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Abstract: In recent years, robotics has experienced significant development and 
widespread application across various manufacturing sectors. This progress has been 
driven by the integration of breakthroughs in technology such as artificial intelligence and 
computer vision, enabling robots to become more intelligent and adaptable when 
performing specific tasks. As a result, demand for integrating robots into human 
production and research activities has been accelerated. Specifically, in chemical-related 
industries, reducing or avoiding direct human contact with chemicals is essential for 
ensuring the safety of performers. In laboratory settings, automating tasks such as the 
arrangement of chemical tubes using robotic arms has emerged as a solution to enhance 
safety and save time for researchers. Building upon this concept, this paper presents a 
robotic system that serves as a laboratory assistant for arranging centrifuge tubes into 
trays. The system is composed of a 5-degree-of-freedom robot arm, Reactor X-150, 
alongside depth camera D435 and computer vision model YOLOv8. By collecting image 
recognition information from YOLOv8 and analyzing it in conjunction with depth camera 
data, the system determines the position and orientation of the tube, which is then 
transmitted to the robot for the arrangement process. This integrated approach aims to 
improve safety in handling centrifugation experiments. 

Keywords: Arm manipulator; automation; centrifuge tube 

1 Introduction 
Over the past few years, there has been significant growth in the domain of 
Industry 4.0 [1]. This progress can be attributed to notable advancements in 
technology, resulting in increased sophistication and ease of implementation. 
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Therefore, there has been a surge in popularity and broader application of robots 
across diverse industries and fields, with an increasing focus on tackling 
progressively complex tasks and responsibilities [2]. 

The integration of robots in both production and research stages has proven to be 
instrumental in automating processes, thereby either replacing or assisting human 
workers in the production process [3]. The presence of robots represents a 
significant advancement that has had a profound impact on a wide range of 
industries and fields. By using the advanced capabilities of robots, previously 
human-performed tasks can now be executed with increased precision and 
efficiency. In the research domain, robots play a crucial role in automating tasks 
such as data collection, analysis, and experimentation, resulting in accelerated 
research timelines and improved reliability of outcomes. The collaborative 
interaction between humans and robots in these stages not only leads to improved 
operational efficiency but also allows human workers to focus on more complex 
and value-added aspects of their work [4]. 

In the chemical and medical industries, it is customary to limit direct exposure to 
chemicals or specimens because of the fragility and vulnerability of the human 
body to highly reactive chemicals [5-6]. Moreover, specimens often carry highly 
infectious agents that can lead to cross-transmission, exacerbating the severity of 
diseases. It is crucial to note that even a minor error in a worker’s performance 
can result in inaccurate results and, in the worst-case scenario, cause irreversible 
harm to their health. Therefore, one effective approach to addressing these 
weaknesses is the utilization of robots to assist in various aspects of the work 
process [7]. 

The integration of artificial intelligence (AI) and computer vision technologies has 
revolutionized the capabilities of robots in the chemical and medical industries. 
By incorporating machine learning techniques, robots have gained a heightened 
level of flexibility and adaptability [8]. Through AI and computer vision, high-
quality sensors, the Internet of Things (IoT), and cloud computing, robots can 
analyze and understand data from their environment, enabling them to make 
informed decisions and perform assigned tasks. This integration enhances the 
robots’ ambient awareness, allowing them to recognize objects, assess spatial 
relationships, and identify potential hazards. Moreover, the continuous learning 
capabilities of AI algorithms enable robots to improve their performance over 
time, optimizing their decision making processes and minimizing errors. 
Ultimately, the integration of AI and computer vision empowers robots to operate 
autonomously and efficiently, reducing the risks associated with direct human 
exposure to dangerous chemicals and infectious specimens while simultaneously 
improving productivity and safety in these industries [5-6]. 

This study showcases a system that combines mechanical mechanisms, artificial 
intelligence, and a depth camera. The Reactor X-150 robotic arm, named Reactor 
X-150 and manufactured by Trossen Robotics, has been designed and engineered 
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to ensure smooth control through the utilization of ROS. The artificial intelligence 
model employed in the system is YOLOv8, a technology developed by Ultralytics 
that proficiently carries out the task of recognizing test tubes. Additionally, the 
position and orientation of objects are accurately determined by processing data 
received from the Intel D435 depth camera. 

2 System Setup and Kinematics Analysis 

2.1 System Setup 

The system prioritizes compactness and minimizes interference caused by 
lighting. It includes a 400×400×10 millimeter-thick black wooden panel with the 
robot arm fixed in the corner. The camera, mounted on an aluminum stand, is 
positioned at a distance of 550 millimeters from the center of the camera to the 
system table. Adjacent to the left side of the system, a test tube tray is positioned, 
capable of accommodating up to 24 test tubes. 

