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Abstract:

Improved surgical skills play a crucial role in ensuring optimal patient outcomes. Tra-
ditional methods for skill assessment include self-rating questionnaires and expert eval-
uations, but these approaches are prone to bias and require substantial qualified human
resources. The emergence of Surgical Data Science (SDS) offers a promising avenue for
automating skill assessment, leveraging data science techniques to capture, organize, an-
alyze, and model surgical data. In this paper, kinematic data was employed from the
JIGSAWS – which is the only skill-annotated Robot-Assisted Minimally Invasive Surgery
(RAMIS) dataset – to classify surgeons into novice and experienced groups, using various
classification methods (Decision Tree, k-Nearest Neighbors, Support Vector Machines, Lo-
gistic Regression, Dynamic Time Warping, and 1D Convolutional Neural Network). The
research encompasses a thorough analysis of parameter tuning and dimensional reduction
techniques with the aim of establishing a universal benchmark for data classification. The
surgical training tasks of suturing, knot-tying and needle-passing consistently achieved
100 % accuracy. The accuracy attained during surgical gesture analysis often exceeded
the overall accuracy of the global assessment of the dataset.

Keywords: Surgical Skill Assessment, Robot-Assisted Minimally Invasive Surgery, JIG-
SAWS, Decision Tree, k-Nearest Neighbors, Support Vector Machine, Logistic Regression,
Dynamic Time Warping, 1D Convolutional Neural Network, Approximate Entropy, Mutual
Information
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1 Introduction
The transition from open access surgery to Minimally Invasive Surgery (MIS)
marked a significant paradigm shift in medicine during the latter half of the 20th

century [1]. The benefits of MIS have been shown during the recent pandemic as
well [2]. Despite the evident advantages of MIS, such as reduced recovery time,
smaller incisions and decreased blood loss, it presents challenges to surgeons due
to the limited field of view, lack of depth perception caused by the 2D endoscopic
camera, and the intricate manipulation of the laparoscopic tools [3, 4]. Successful
performance of MIS necessitates extensive training besides continuous feedback
on skills is crucial given the complexity of the procedures. While RAMIS is
typically considered a costly technology add-on to surgery, partially it has been
seen as an initial component towards sustainable and accessible healthcare [5].
More recently, RAMIS has been presented as method to support ethically aligned
design in digital health devices [6].

The proficiency and knowledge of surgeons directly impact patient outcomes,
reflecting years of training, supervisory evaluation and clinical experience [7].
Surgeons possess technical skills, non-technical skills and different level of ex-
perience. The objective assessment of technical skills, such as tool handling, bi-
manual dexterity and procedural flow, has been extensively researched. However,
non-technical skills, including situation awareness, stress management, decision-
making, among others, are similarly important in relation to patient outcomes [8–
10]. Workload management, which quantifies the effort required to perform a
task, may also exhibit a strong correlation with non-technical skills. Unfortu-
nately, in many regions even in developed countries, surgical skill training and
assessment are not yet integrated into routine clinical practices [11].

Surgical skill assessment can be performed using self-rating questionnaires, where
participants evaluate their own performance, or standardized expert rating tech-
niques, where a panel of experts (typically 8–10 surgeons) assesses surgical pro-
cedures or training based on video recordings. However, both of these approaches
can be inherently biased and require significant qualified human resources. The
ultimate goal is to automate surgical skill assessment, as it offers objectivity, but
the technical aspects and critical surgical features are still subjects of intensive
research. Surgical Data Science (SDS) aims to enhance the quality of interven-
tional healthcare by employing data science techniques for data capture, organi-
zation, analysis and modeling [12]. SDS techniques enable automated surgical
skill assessment and allow verification of key skills through correlations between
them.

Robot-Assisted Minimally Invasive Surgery (RAMIS) refers to a surgical tech-
nique, in which laparoscopic tools controlled by a human operator at a console
are applied remotely by a robot. Teleoperation provides benefits, such as tremor
filtering, 3D endoscopic vision, ergonomic advantages, rescaled motion and im-
proved tool handling. The assessment of RAMIS skills has been extensively
studied due to the availability of sensory data, including robot kinematic data
and 3D video endoscopy. RAMIS skill assessment closely relates to MIS, as the
key factors encompass both technical and non-technical skills.
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In this paper, our aim was to classify surgeons into novice and expert groups
based on kinematic data collected by the da Vinci Surgical System (dVSS, In-
tuitive Surgical Inc., Sunnyvale, CA). The study included a thorough analysis
to investigate the potential benefits of dataset partitioning, parameter optimiza-
tion, and dimensionality reduction in improving the performance of classification
algorithms. Several classifiers were employed to analyze the data, including non-
time series methods such as Decision Tree (DT), k-Nearest Neighbors (k-NN),
Support Vector Machines (SVM) and Logistic Regression (LR). Additionally,
to compare the performance of non-time series classifiers with time series tech-
niques, Dynamic Time Warping (DTW) and 1D Convolutional Neural Network
(1D CNN) models were evaluated. The accuracy achieved during gesture (impor-
tant and distinctive movement during the surgical tasks) analysis often exceeded
the overall accuracy of the global assessment of the dataset. One particular ges-
ture, (”using right hand to help tighten suture”), showed the highest performance,
indicating its significant role in classifying surgeons’ skills. The surgical tasks of
suturing, knot-tying and needle-passing were achieved 100 % accuracy.

