relationships between the buffer state
and fault proximity while correctly identifying that the producer's state does not
influence the outcome.

Table 1
Steering in action toward a potential fault in Use Case 1: P-B-C

Ste

P B C Distanc

 P B C Distanc

 P B C Distanc
 0 1

0
1
0

1
0

85.29 3 1
5

1
0

32.02 3 7 10 77.35
1 9 1

1
1
0

79.09 2 1
6

1
0

27.10 3 6 11 69.00
2 8 1

2
1
0

70.68 1 1
7

1
0

22.18 3 5 12 57.80
3 7 1

3
1
0

62.22 0 1
8

1
0

17.25 3 4 13 46.76
4 6 1

4
1
0

53.76 1 1
8

1
0

16.52 3 3 14 35.63
5 5 1

5
1
0

45.30 0 1
9

1
0

11.60 3 2 15 24.24
6 4 1

6
1
0

36.84 1 1
9

1
0

10.87 3 1 16 12.91
7 3 1

7
1
0

28.38 0 2
0

1
0

5.94 3 0 17 1.58
8 2 1

8
1
0

19.92 1 2
0

1
0

5.22
9 1 1

9
1
0

11.46
10 0 2

0
1
0

5.00

If we want to analyze, based on the trained model, the direction we should take to
reach a potential fault starting from any arbitrary initial state, the process can be
carried out as follows. In this example, three test cases with different initial states
(see Step 0 in Table 1) are examined.

Table 1 shows the actual steering paths of states as determined by the algorithm. It
is presented top to bottom, where each row represents a consecutive state, see
Columns P, B, and C. For each state, the trained model calculates the estimated
Distance to the potential fault for all possible neighboring states. The table only
displays the selected states, i.e. the best paths (shortest route to decrease the distance
from the potential fault state).

In Use Case 2, the primitive has been extended to provide a higher level of
availability or throughput: one Producer (P); two Buffers (Buffer1, Buffer2) for
storing elements independently and in parallel; one Consumer (C).

R. Lovas Debugging Cloud Continuum Blueprint Primitives with an
 ML-based Steering Method Toward Extreme Conditions

‒ 44 ‒

Figure 3

Estimated distances from potential fault for Use Case 2: P-(B1-B2)-C

The results on Figure 3 and Table 2 demonstrate that, starting from any arbitrary
initial state, the steering process consistently directs the state space traversal toward
the nearest extreme state based on the model's predictions. In this example, a
potential fault occurs if any of the following conditions are met: Buffer1 drops
below 0 or reaches/exceeds 20, or Buffer2 drops below 0 or reaches/exceeds 20.
When both buffers have values of 10, the system is at its maximum distance from a
potential fault state, representing a point of equilibrium. However, moving in any
direction along the buffer values brings the system closer to an extreme condition
at an accelerating rate.

An important observation is that estimated fault distances by the model do not need
to be perfectly accurate for the steering algorithm to be effective. The model
remains capable of determining the correct direction to move within the state space,
minimizing the distance to a potential fault state with each step. This highlights the
robustness of the trained model: even if the distance predictions are slightly off, the
model successfully identifies the best path to approach extreme conditions.

Table 2
Steering in action toward a potential fault in Use Case 2: P-(B1-B2)-C

 Step P B1 B2 C Distance P B1 B2 C Distance
 0 10 11 10 10 86.47 5 6 10 10 83.03
 1 9 12 10 10 85.48 5 5 10 11 72.34
 2 8 13 10 10 84.48 5 4 10 12 61.65
 3 7 14 10 10 72.95 5 3 10 13 50.96
 4 6 15 10 10 59.38 5 2 10 14 40.27
 5 5 16 10 10 45.81 5 1 10 15 29.57
 6 4 17 10 10 32.24 5 0 10 16 9.75

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

‒ 45 ‒

 7 3 18 10 10 18.67
 8 2 19 10 10 5.10
 9 1 20 10 10 -8.47

The interpretation of the distance to a potential fault in this simulation requires
careful consideration due to the system's probabilistic nature. For instance, in Use
Case 2, where two buffers operate in parallel, the results indicate that the estimated
distance to an extreme condition for Buffer1 can be approximately 5.1 or 29.57
steps, even when it appears that the system is deterministically just one step away
from an extreme condition. This phenomenon arises from the probabilistic nature
of the system. Since Buffer1 has relatively low chance of being selected in each
step, and the Consumer’s actions may further influence the Buffer’s state, the real
distance to the potential fault increases.