 
Figure 1 

The setup of the system 
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2.2 Kinematics Analysis 

In order to tackle the challenge of solving the forward kinetics problem for the 
robotic arm, the decision was made to employ the Product of Exponentials (POE) 
method [10] due to its inherent advantages in terms of user-friendliness and rapid 
programming. The utilization of POE parameters provides a more simplified and 
intuitive representation of the robot’s kinematics when compared to the 
conventional Denavit-Hartenberg (DH) parameters, thus facilitating improved 
comprehension and visualization of the robot’s configuration. Additionally, POE 
parameters offer the advantage of being free from coordinate singularities, thereby 
enabling greater control and avoiding the loss of degrees of freedom. Moreover, 
the adoption of POE parameters allows for more efficient and continuous 
computations for both forward and inverse kinematics, resulting in improved 
computational efficiency. 

Assigning the coordinate system to the structure of the robot, as shown in Fig. 2, 
and ascertaining the pose of the gripper in relation to the base frame of the robot is 
a comparatively straightforward task. 

 
Figure 2 

Robot coordinate system 

By analyzing the dimensions of the robot structure, the matrix for the default 
configuration is determined in meters. 

 

(1) 

In the POE method, the twist of a revolute joint is composed of two distinct 

components, namely the translational component and the rotational component 

. 
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The rotational motion  is a 3×1 vector and can be reorganized in cross product 
matrix notation as follows: 

 
(2) 

Applying Rodrigues’ Rotation Formula, the rotation matrix constructed from the 
rotation component of a twist is as follows: 

 (3) 

The translation vector calculated from twist components is as follows: 

 (4) 

From the above rotation and translation matrices, the matrix exponential for the i-
th joint can be composed as follows: 

 
(5) 

The representation of the twist for the system joints is encapsulated within the 

 matrix, which is defined as follows: 

 

 

(6) 

The determination of the relative location of the tool frame in relation to the base 
frame is accomplished through the following: 

 (7) 

For solving the system inverse kinematics, we chose to use the Newton-Raphson 
Approximation Method. The root-finding algorithm produces successively better 

approximations to the roots of a real-valued function. With an initial guess , the 
level-1 Taylor expansion of the function is: 

 
(8) 
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Solving this equation , given the initial root : 

 

 

 

(9) 

The root  and  obtained then becomes the initial root for the next solving 

iteration until : 

 
(10) 

Then, the general root formula for every iteration is: 

 
(11) 

The solving iteration loop exits if and only if the value  meets certain 

qualifications. Such qualifications are the condition of the initially given error  or 
the condition of the maximum allowable iterations. The absolute error is 
determined as: 

 (12) 

3 Tube Detection Process 

3.1 Identify the Appearance of Tubes 

YOLOv8, Fig. 3, is the version in the YOLO (You Only Look Once) model series, 
building upon of YOLOv5 architecture [9]. The prime aim of YOLOv8 is to 
achieve superior speed, accuracy, and usability, thereby enhancing its 
responsiveness across various tasks. Several significant changes have been 
implemented in YOLOv8, including: 

• YOLOv8 uses an anchor-free detection strategy by directly predicting 
object centers, eliminating the need for predefined anchor boxes. 
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• YOLOv8 replaces the initial 6×6 convolutional layer with a more 
effective 3×3 convolutional layer, leading to improved feature extraction 
capabilities. 

• YOLOv8 introduces the C2f module to effectively merge high-level 
features with contextual information, enhancing object detection 
accuracy in complex scenes. 

• YOLOv8 presents a semantic segmentation model referred to as 
YOLOv8-Seg. This model employs CSPDarknet53 as its core feature 
extractor and integrates the C2f module. It incorporates two segmentation 
heads to generate semantic segmentation masks, making it a versatile tool 
for a range of computer vision applications. 

 
Figure 3 

YOLOv8 Architecture 



T. T. Mac et al. The Development of Robotic Manipulator for Automated Test Tube 

 – 96 – 

 
Figure 4 

Input image from the depth camera D435 

The integration of the new Ultralytics model, YOLOv8, into the system has 
demonstrated a remarkably straightforward process. After being trained with 
custom data tailored to centrifuge tubes, the model uses segmentation to a produce 
preliminary result (Fig. 5) from the input image (Fig. 4). 

 
Figure 5 

Output from the YOLOv8 model 

However, it is of utmost importance to recognize that these results are provisional, 
as it is crucial to verify whether the test tubes have been appropriately capped. 
Transporting uncapped test tubes may lead to liquid spillage, presenting potential 
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hazards to individuals. With the primary objective being the handling of 
exclusively capped test tubes, it is recommended to implement a capping 
procedure to verify the status of each individual test tube. 