2 State of the Art
Automated skill assessment plays a crucial role in evaluating the proficiency of
surgeons [13]. In this study, authors investigated the advantages and the chal-
lenges associated with utilizing the entire dataset or the gesture-divided dataset
obtained from the RAMIS system, which provides kinematic and video data.
The laparoscopic camera provides easy access to video data in robotic surgery,
obviating the need for sensor-based kinematic data collection [14]. However, the
multidimensional and considerably complex nature of video data has resulted in
its relatively limited utilization compared to kinematic data [14].

Most automated skill assessment approaches employ Hidden Markov Models
(HMMs), created on the basis of internal features extracted from kinematic and
video data [15]. However, the training process of HMM methods can be ex-
tremely time-consuming compare to other approaches. In order to alleviate this
limitation, Frad et al. introduced the application of the DTW and the k-NN al-
gorithm on the JIGSAWS dataset, resulting in the development of an automated
and personalized RAMIS gesture training system. The system achieved notable
results with an accuracy of 80.49 % for suturing, 70.12 % for needle-passing,
and 85.14 % for knot-tying, assessed using the Leave-One-User-Out (LOUO)
cross-validation method [16].

Another approach to automatic performance evaluation of surgeons involves the
utilization of various machine learning algorithms such as k-NN, LR, and SVM.
Fard et al. employed these classification methods along with eight significant
movement features (task completion time, path length, depth perception, speed,
motion smoothness, curvature, turning angle, tortuosity) to classify surgeons into
expert and novice groups. The proposed framework achieved an accuracy of
89.9 % for suturing and 82.3 % for knot-tying using the Leave-One-Supertrial-
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Out (LOSO) cross-validation method [17].

Zia et al. achieved outstanding results, with nearly perfect accuracy for almost
every task, except for knot-tying, which achieved an accuracy of 99.9 % us-
ing the LOSO validation method. In their study, holistic features, such as Ap-
proximate Entropy (ApEn) were employed to assess the skill of surgeons. The
dimensionality-reduced data was processed using Principal Component Analysis
(PCA) before applying the k-NN classifier. These findings highlight the superi-
ority of their method over traditional HMM-based approaches, emphasizing its
potential for accurate and reliable surgical skill evaluation [18].

3 Materials and methods
3.1 JIGSAWS dataset

The JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) was col-
lected with the research version of the dVSS [19]. This dataset contains kine-
matic and video data from 8 participants (B, C, D, E, F, G, H, I) performing
3 different robotic surgical tasks: suturing, knot-tying and needle-passing. All
participants were right-handed and their levels of surgical experience varied.

The dataset includes annotations for surgical skill assessment, as well as anno-
tations for specific gestures. The participants’ technical skill level was assessed
using a Global Rating Scale (GRS). The GRS is derived from modified Objec-
tive Structured Assessments of Technical Skills (OSATS), this is a method that
incorporates six criteria (concerning tissue, suture/needle handling, time and mo-
tion, flow of operation, overall performance, quality of final product) to measure
the performance [20]. Each criterion is scored on a scale ranging from 1 to 5,
where 5 is the best. The GRS combines the scores obtained in these six criteria
to provide an overall assessment of the participants’ technical skill.

Moreover, to further analyze the participants’ performance, the dataset annota-
tions includes 15 gestures that are summarized in Table 1.

Table 1
Gesture descriptions of RAMIS training sessions in the JIGSAWS dataset [19].

Gesture index Gesture description
G1 Reaching for needle with right hand
G2 Positioning needle
G3 Pushing needle through tissue
G4 Transferring needle from left to right
G5 Moving to center with needle in grip
G6 Pulling suture with left hand
G7 Pulling suture with right hand
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G8 Orienting needle
G9 Using right hand to help tighten suture

G10 Loosening more suture
G11 Dropping suture at end and moving to end points
G12 Reaching for needle with left hand
G13 Making C loop around right hand
G14 Reaching for suture with right hand
G15 Pulling suture with both hands

The specific gestures that were involved in each task are as follows: at knot-
tying: G1, G11, G12, G13, G14, G15; at needle-passing: G1, G2, G3, G4, G5,
G6, G8, G11; at suturing: G1, G2, G3, G4, G5, G6, G8, G9, G11 (excluding
G10). The number of gestures varies not only between different surgical tasks
but also across trials within the same task. Some gestures may appear multiple
times in one trial, but may be absent at another trial of the same task.

3.2 Hardware and software environment
The classification and evaluation of the properly formatted kinematic data was
performed utilizing the Python programming language within Jupyter Notebook.
Several libraries, including numpy (version 1.21.4), and pandas (version 1.2.4)
were utilized in the implementation process.