In summary, the results confirm that the trained model successfully steers the
system toward potential fault states by predicting distances with sufficient accuracy
to guide the search. While the fault distance estimates may not always align
perfectly with deterministic expectations, they reflect the probabilistic behavior of
the system dynamics. This ensures that the model remains reliable in identifying
directions in the state space that bring the system closer to extreme conditions.

In order to examine the effectiveness of the elaborated steering method, test
scenarios have been designed and examined with Use Case 2 (with half size
buffers). The simulation space was defined such that components P, B1, B2, and C
could take arbitrary integer values between 1 and 9 as initial state. (Concerning B1
and B2, the values of 0 and 10 were excluded because the extreme condition would
have been immediately detected under those circumstances.) The measurement
involved 300 test cases, where the mean number of steps to reach an extreme
condition was 3.937, with a standard deviation of 2.361 (see Figure 4).

Figure 4

Histogram of required steps toward potential faults based on 300 test cases

R. Lovas Debugging Cloud Continuum Blueprint Primitives with an
 ML-based Steering Method Toward Extreme Conditions

‒ 46 ‒

4.2 Experiments with Multi-Tier Load Balancer Topology
In order to evaluate our approach and efficiency of the steering process in more
complex use cases, I conducted experiments using a multi-tier load balancer
topology (see Figure 5), where the load balancers (LB1, LB2, and LB3) can buffer
only a limited number of items (B1, B2, and B3). This use case was studied in our
previous work [5] using LSTM model without significant results.

Figure 5

Topology of Use Case 3 with multi-tier load balancers

For this Use Case 3, a more complex 7-layer Dense Neural Network (DNN)
architecture was applied after some preliminary experiments (instead of the 2-layer
Fully Connected MLP). Each layer contained 10 neurons with SELU activation
functions, and the network had a single output node at the end, estimating the
distance from the error. In Use Case 3, there were three error conditions: B1, B2, or
B3 > 10.

Considering from a steering perspective, only the simulation cases that resulted in
errors are highly relevant. Consequently, I performed the training using only the
data derived from these error-prone simulation runs. Considering the complexity
and state space of the analyzed topology, the number of error cases used for training
was based on 3,559 simulation runs that resulted in some form of error. This formed
the training dataset, which contained a total of 486,408 observed states.

The training spanned 5×30 epochs on the same neural network, with an increasing
learning rate (0.0001, 0.001, 0.002, 0.005, 0.01) and a decreasing batch size (3200,
800, 320, 80, 32).

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

‒ 47 ‒

Figure 6
Learning curves (Use Case 3)

Figure 6 illustrates the learning curves for the first and second rounds of training.
On the left, the results correspond to a learning rate of 0.0001 and a batch size of
3200, while on the right, they correspond to a learning rate of 0.001 and a batch size
of 800.

By the end of the training, the results for the actual and predicted distance values
can be seen in Figure 7.

Figure 7
Accuracy of estimation (Use Case 3)

The model becomes increasingly accurate as the system approaches the error state
(value of 0). In contrast, the model is less accurate in states farther from the error
reflecting the fact that in states farther from the error, there are more possible routes
to avoid the error or transition to states where no error occurs. The metrics

R. Lovas Debugging Cloud Continuum Blueprint Primitives with an
 ML-based Steering Method Toward Extreme Conditions

‒ 48 ‒

describing the prediction accuracy were as follows: the Mean Absolute Error
(MAE) was 23.102, the Root Mean Square Error (RMSE) was 29.660, the Mean
Absolute Percentage Error (MAPE) was 0.71%, the R² value was 0.628, and
Pearson’s Correlation Coefficient was 0.793.