 
Figure 6 

Extracting objects field from output of YOLOv8 model 

To carry out the task, the artificial intelligence model’s output will consist of 
image regions containing objects against a black background, as shown in Fig. 6. 
Yolo’s outcomes provide two essential elements: object contours and Regions of 
Interest (ROI). By identifying orange areas in each ROI, the caps are detected. 
Thus, the fulfillment of the object’s condition requires two factors: YOLO’s 
recognition of an object as a test tube and the presence of the cap within the same 
ROI. 

3.2 Estimate the Position and Orientation 

Once the outlines of the object’s body and lid have been obtained, the subsequent 
step involves determining the centroid for each contour in the pixel frame of 
reference of the image. In this process, the moment() method in OpenCV [11] is 
used to calculate the image moment for a specific contour. An image moment 
represents a weighted average of pixel intensities within an image and enables the 
extraction of specific properties such as the centroid, area, and orientation. 
Subsequently, the centroid of the contour in pixel coordinates is displayed below. 

 
(13) 

The positions of the lid and body centroids are denoted by green and red dots, as 
shown in Fig. 7. 
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Figure 7 

Centroids of centrifuge tubes’ lid and body 

Before proceeding, it is important to calibrate the camera in order to obtain the 
Extrinsic and Intrinsic matrices. The Extrinsic matrix represents a transformation 
matrix that maps the reference coordinate system to the camera coordinate system. 
On the other hand, the Intrinsic matrix facilitates the transformation between the 
camera’s 3D coordinates and the corresponding 2D image coordinates. Calibrating 
the camera allows for accurate mapping between the real-world and image space, 
enabling precise measurements and analysis. 

The Intrinsic matrix of camera can be calculated by: 

 
(14) 

Where: 

• : the focal lengths. [pixels] 

• : the image center point. [pixels] 

And, these distortion coefficients account for any potential lens distortion are 
present in the matrix: 

 (15) 

The Intel RealSense D435 camera, having undergone calibration, provides an 
Intrinsic matrix that can be extracted through a ROS topic. These Intrinsic matrix 

and distortion coefficients, denoted as  and  respectively, encompasses the 
internal parameters of the camera. It facilitates the transformation between the 
camera’s 3D coordinates and the corresponding 2D image coordinates. 
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(16) 

 (17) 

Some basic steps are implemented to determine the coordinates of the centroid 
within the camera’s frame of reference. Firstly, retrieve the point cloud data from 
the Intel RealSense D435 camera topic. At this point the cloud data contains three-
dimensional coordinates (X, Y, and Z) for each point. Use the camera’s Intrinsic 
matrix to convert these point cloud coordinates, originally referenced to the 
camera coordinate system, into pixel coordinates on the corresponding image. 
Then, by comparing these pixel coordinates with the previously computed 
coordinates of the centroid, the precise coordinates of the centroid within the 
camera’s frame of reference can be determined. This process establishes a direct 
correspondence between the point cloud data and the pixel coordinates, allowing 
for accurate localization of the centroid within the camera perspective. 

However, it is important to note that the depth, or z-coordinate, of the centroid of 
the test tube body is not required for our purposes. This is because the presence of 
liquid within the tube and the transparency of the tube material can interfere with 
or prevent accurate depth measurement using the camera’s laser, thereby reducing 
the accuracy of the depth information obtained. Consequently, our focus is solely 
on determining the depth of the tube cap. However, it should be noted that the 
depth measurement obtained corresponds only to the rim of the lid. To obtain the 
actual depth of the center of the lid, it is necessary to increase this depth by 
precisely the radius of the lid, which in this case is 16 millimeters. By applying 
this adjustment, we can determine the true depth of the center of the test tube lid 
within the camera’s frame of reference. 

 
Figure 8 

AprilTag’s position on the robot 

The utilization of AprilTag provides the flexibility to establish the position 
relationship between the robot and the camera without relying on fixed 
mechanical fixtures. This allows for movement within the camera’s field of view. 
AprilTag serves as an intermediary coordinate system, bridging the coordinates of 
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the robot and the camera through the implementation of automatic location and 
orientation recognition algorithms. In this particular case, the 41H12 Standard 
Family of AprilTags is employed. The tag is securely affixed to a fixed location, 
as illustrated in Fig. 8, and is defined as an integral component of the robot within 
the Unified Robot Description Format (URDF). 

Finally, the camera reference frame is converted to the base robot frame, allowing 
seamless integration of visual information, Fig. 9. 

 
Figure 9 

Frame transformation diagram 

After collecting and processing data from the camera, the properties of tubes are 
shown in a virtual environment, Fig. 10. The arrow symbol represents the test 
tube, with the arrowhead denoting the lid and the arrow tail representing the tube’s 
body and position. This transformation enables accurate perception and interaction 
between the robot and the test tube, facilitating effective manipulation and control. 