The time series data was transformed into a suitable single value format with
ApEn for non-time series classification algorithms using the ’antropy’ library
(version 0.1.4). After the transformation, various classification algorithms were
applied to the data. For the implementation of the classification algorithms and
the cross-validation techniques, ’sklearn’ (version 0.24.1), sktime (version 0.13.4),
tensorflow (version 2.9.1) and keras (version 2.9.0) libraries were employed dur-
ing the implementation.

3.3 Classification methods
The surgeons were classified into two groups (novice, experienced) based on the
kinematic data derived from the dVSS. Several different classification methods
were utilized during the classification process, most of which required the trans-
formation of the time series kinematic data.

3.3.1 Data preparation

To assess the skill level of participants (Y = features), a binary conversion of the
GRS was performed. If a surgeon scored 16 or more out of a total of 30 points on
the GRS, he was categorized as experienced (assigned the value 1). If a surgeon
obtained a score lower than 16, he was categorized as a novice (assigned the
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value 0). This binary format provided a clear distinction between the two skill
levels based on the GRS scores.

The data for non-time series classification algorithms was standardized in order
to assess the variations in performance between the original and the standardized
datasets. During the standardization process, the mean of the features is removed,
and the data is centered around a specific value. In some cases, the utilization of
standardized data resulted in higher accuracy compared to the original data. This
implies that the standardization process may enhance the classification perfor-
mance, potentially enhancing the algorithms’ ability to distinguish between dif-
ferent classes or categories within the dataset. This also suggests that standard-
ization can be a beneficial preprocessing step for non-time series classification
algorithms, as it can potentially lead to better overall results. However, the Deci-
sion Tree algorithm did not exhibit the same improvement with standardization
as other algorithms.

3.3.2 Non-time series classification algorithms

In order to explore the potential benefits of dividing the dataset into intervals
based on gestures, four non-time series classification algorithms were applied to
the transformed data: Decision Tree (DT), k-Nearest Neighbors (k-NN), Support
Vector Machines (SVM) and Logistic Regression (LR). By dividing the dataset
into intervals, the aim was to analyze whether this partitioning approach could
lead to higher accuracy than utilizing the full dataset. To maximize the accuracy
on both the full and the divided datasets, parameter tuning was implemented for
the classification algorithms.

DT constructs a classification model in the form of a tree structure, where paths
can be represented as ”if-then” rules [21]. This algorithm was evaluated by
varying the values of the following parameters: criterion with options ’gini’ and
’entropy’, max depth (maximum depth of the tree) with options None and integer
values from 1 to 10, and max features (maximum number of features to consider
for each split) with options None, ’sqrt’, ’log2’, and decimal values ranging from
0.1 to 1. Additionally, the splitter parameter (strategy used for splitting each
node) was tested with ’best’ and ’random’ options.

The SVM algorithm constructs a hyperplane in a high-dimensional feature space,
with the goal of maximizing the margin between two classes of data points [17].
The parameter tuning for this classifier involved testing different values for the C
parameter (penalty parameter) with options 1000, 500, 100, 50, 10, 5, 1, 0.5, and
0.1. The gamma parameter (kernel coefficient) was tested with ’auto’, ’scale’,
and 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001 values. The kernel
parameter was tested with ’poly’, ’rbf’, ’sigmoid’, and ’linear’ options.

LR is used to analyze the relationship between multiple independent variables
and the probability of a binary outcome, typically ranging between 0 and 1 [17].
In the context of LR, parameter tuning is a crucial step in optimizing the model’s
performance. One of the important parameters to consider is the C parameter
(inverse of regularization strength) that was tested for optimization with values
0.1, 0.5, 1, 5, 10, 50, 100, 500 and 1000. To ensure convergence of the LR
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algorithm, the maximum iteration parameter (max iter) was set to a higher value
of 10000. The penalty parameter was tested with ’l2’and ’l1’. The solver was
tested with ’newton-cg’, ’lbfgs’, ’sag’, ’liblinear’ and ’saga’.

One observed challenge in the performance of these three non-time series clas-
sifiers was the inconsistency in achieving the same accuracy when the test was
rerun. To address this task and ensure reproducibility of the results, the ran-
dom state parameter was set to a fixed value of 0. By doing so, the classifiers
were provided with a fix random seed, thereby facilitating the replication of the
results.

Furthermore, the k-NN algorithm that predicts the class label of a given data point
based on the class labels of its k most similar neighbors [17] was tuned by test-
ing different metric parameters (distance metric) with ’euclidean’, ’manhattan’,
and ’minkowski’ options. The n neighbors parameter determines the number of
neighbors to consider. It was observed to vary based on the value of K in the K-
Fold cross-validation (K-Fold cv) method used during evaluation. The weights
parameter was tested with ’uniform’ and ’distance’ to determine the weight of
neighbors in the voting process.

To ensure that k-NN always uses all possible neighbors, a specific formula is
used. This formula involves the length of the feature set (Y) divided by the cho-
sen K (folds) value. The resulting quotient serves as a crucial factor at the deter-
mination of the maximum number of neighbors (max neighbors) for analysis. If
the quotient is an integer, it should be substracted from the length of the feature
set, thereby determining the maximum number of neighbors. However, if the
quotient is a floating-point number, it is converted to an integer and incremented
by one before being subtracted from the length of the feature set.