The validation of the trained model on unseen data was performed. For testing the
steering algorithm, I conducted a series of 100 measurements, where the initial state
represented an operationally observable but previously unseen valid starting
condition that had not yet resulted in an error. In this dataset, the distance to the
error varied from relatively large to minimal values, and the initial states were
selected following a uniform random distribution. Starting from these initial states,
the model had to steer the traversing toward a potential fault state, within 20 steps
available. If the model managed to steer to the error state within 20 steps, the
steering process concluded with a "Successful" outcome. Otherwise, it resulted in a
"Failed" outcome.

In this test, the model successfully steered the traversing to an error in 76 cases and
failed in 24 cases. Among the cases where it found the error, the model required an
average of 4.72 steps for LB1, 9.5 steps for LB2, and 9.875 steps for LB3 to exceed
a value of 10 (i.e., for the internal buffers to saturate). I also conducted additional
tests to examine how the steering success rate would change if the model were given
40 or 50 possible steps instead of 20. However, no significant difference was
observed in the results. This demonstrates that the model consistently progressed
toward the potential fault state along the shortest path available to it.

To illustrate how the steering process actually unfolded with the trained model, I
present a specific example in Table 3.

Table 3
Steering in action toward a potential fault in Use Case 3

 Ste
p

P
1

P
2

P
3

B1
(LB

B2
(LB

B3*
↓

C
1

C
2

C
3

C1
1

..
.

C2
3

Dist
.

 0* 0 3 1 3 2 2 1 1 2 0 5
 1 0 3 1 2 2 2 1 1 3 0 5 164.

0 2 0 3 1 2 2 3 1 1 2 0 5 158.
4 3 0 3 1 2 2 4 1 1 1 0 5 142.
8 4 0 3 1 2 2 5 1 1 0 0 5 117.
7 5 0 3 1 1 2 5 1 1 1 0 5 103.
1 6 0 3 1 1 2 6 1 1 0 0 5 74.9

 7 0 3 1 0 2 6 1 1 1 0 5 60.3
 8 0 3 1 0 2 7 1 1 0 0 5 35.5
 9 0 2 1 1 2 7 1 1 0 0 5 30.0
 10 0 2 1 0 2 7 1 1 1 0 5 25.6

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

‒ 49 ‒

 11 0 2 1 0 2 8 1 1 0 0 5 19.5
 12 0 1 1 1 2 8 1 1 0 0 5 17.0
 13 0 1 1 0 2 8 1 1 1 0 5 15.8
 14 0 1 1 0 2 9 1 1 0 0 5 10.7
 15 0 0 1 1 2 9 1 1 0 0 5 9.7
 16 0 0 1 0 2 9 1 1 1 0 5 5.08
 17 0 0 1 0 2 10 1 1 0 0 5 3.07

I highlighted some cells to indicate which two (coupled) states changed in a given
step (i.e., which states had a transaction between them compared to the previous
step). The table does not include C12, C13, C21, and C22, as their values remained
constant throughout the steering process.

From the table, the following observations can be made:

• Until the 4th step, the process was relatively straightforward, as LB3 only
needed to take elements from C3.

• However, once C3 was emptied, a different mechanism (pattern) was
triggered: C3 first took an item from LB1, and in the next step, LB3
received an item from C3. This pattern repeated as long as there were
elements in LB1.

• When LB1 was also emptied in the 10th step, the steering process adopted
a third repetitive pattern: LB1 took an element from P2, then C3 took an
element from LB1, and finally, LB3 took an element from C3. This
sequence is repeated until LB3 reached a value of 10, i.e. an extreme
condition.

5 Limitations and Future Work
Due to the nature and complexity of the presented work, one of the limitations is
related to the modeling errors: (i) If the simulation fails to sufficiently cover the real
state space, the trained model may not generalize well to unseen states. This could
lead to unreliable predictions when the system encounters conditions not
represented in the training data. (ii) The model may inaccurately estimate distances
to potential fault states if the training data is not representative of the full range of
system behaviors. In such cases, the model might overfit to certain patterns in the
training data, i.e. reducing its ability to perform well on diverse or unexpected
inputs.

Addressing these limitations requires careful design of the formal model-based
simulation to ensure comprehensive coverage of the state space and representative
training data, as well as rigorous validation of the model’s predictions.