 
Figure 10 

Tubes properties are shown in virtual environment 
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4 Rotbot Arm Movement Generation 

 
Figure 11 

System flow chart 
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The provided flowchart, Fig. 11, outlines the operation of the system in a formal 
manner. It begins by receiving information or a matrix that facilitates switching 
between the robot and the camera. Subsequently, the system enters a loop where it 
repetitively performs the tasks of recognizing and picking up all the tubes within 
its capacity. Within each iteration of the loop, the system carries out tube 
recognition, using appropriate techniques to identify and locate the tubes based on 
visual input from the camera. Following tube recognition, the system proceeds 
with the picking-up operation, employing the robot’s manipulator or gripper to 
execute precise movements for grasping and lifting the tubes. This loop continues 
until all the tubes within the system’s capacity have been recognized and picked 
up, leading to the completion of the system’s operation. 

The diagram below, Fig. 12, shows the trajectory of the robot in the pick-and-
place process of the tube. 

 
Figure 12 

Pick-and-place sequence for each tube diagram 

More specifically, when moving to the “pre-center” position, the gripper will 
rotate at the following angle along its axis: 

 (18) 
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Where: 

• : x, y-coordinates of Tube Lid. [m] 

• : x,y-coordinates of Tube Body. [m] 

5 Experiment Results 

From a dataset with 500 samples, some evaluations of the YOLOv8 model 
training results are provided. In Fig. 13, the F1 score curve shows the model great 
confidence since our dataset is composed of 1 class, as the decline threshold is 
0.865, while the precision-confidence and recall-confidence curve show the 
model's excellence in predictions, as both plots have threshold values higher than 
0.8. 

 

(a) F1-Confidence Curve 

 

(b) Precision-Confidence Curve 

 

(c) Recall-Confidence Curve 

Figure 13 
Confidence curves of YOLOv8 after trainning 
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These plots shows the decrease of loss functions of the training and validating 
process over 100 epochs, which is composed of bounding box prediction loss, 
instant segmentation loss and classification loss. 

 
Figure 14 

Loss plots in training and validation YOLOv8 

Upon implementation in the actual system, we acquired parameters that yielded 
results as depicted in the following data. Tabe 1 shows the change in position of 
each joint on different nodes in the pick-and-place trajectory, which is shown in 
Fig. 15. Additionally, Figs. 16 and 17 describe joint position and velocity over 
time, respectively. Overall, the system operated in compliance with the stipulated 
requirement of accurately grasping the test tube from its designated location and 
subsequently placing it in the designated tray. For each tube, the robot covered a 
total distance of 2.537 meters during its travel, completing the task within an 
average time frame of 34.24 seconds. The system tested gave a successful result of 
72 out of 100 trials, most of the unsuccessful results were due to missing holes in 
the tray. 

Table 1 
Joint Position Sequence 

Node 
Joint angle (rad) 

Joint 0 Joint 1 Joint 2 Joint 3 Joint 4 
1 -0.0015 -1.7932 1.5646 0.8022 0.0107 
2 -0.0015 -1.7381 1.5217 0.7977 0.0107 
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3 -0.0015 -1.5412 1.1029 0.5906 0.0107 
4 -0.0015 -0.9482 0.8590 0.4648 0.0107 
5 -0.0015 -0.8928 0.8130 0.4402 0.0107 

… … … … … … 
386 -0.0015 -1.7932 1.5646 0.8007 0.0107 
369 -0.0015 1.7947 1.5631 0.8007 0.0107 

 
Figure 15 

3-Dimensional path 
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Figure 16 

Joints position plot 

 
Figure 17 

Joints velocity plot 
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Conclusions 

The presented article introduces an intelligent robotic system designed to assist 
individuals in the production process. By integrating YOLOv8 and computer 
vision technologies, the robotic arm could pick and place test tubes into the tray 
effectively. However, it is important to acknowledge that the system is subject to 
certain assumptions, such as the test tube being parallel to the tabletop and 
negligible differences between the tray hole and the tube. Moreover, the limit in 
this paper experiment also lays on the material of the centrifuge tube, which is 
plastic instead of glass. Another disadvantage of this research is that the peg-in-
hole, or putting the test tube down to the hole on the tray, and arranging tubes in 
the tray require deep research in the controller, so it may be a future task. 
Consequently, the current solution may not be considered a comprehensive, 
optimal approach. Nonetheless, the system displays significant potential for 
further development, particularly in the realm of human-machine interaction. 
Potential avenues for future enhancements include integrating a pick-up direction 
predictor for the robot, optimizing the robot’s movement path, enhancing the point 
cloud processing capability for transparent objects, and enabling human 
interaction detection. These directions offer promising prospects for advancing the 
functionality and performance of the system. 
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