For instance, consider a scenario where the length of the feature set is 10 and
the K value is 2. In this case, the quotient is 10 / 2 = 5, which is an integer.
Consequently, the data is divided into two groups of 5 data points each, with
one group reserved for testing in the cross-validation process. This results in
a maximum of 10 - 5 = 5 neighbors available for analysis in the training data.
In contrast, if the K value is 3, the quotient becomes 10 / 3 = 3.33. Here, the
data is partitioned into three groups, with approximate sizes of 3, 3 and 4 (the
order does not matter). If the validation process selects the last group for testing,
the available neighbors for analysis in the training data would be limited to 10 -
(int(3.33) + 1) = 6.

After the parameter tuning, a mutual information-based dimensionality reduction
technique was used on the classification algorithms. This technique quantifies
the degree of dependence between the features, higher values indicating greater
dependency. The objective was to leverage this information to reduce the dimen-
sionality of the data using a straightforward equation. This equation involved
iteration over a range determined by the minimum and maximum dependency
values obtained from the mutual information method, with a step size of 0.01.
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3.3.3 Time series classification algorithms

In order to analyze the original time series data, two classification algorithms,
namely Dynamic Time Warping (DTW) and 1D Convolutional Neural Network
(1D CNN), were employed. However, prior to constructing the models using
these algorithms, specific data preparation steps were undertaken.

The DTW measures the similarity between two sequences such as time series
that do not align perfectly in terms of time [16]. This classifier requires time
series data to be of equal length for classification purposes. In this study, three
different data transformation methods were applied to address this requirement.
The first one was the maximum length conversion, in this method all time series
data within each task were converted to the maximum length observed across
all trials in that specific task. This involved padding shorter trials with zeros
until their length matched the maximum length. In the average length conversion
method, the time series data for each surgical task were converted to the average
length. Shorter trials were padded with zeros, longer trials were truncated to
match the average length. In the minimum length conversion, the time series
data for each surgical task were converted to the minimum length observed across
all trials in one specific surgical task. This method involved truncating all trials
to match the minimum length. The data loss differed between each trial of the
surgeons. By applying these conversions, the time series data were adjusted to a
common length, allowing the DTW classifier to effectively classify the surgeons
into two groups.

The CNN can be applied to extract spatial features directly [22], but it required
additional data transformation for the time series data beyond the conversion
methods that were used in the previous classifier. The data underwent further
preprocessing to ensure its compatibility with the neural network architecture.
This classifier utilized three consecutive 1D convolutional layers (conv1D) in
conjunction with BatchNormalization layers. The conv1D layers were config-
ured to employ 64 filters and a kernel size of 3, while applying ”same” padding.
The purpose of the BatchNormalization layers was to normalize the activations of
each conv1D layer, improving the model’s performance and training efficiency.
Following the conv1D and BatchNormalization layers, the output was fed into a
GlobalAveragePooling1D layer. Subsequently, the output of the GlobalAverage-
Pooling1D layer was passed through a Dense layer with softmax, which produced
the final classification output.

The model was trained using a configuration that included 1000 epochs (EarlyStop-
ping after 50), a batch size of 32 and the Adam optimizer. To evaluate the per-
formance of the model, a LOOCV approach was employed. Due to the inherent
variability in the training process of the model, the obtained accuracies differed
across iterations. In order to obtain more reliable and robust results, the model
was trained five times, and the average accuracy of the five runs was calculated.
This averaging process helped to mitigate the impact of the inconsistent weights
and training outcomes on the final evaluation. By considering the average accu-
racy, a more representative performance measure of the model was obtained.

– 140 –



Acta Polytechnica Hungarica Vol. 20, No. 8, 2023

To evaluate not only the variances in the conversion methods but also the impact
of different activation functions, two functions were utilized in the model. The
first activation function employed was the Rectified Linear Unit (ReLU), which
sets all negative values to zero while leaving positive values unchanged. The
second activation function used was the Exponential Linear Unit (ELU), which
applies an exponential function to both negative and positive inputs.

3.4 Validation methods
The classification methods that were used to categorize surgeons into novice and
experienced groups were validated using various techniques. The two main meth-
ods were the LOOCV and the simple K-Fold cv method.

In order to mitigate the potential inaccuracies in cross-validation calculations, a
constraint was imposed on the range of possible K values. This constraint was
necessary due to the inherent limitations of the method, which cannot operate
with values lower than 2 (it is necessary because of the train and test splitting).
Furthermore, it has been observed that the method produces unreliable results
when the K value exceeds the number of the least populated class. Therefore, to
ensure reliable and meaningful outcomes, the range of acceptable K values was
restricted based on these considerations.

By employing these two validation methods, the classification methods’ accuracy
could be examined. The simple K-Fold cv provided an assessment by testing the
model on different, non-overlapping groups of data, while the LOOCV method
ensured that every individual trial was evaluated as a test case.