R. Lovas Debugging Cloud Continuum Blueprint Primitives with an
 ML-based Steering Method Toward Extreme Conditions

‒ 50 ‒

Future extensions of this approach could involve representing the system states and
their transitions to subsequent states using an adjacency matrix. In this context, the
adjacency matrix would describe the relation of interacting components. This
representation captures all possible relationships between participants and can be
used to construct multidimensional time series.

Such a structured representation would provide a more informative input for
learning the dynamics of state transitions. For instance, relationships between states
could be effectively captured and learned using models like Convolutional Neural
Networks (CNNs), which are well-suited for recognizing spatial and temporal
patterns in structured data. This enhancement could improve the accuracy and
efficiency of the model when predicting distances to extreme states, especially in
systems with complex interdependencies and higher number of primitives what we
plan to investigate as part of our future work.

Conclusions

In this work, I presented a novel supervised machine learning-based approach to
guide debuggers in navigating large, high-dimensional state spaces toward potential
fault states. By leveraging a Multi-Layer Perceptron (MLP) and Dense Neural
Network (DNN) neural networks, the method effectively predicts the distance to
suspicious states and determines optimal directions for exploration. The results
from a cloud continuum primitive, including both single and dual-buffer
configurations, demonstrate that the proposed method successfully steers the search
process toward extreme conditions. The presented approach and its efficiency in the
steering process were evaluated using a more complex use case involving a multi-
tier load balancer topology.

The proposed approach offers benefits in addressing the challenges of fault
detection and debugging in systems where exhaustive state-space exploration is
infeasible. The model systematically estimates fault distances and directs search
efforts, reducing time and computational costs in debugging cloud continuum
environments.

However, limitations such as incomplete state-space coverage and model
generalizability are subjects of further research. Future work will focus on
enhancing the state representation using (among others) adjacency matrices and
exploring graph-based learning techniques and CNNs. These advancements are
expected to improve model accuracy and scalability, enabling more robust steering
towards extreme circumstances in complex, real-world systems [20].

By integrating machine learning-driven exploration with state-space steering, this
work lays the foundation for more intelligent, proactive fault detection techniques.
It also may contribute to greater system reliability and performance under extreme
conditions.

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

‒ 51 ‒

Acknowledgements

The research was partially supported by the Ministry of Innovation and Technology
NRDI Office within the framework of the Autonomous Systems National
Laboratory Program. Project no. TKP2021-NVA-01 has been implemented with the
support provided by the Ministry of Innovation and Technology of Hungary from
the National Research, Development and Innovation Fund, financed under the
TKP2021-NVA funding scheme. This work was partially funded by the European
Commission’s Swarmchestrate Horizon Europe project (No. 101135012). I also
thank István Pintye for his valuable advice.

References

[1] Papazoglou, M. P., & Heuvel, W. -J. v. d. (2021) Blueprinting the Cloud.
IEEE Internet Computing, 15(6), 74-79

[2] Pydi, H., & Iyer, G. N. (2020) Analytical Review and Study on Load
Balancing in Edge Computing Platform. Fourth International Conference on
Computing Methodologies and Communication (ICCMC), 180-187

[3] Ullah, A., Kiss, T., Kovács, J. et al. (2023) Orchestration in the Cloud-to-
Things compute continuum: taxonomy, survey and future directions. Journal
of Cloud Computing, 12, 135

[4] Beszédes, Á. (2019) Interdisciplinary Survey of Fault Localization
Techniques to Aid Software Engineering. Acta Polytechnica Hungarica, 16
(3) 207-226

[5] Lovas, R., Rigó, E., Unyi, D., & Gyires-Tóth, B. (2023) Experiences With
Deep Learning Enhanced Steering Mechanisms for Debugging of
Fundamental Cloud Services. IEEE Access, 11, 26403-26418

[6] Kwiatkowska, M., Norman, G. & Parker, D. (2011) PRISM 4.0: Verification
of Probabilistic Real-Time Systems. Lecture Notes in Computer Science,
6806, 585-591

[7] Lovas, R. & Kacsuk, P. (2007) Correctness debugging of message passing
programs using model verification techniques. Proceedings of the 14th
European conference on Recent Advances in Parallel Virtual Machine and
Message Passing Interface (PVM/MPI'07) 335-343