4 Results
The results of the applied non-time series methods on the entire dataset are pre-
sented in Figure 1. The accuracies were attained by firstly using ApEn on the
kinematic based time series dataset to transformed it into a usable format, than
an excessive parameter tuning was performed to achieve higher results and lastly
MI dimensionality reduction method was utilized to reduce the time of the train-
ing by reducing the features.

The x-axis of the box plots presents the different classification methods, while the
y-axis indicates the achieved accuracy for each method with different K (folds)
values. Therefore the accuracies in the diagrams were attained only using the
K-Fold cross-validation method.

In most cases the Decision Tree (DT) classifier demonstrated the best accuracy
out of the four classifiers. Notably, with the standardized and the original data
of the suturing surgical task, it achieved a maximum score of 1.0, indicating a
perfect classification outcome. There was only one case when another non-time
series classifier, namely the k-Nearest Neighbors (k-NN) displayed better results
than the DT classifier in classifying surgeons into two distinct groups. Further-
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more this method displayed a relatively smaller number of outliers – represented
as circles in the diagrams – compared to the other classifiers across the three
surgical tasks. Across all surgical tasks, the maximum achieved accuracies were
between 0.83 - 1.0, indicating a high level of accuracy in the classification results.
Overall, these findings suggest that the non-time series algorithms, especially the
DT classifier implementation for kinematic data based binary classification, have
the potential to attain high results.

Figure 1
Box plot diagrams of the three surgical tasks, using only non-time series classification algorithms.

The accuracies presented in the diagrams on the left were derived from the original dataset and those
on the right were computed based on the standardized dataset. Used abbreviations: NP:

needle-passing, KT: knot-tying, SU: suturing, k-NN: k-Nearest Neighbors, SVM: Support Vector
Machines, dimRed: dimensionality reduction (MI).
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The conducted analysis revealed that gesture classification yielded significantly
higher accuracy compared to the classification performed on the entire dataset,
as shown in Figure 2. The accuracy achieved by the classification models is
represented on the y-axis, while the x-axis presents the usable gestures in the
specified surgical task. In the diagrams each of the gestures have four shades of
blue bars representing the four classification method that was also used for the
entire dataset analysis. The accuracies are the outcomes of utilization of ApEn,
parameter tuning and dimensional reduction. In contrast to Figure 1, Figure 2
shows the best possible result for the gestures, therefore the results also included
LOOCV if a classifier attained higher result with this validation method. Notably,
within the surgical tasks examined, a minimum of two gestures demonstrated
impeccable accuracy, achieving a perfect score of 1.0. Among the gestures, G9
in the suturing task emerged as the top-performing gesture.

The best non-time series classification results, including parameter tuning and
dimensionality reduction, are summarized in Table 2, Table 3 and Table 4. These
tables present the best accuracies achieved by the classifiers using either the orig-
inal or the standardized data. In cases where the result was obtained from the
standardized data, it is denoted by an (s) in the corresponding cell. Conversely,
if the result was derived from the original data, only the classifier name is listed
under the Class column. Notably, the DT classifier consistently yielded the same
result for both types of data, represented as (s, o).

The parameters presented in the tables follow the specific order introduced in the
non-time series classification methods section. Each table provides a compre-
hensive overview of the model’s performance, respectively, with the first accu-
racy value indicating the results obtained after parameter tuning, and the second
accuracy (MI accuracy) encompasses the utilization of dimensionality reduction
technique as well. The best accuracies achieved during the experiments are high-
lighted in bold text, reflecting the highest achieved accuracy scores.

The models also trained on the split data, which involves dividing the dataset
based on gestures, achieved higher accuracy compared to the models trained on
the full dataset. However, in the case of suturing, both the individual gestures
and the full dataset achieved a perfect accuracy of 1.0. In Table 2, G4, G5, G6
and G8, gestures achieved the best possible results. In Table 3, G1 achieved the
best result twice, while G15 achieved the best result three times. In Table 4, the
full dataset, along with the gestures G2 and G9 achieved the best result, with G9
achieving the best result eleven times.

The consistent high performance and frequent occurrence of the G9 gesture in
Table 4 indicate that this particular gesture possesses characteristics that enable
the models to effectively differentiate and accurately classify it from other ges-
tures within the dataset. In summary, extensive parameter tuning and dimensional
reduction was performed on each non-time series classification algorithm to op-
timize their performance. This involved testing various combinations of parame-
ters and features to determine the best settings for achieving higher accuracy.
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Figure 2
The best accuracy of gestures that can be used in needle-passing, knot-tying and suturing surgical

tasks. These accuracies were obtained from either the original gesture dataset (left bar plots) or the
standardized gesture dataset (right bar plots), considering the best accuracies. Each color represents

a distinct non-time series classification algorithm.
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Table 2
Best accuracies of needle-passing. Used abbreviations: Class: Classifier, MI: Mutual Information,

K: Folds of the cross-validation, LOOCV: Leave-One-Out cross-validation, DT: Decision Tree,
SVM: Support Vector Machines, k-NN: k-Nearest Neighbors, LR: Logistic Regression

Data Class Accuracy MI
accuracy Best parameters MI

score

Full
DT K = 9: K = 8: ’entropy’, None, 0.7,

> 0.08
(o, s) 0.851852 0.96875 ’random’, 0

G1
k-NN K = 7: K = 8: ’manhattan’, 2,

> 0.06
(s) 0.821429 0.96875 ’uniform’

G2
SVM LOOCV: LOOCV: 50, 0.1,

> 0.07
(s) 0.857143 0.962963 ’sigmoid’, 0

G3 SVM
LOOCV: LOOCV: 1000, 0.1,

> 0.03
0.821429 0.928571 ’sigmoid’, 0

G4
LR K = 8: K = 4: 5, 10000, ’l2’,

> 0.03
(s) 0.791667 1.0 ’newton-cg’, 0

G5
DT K = 2: K = 6: ’gini’, None, 0.1,

> 0.28
(o, s) 0.833333 1.0 ’random’, 0

G6
SVM K = 8: K = 7: 10, 0.1,

> 0.01
(s) 0.854167 1.0 ’sigmoid’, 0

G8
DT K = 6: K = 4: ’entropy’, None, ’sqrt’,

> 0.16
(o, s) 0.805556 1.0 ’random’, 0

G11
DT LOOCV: LOOCV: ’gini’, 2, 0.8,

> 0.05
(o, s) 0.84 0.92 ’random’, 0

Table 3
Best accuracies of knot-tying. Used abbreviations: Class: Classifier, MI: Mutual Information, K:

Folds of the cross-validation, LOOCV: Leave-One-Out cross-validation, DT: Decision Tree, SVM:
Support Vector Machines, k-NN: k-Nearest Neighbors

Data Class Accuracy MI
accuracy Best parameters MI

score

Full k-NN
K = 14: K = 17: ’manhattan’, 8,

> 0.16
0.869048 0.921569 ’distance’

G1
SVM

LOOCV: LOOCV: 1000, 1,
> 0.11

0.789474 1.0 ’sigmoid’, 0

SVM
K = 6: K = 4: 500, 1,

> 0.11
0.805556 1.0 ’sigmoid’, 0

G11
SVM K = 10: K = 15: 0.5, 1,

> 0.03
(s) 0.825 0.933333 ’sigmoid’, 0
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G12
DT K = 10: K = 16: ’gini’, None, 0.5,

> 0.1
(o, s) 0.85 0.947917 ’random’, 0

G13

SVM LOOCV: LOOCV: 0.5, 0.1,
> 0.03

(s) 0.888889 0.972222 ’sigmoid’, 0
SVM K = 13: K = 4: 10, 0.05,

> 0.09
(s) 0.923077 0.972222 ’sigmoid’, 0

G14
DT LOOCV: LOOCV: ’gini’, 5, 0.1,

> 0.1
(o, s) 0.805556 0.916667 ’random’, 0

G15
DT LOOCV: LOOCV: ’gini’, None, 0.5,

> 0.19
(o, s) 0.888889 1.0 ’random’, 0

G15

DT K = 6: K = 12: ’gini’, 5, 0.5,
> 0.19

(o, s) 0.944444 1.0 ’random’, 0
SVM K = 9: K = 15: 5, 0.05,

> 0.01
(s) 0.944444 1.0 ’sigmoid’, 0

Table 4
Best accuracies of suturing. Used abbreviations: Class: Classifier, MI: Mutual Information, K: Folds

of the cross-validation, LOOCV: Leave-One-Out cross-validation, DT: Decision Tree, SVM:
Support Vector Machines, k-NN: k-Nearest Neighbors, LR: Logistic Regression

Data Class Accuracy MI
accuracy Best parameters MI

score

Full
DT K = 9: K = 10: ’entropy’, None, 0.9,

> 0.12
(o, s) 0.955556 1.0 ’random’, 0

G1
DT LOOCV: LOOCV: ’gini’, None, ’sqrt’,

> 0.09
(o, s) 0.827586 0.931034 ’random’, 0

G2
DT K = 9: K = 2: ’gini’, 6, 0.1,

> 0.07
(o, s) 0.877778 1.0 ’random’, 0

G3
DT K = 4: K = 8: ’gini’, 2, 0.9,

-
(o, s) 0.975 0.95 ’random’, 0

G4
SVM K = 9: K = 9: 100, 0.05,

> 0.02
(s) 0.805556 0.972222 ’sigmoid’, 0

G5
DT LOOCV: LOOCV: ’entropy’, 3, ’sqrt’,

> 0.01
(o, s) 0.861111 0.916667 ’random’, 0

G6
DT K = 11: K = 9: ’gini’, 4, ’log2’,

> 0.02
(o, s) 0.878788 0.927778 ’random’, 0

G8
DT LOOCV: LOOCV: ’gini’, 2, None,

> 0.0
(o, s) 0.848485 0.939394 ’random’, 0

G9

k-NN
LOOCV: LOOCV: ’manhattan’, 1,

> 0.05
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0.555556 1.0 ’uniform’

k-NN
K = 2: K = 2: ’manhattan’, 1,

> 0.0
0.8 1.0 ’uniform’

k-NN K = 3: K = 2: ’manhattan’, 1,
> 0.01

(s) 0.777778 1.0 ’uniform’