[8] Ligetfalvi, B., Emődi, M., Kovács, J., & Lovas, R. (2021) Fundamentals of
a Novel Debugging Mechanism for Orchestrated Cloud Infrastructures with
Macrosteps and Active Control. Electronics, 10(24), 3108

[9] Kovács, J., Ligetfalvi, B., & Lovas, R. (2024) Automated Debugging
Mechanisms for Orchestrated Cloud Infrastructures With Active Control and
Global Evaluation. IEEE Access, 12, 143193-143214

R. Lovas Debugging Cloud Continuum Blueprint Primitives with an
 ML-based Steering Method Toward Extreme Conditions

‒ 52 ‒

[10] Gan, Y., Liang, M., Dev, S., Lo, D., & Delimitrou, C. (2022) Practical and
Scalable ML-Driven Cloud Performance Debugging With Sage, IEEE
Micro, 42(4), 27-36

[11] Huang, J., Jiang, Z., Liu, J., et al. (2024) Demystifying and Extracting Fault-
Indicating Information from Logs for Failure Diagnosis. IEEE 35th
International Symposium on Software Reliability Engineering (ISSRE), 511-
522

[12] Shahane, V. (2022) Investigating the Efficacy of Machine Learning Models
for Automated Failure Detection and Root Cause Analysis in Cloud Service
Infrastructure. African Journal of Artificial Intelligence and Sustainable
Development, 2(2), 26-51

[13] Yu, X., Ye, K., He, D., et al. (2024) MLPing: Real-Time Proactive Fault
Detection and Alarm for Large-Scale Distributed IDC Network. IEEE 44th
International Conference on Distributed Computing Systems (ICDCS), 913-
924

[14] Han, X., Pasquier, T., Ranjan, T., & Goldstein, M. (2017) FRAPpuccino:
Fault-detection through Runtime Analysis of Provenance. Proceedings of the
9th USENIX Conference on Hot Topics in Cloud Computing (HotCloud'17),
18

[15] Kumar, T., Yashika, Singhal, A., Yashvardhan, & Priyadarshini, R. (2024)
Early System Failure Detection through System Log Analysis: An LSTM
Approach. (2024) 15th International Conference on Computing
Communication and Networking Technologies (ICCCNT), 1-7

[16] Cao, Q., & Niu, H. (2022) Higher-order Markov Graph-based Bug Detection
in Cloud-based Deployments. IEEE International Performance, Computing,
and Communications Conference (IPCCC), 153-160

[17] Cotroneo, D., De Simone, L., & Liguori, P. (2020) Fault Injection Analytics:
A Novel Approach to Discover Failure Modes in Cloud-Computing Systems.
IEEE Transactions on Dependable Systems. 19(3), 1476-1491

[18] Dogga, P., Narasimhan, K., Sivaraman, A., Saini, S., Varghese, G. &
Netravali, R. (2022) Revelio: ML-Generated Debugging Queries for Finding
Root Causes in Distributed Systems. Proceedings of Machine Learning and
Systems, 4, 601-622

[19] Pontillo, V., Vandercammen, M., & Verbelen, S. (2024) FERRARI: FailurE
Reproduction through automatic test cAse generation and stack tRace
analysIs. The 23rd Belgium-Netherlands Software Evolution Workshop

[20] Nagy, E., Hajnal, Á., Pintye, I., Kacsuk, P. (2019) Automatic, cloud-
independent, scalable Spark cluster deployment in cloud. CIVIL-COMP
PROCEEDINGS, 112, 26

	1 Introduction and Background
	2 Related Work
	2.1 ML-based Log and Time-Series Analysis for Anomaly Detection
	2.2 Markovian Methods
	2.3 Query-based and Test Case Generation Methods
	2.4 Further Related Works

	3 Methodology
	3.1 Overview and Problem Statement
	3.2 The Base-Line Model
	3.3 Conceptions for ML Model Training
	3.4 ML Model Training to Estimate Distance to Faults
	3.5 Steering Method towards Extreme Situations

	4 Experiments and Measurements
	4.1 First Stage of Experiments (Use Cases 1 and 2)
	4.2 Experiments with Multi-Tier Load Balancer Topology

	5 Limitations and Future Work