SVM
LOOCV: LOOCV: 1000, ’scale’,

> 0.03
0.888889 1.0 ’poly’, 0

SVM LOOCV: LOOCV: 1000, ’auto’,
> 0.13

(s) 0.888889 1.0 ’sigmoid’, 0

G9

SVM
K = 2: K = 2: 500, 0.005,

> 0.0
0.9 1.0 ’sigmoid’, 0

SVM K = 4: K = 2: 1000, ’auto’,
> 0.13

(s) 0.875 1.0 ’sigmoid’, 0

LR
LOOCV: LOOCV: 500, 10000, ’l2’,

> 0.05
0.555556 1.0 ’newton-cg’, 0

LR LOOCV: LOOCV: 0.1, 10000, ’l2’,
> 0.1

(s) 0.777778 1.0 ’liblinear’, 0

LR
K = 2: K = 2: 5, 10000, ’l2’,

> 0.0
0.9 1.0 ’newton-cg’, 0

LR K = 3: K = 2: 0.1, 10000, ’l2’,
> 0.13

(s) 0.777778 1.0 ’liblinear’, 0

G11
DT K = 10: K = 9: ’gini’, None, 0.3,

> 0.01
(o, s) 0.875 0.95 ’best’, 0

The result of the Dynamic Time Warping (DTW) analysis was visualized in Fig-
ure 3. The x-axis represents the number of neighbors used to build the model,
while the y-axis represents the accuracy achieved by the DTW classifier when
using the specified number of neighbors. It is important to note that the accu-
racy values presented were obtained only using ’uniform’ as a weight parameter
value and the validation was performed without using cross-validation. Instead,
the dataset was split into a training and a test dataset, following an 80-20 % ra-
tio. The lack of cross-validation can potentially result in an overly optimistic
or pessimistic evaluation of the model, as it may not fully capture the model’s
performance across different variations of the data. The analysis of the results
revealed a remarkable similarity between the three conversion methods across all
three surgical tasks. This indicates that the choice of conversion method with-
out cross-validation did not significantly impact the classification accuracy of the
DTW classifier.

Upon applying cross-validation with various parameter values, incorporating an
additional weight (distanced) and the equation for neighbors calculation, the
observed similarity between the conversion methods was notably reduced. To
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specifically compare the performance of the minimum, average and the max-
imum lengths conversion methods, a comparison analysis was conducted and
visualized in Figure 4. The y-axis represents the accuracy achieved by the clas-
sifier when applying different K values. The x-axis represents the three conver-
sion methods under comparison, namely the minimum, average and maximum
lengths conversion methods. Based on the results presented in Figure 4, it can
be concluded that across all three surgical tasks, the minimum lengths conver-
sion method consistently outperformed the other lengths conversion methods, in
terms of accuracy. These findings suggest that the minimum lengths conversion
method was more effective in capturing the relevant patterns and features within
the time series data, leading to improved classification performance.

The results obtained from applying DTW to three distinct surgical tasks are pre-
sented in Table 5. Only highest accuracies are included in the tables. The param-
eters listed in the tables refer to the maximum number of neighbors considered
and the weight assigned during the model training phase (’uniform’, ’distance’).
In the NP and KT tasks, the minimum conversion method demonstrated better
performance compared to the other two conversion methods. However, in the su-
turing task, the combination of the average and the maximum conversion method
with LOOCV resulted in the highest accuracy.

Figure 3
The best accuracies of the Dynamic Time Warping classification algorithm. Each color represents a

conversion method that was used for transforming the time series data into equal length.
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Figure 4
Box plot diagrams of the surgical tasks using Dynamic Time Warping classification algorithm. The

different conversion methods (minimum, average, maximum) show slightly different results.

Table 5
Dynamic Time Warping accuracies. Used abbreviations: CV: cross-validation, K: Folds of the

cross-validation, LOOCV: Leave-One-Out cross-validation, NP: needle-passing, KT: knot-tying,
SU: suturing, min: minimum length, avg: average length, max: maximum length

Task CV Accuracy Best parameters

NP
K = 9 (min) 0.824074 6, ’uniform’
K = 2 (avg) 0.821429 5, ’uniform’
K = 3 (max) 0.822222 14, ’distance’

KT
K = 2 (min) 0.888889 10, ’uniform’
K = 16 (avg) 0.864583 1, ’uniform’
K = 16 (max) 0.864583 4, ’uniform’

SU
K = 9 (min) 0.844444 2, ’uniform’

LOOCV (avg) 0.871795 2, ’uniform’
LOOCV (max) 0.871795 2, ’uniform’

The comparative results of the various 1D CNN (1D Convolutional Neural Net-
work) approaches are presented in Table 6. Across most of the surgical tasks,
the use of the ELU activation function, in conjunction with the minimum conver-
sion method yielded superior performance compared to the other method com-
binations. Notably, the exception was observed in the suturing task, where the
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average conversion method coupled with ReLU activation function achieved the
highest accuracy.

These findings highlight the effectiveness of the ELU activation function for most
surgical tasks, particularly when used in conjunction with the minimum conver-
sion method. However, the overall accuracy achieved by the CNN approach was
significantly lower compared to the other classification methods employed. This
implies that further refinement of the CNN architecture, as well as exploration of
additional features or teaching techniques, may be necessary to improve its per-
formance and bridge the accuracy gap observed with other classification meth-
ods.

Table 6
Neural Network accuracies. Used abbreviations: ReLu: Rectified Linear activation function, ELU:
Exponential Linear Unit, NP: needle-passing, KT: knot-tying, SU: suturing, min: minimum length,

avg: average length

Task Method Accuracy
(ReLu) Accuracy (ELU)

NP
min 0.657 0.771
avg 0.621 0.664

KT
min 0.761 0.794
avg 0.772 0.778

SU
min 0.687 0.708
avg 0.723 0.59

5 Discussion
The JIGSAWS dataset has some limitations. Primarily it contains a very little
amount of data, due to the participation of only eight surgeons. Each of the par-
ticipants repeated the three surgical task five times, therefore the dataset consist
of 8*5 = 40 trials. Secondly, the dataset lacks trials performed by certain sur-
geons. Specifically, the dataset does not include the second trial conducted by
surgeon H. Due to incomplete GRS evaluations, certain data instances were re-
moved to ensure data consistency. The following specific data instances were
excluded: from knot-tying: B005, H00, I004; from needle-passing: B005, E002,
F002, F005, G001, G002, G003, G004, G005, H001, H003, I001; from suturing:
H002. After the training of the models, the G10 gesture was removed from su-
turing, and the models were retrained because the cross-validation method could
not work with the low amount of trial data of this gesture.

Performing parameter tuning with all the listed parameter values and subse-
quently conducting dimensionality reduction on the data can be computation-
ally intensive. This is especially true when utilizing time series classifiers, as
they inherently possess slower processing times. Because of the excessive need
for computing resource, the classification tasks were implemented on a server
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equipped with 64 CPU cores, a maximum available memory of 85GB, and a
dedicated 10GB Nvidia A100 GPU.

The key features and functions have been implemented in the IROB-SAF GitHub
repository (https://github.com/rlevendovics/irob-saf).

Table 7
Comparison between the results obtained in this study and those reported by another authors. All of

the methods listed in the table were applied to the JIGSAWS dataset. Used abbreviations: NP:
needle-passing, KT: knot-tying, SU: suturing, DTW: Dynamic Time Warping, DT: Decision Tree,

SVM: Support Vector Machines, k-NN: k-Nearest Neighbors, LR: Logistic Regression, ApEn:
Approximate Entropy, PCA: Principal Component Analysis, MI: Mutual Information

Author (Year) Method NP KT SU
Fard et al.

DTW, k-NN 70.12 % 85.14 % 80.49 %
(2016) [16]

Zia et al.
k-NN, ApEn, PCA 100 % 99.99 % 100 %

(2017) [18]
Fard et al.

k-NN, LR, SVM - 82.3 % 89.9 %
(2018) [17]

This study DTW 82.4 % 88.89 % 87.18 %

This study Neural Network 77.1 % 79.4 % 72.3 %

This study
DT, k-NN, LR, 100 % 100 % 100 %

SVM, ApEn, MI

Conclusions

The aim of the study was to compare algorithms capable of categorizing surgeons
into two groups (novice and experienced) based on kinematic data recorded by
the highly successful RAMIS robot system, the da Vinci. Zia et al. [18] achieved
remarkable results on the JIGSAWS dataset, nearly attaining 1.0 accuracy for
all three surgical tasks, that is showed in Table 7. In this study, similar classifi-
cation methods were employed to evaluate the data. The non-time series classi-
fiers demonstrated significantly superior performance compared to the time series
classifiers (such as DTW and 1D CNN). In contrast to Zia et al., this study not
only utilized the k-Nearest Neighbors (k-NN) method but also employed Deci-
sion Trees (DT), Support Vector Machines (SVM) and Logistic Regression (LR).
To enhance the performance of the classification algorithms, the data underwent
ApEn transformation, followed by a thorough examination of potential param-
eters and dimensionality reduction technique. Consequently, all surgical tasks
achieved 100 % accuracy through this analysis.

The achieved accuracies could be further increased by incorporating a higher
number of surgeons, thereby enhancing the robustness of classification outcomes.
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This study only analyzed the DTW and the NN on the entire dataset. Given that
non-time series algorithms attained higher accuracies on the splitted dataset, im-
plementing these two classifier on the gesture level as well could be advanta-
geous. The other two method (standardization, dimensionality reduction) could
also enhance the accuracy for the time series algorithms. Beyond these consid-
erations the achieve results have potential implications for the development of
personalized training programs that target the specific deficiencies of individual
surgeons.
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