
Acta Polytechnica Hungarica Vol. 22, No. 7, 2025

‒ 201 ‒

Parameter Optimization in Sparse Voxel DAGs
for Efficient Geometry Representation of
Voxelized 3D Scenes

Branislav Madoš, Norbert Ádám, Eva Chovancová,
Heidar Khorshidiyeh and Peter Poprík
Department of Computers and Informatics, Faculty of Electrical Engineering and
Informatics, Technical University in Košice, Letná 1/9, 042 00 Košice, Slovakia
branislav.mados@tuke.sk, norbert.adam@tuke.sk, eva.chovancova@tuke.sk,
heidar.khorshidiyeh@tuke.sk, peter.poprik@tuke.sk

Abstract: This paper addresses the issue of geometry representation of voxelized three-
dimensional scenes, using domain-specific hierarchical data structures, utilizing lossless
compression. It discusses the details of the sparse voxel directed acyclic graph hierarchical
data structure with implemented child node pointers, including a detailed analysis of its
construction. Then, based on this analysis, we discuss the possibilities of adjusting its
parameters, in order to optimize it in terms of its binary representation size. In particular,
the possibility of using various numbers of child node pointer types and the binary
representation lengths of these is considered; this is also related to the different binary
representation lengths of the child node mask and the different binary representation lengths
and meanings of the constituent header tags. The various settings of the data structure
parameters are then tested on three models whose original representation – surface
polygonal models – was transformed: each model was voxelized to six different resolutions.
The results obtained were also compared with an uncompressed representation of the
geometry of the voxelized three-dimensional scene, encoded using a regular three-
dimensional grid of one-bit scalar values (1b/vox). Based on these tests, using a 16b child
node mask, three different child node pointer lengths (8b, 16b and 32b) and an 8b address
word length came out as the best parameter combination of the investigated data structure
in terms of data representation compactness. In the tests, a 1.88–3.06-fold data compression
rate was achieved with this parameter configuration for the used test models and scene
resolutions, compared to the traditional SVDAG structure using 32b pointers. The maximum
data compression ratio (1098.3) – compared to the 3D grid of 1b/vox scalar values – was
achieved with this parameter setting for a scene resolution of 40963 voxels.

Keywords: voxelized three-dimensional scene; geometry of the scene; hierarchical data
structure; sparse voxel octrees; sparse voxel directed acyclic graphs; common subtree
merge; frequency-based compaction

B. Madoš et al. Parameter Optimization in Sparse Voxel DAGs for
 Efficient Geometry Representation of Voxelized 3D Scenes

‒ 202 ‒

1 Introduction
In domains such as computer graphics or computer vision, representation of image
data utilises a variety of different methods, with one such common approach being
its encoding as regular multi-dimensional grids of image components. These
components are termed pixels (picture elements) for two-dimensional (2D) images
and voxels (volume picture elements) for three-dimensional (3D) images.
The aforementioned image components are then assigned different attributes, e.g.,
colour or different material properties. Despite the simplicity of this approach, both
in terms of data encoding and processing, storing image data in such a
straightforward, uncompressed form requires a lot of storage space and is not
considered efficient, for 2D and even so for 3D image data. The criticality of this
problem can be illustrated by the example of encoding the geometry information of
3D voxelized scenes in computer graphics. The implementation of this approach
involves the allocation of a single bit of information to each voxel within the scene,
assigning a 0 value to empty (passive) voxels and 1 value to full (active) voxels.
This approach, despite its relatively modest overhead, necessitates the allocation of
up to 64 Gb (8GB) of operating memory, graphics card memory or secondary
storage space for a scene with a resolution of 4096 × 4096 × 4096 (4𝐾𝐾3) voxels.
In light of this, both lossless and lossy compression algorithms, along with their
respective data structures, have been identified as potential solutions.

Hierarchical data structures (HDSs), a subject of study for decades [1], have
emerged as an effective solution. The use of quadtrees for the representation of 2D
image data [2] has been proposed, while repeated patterns present in these data have
been also the focus of investigation [3] [4]. Since the 1980s, there has been
significant research interest in using equivalent HDSs for storing 3D image data, in
the form of octrees [5-7]. The investigation continues today into their modern
versions, which are designed for GPU-friendly representation of voxelized 3D
scenes sparsely populated with active voxels (hence use of the sparse adjective in
this context). Modern approaches are focused on various aspects, including scene
geometry (see the Related Works for further details), material properties [8] [9],
shadows [10] [11] and temporal scene dynamics [12]. In these HDSs, the iterative
decomposition of multi-dimensional image information into quadrants (2D) and
octants (3D), respectively, is reflected by a hierarchical decomposition of their
nodes (i.e. the parent node) into four and eight potential nodes (i.e., child nodes),
respectively. Quadrants (octants) can be classified as passive (composed entirely of
passive pixels or voxels) and active (containing at least one active pixel or voxel).
If the relationship between parent and child nodes in an HDS is encoded such that
the parent node representation explicitly encodes the address of the child node, then
the given HDS is classified as one having child node pointers implemented (for
rapid traversal). If pointers are not implemented and the parent node – child node
relationship is determined by their relative location within the HDS, it can be
classified as a HDS without a pointer implementation, termed a pointerless HDS
(suitable for data archiving or streaming).

Acta Polytechnica Hungarica Vol. 22, No. 7, 2025

‒ 203 ‒

The efficiency of these HDSs in representing the geometry of a 3D scene is
contingent on the assumption that the scene is sparse, i.e., the ratio of active voxels,
compared to their total number, is very small. In fact, they can represent passive
octants, occurring with high frequency in sparse scenes, with great efficiency. This
is directly reflected in the nomenclature of these HDSs. A tree-based HDS with
pointers implemented is denoted a Sparse Voxel Octree (SVO). The development
of the Sparse Voxel Directed Acyclic Graph (SVDAG) HDS involved the
integration of a search and an economical representation of multiple occurrences of
identical subtrees, termed Common Subtree Merge (CSM). Subsequent
modifications to these HDSs included the incorporation of additional features, such
as mirroring, the utilisation of multiple child-node-pointer lengths and the related
Frequency Based Compaction (FBC) technique. This development has led to the
creation of numerous HDSs (see the Related Works section of this paper).

This paper focuses on HDSs called Sparse Voxel Directed Acyclic Graphs
(SVDAGs). It examines the potential for optimising the component parameters of
its nodes, including the size of the binary representation and the encoding of the
Child Node Mask (CHNM), as well as the number of different types of child node
pointers, along with the length of their binary representation. Additionally, it
explores the mutual influence of these parameters. The objective is to evaluate their
impact on the overall size of the SVDAG binary representation when compressing
the geometry of voxelized 3D scenes. This paper undertakes a theoretical analysis
of implications of specific parameter settings and provides an empirical verification
of these, using a sample of voxelized 3D scenes, before selecting the optimal
parameter configuration.

The contribution of this paper primarily provides an analysis and testing of the
parameter-setting options of SVDAG component nodes, with regard to their impact
on the size of its binary representation; secondly, it identifies the optimal setting of
these parameters.

This paper is structured in 6 sections. Section 2 focuses on the related works in the
area of geometry representation of voxelized 3D scenes using HDSs. Section 3 deals
with the analysis of the construction of SVO and SVDAG HDSs in terms of the
construction of their internal as well as leaf nodes and highlights the source of
SVDAG compactness compared to SVO. Section 4 discusses the possibilities,
context and implications of different SVDAG parameter settings. These include the
binary representation length and Child Node Mask encoding, as well as the number
of different types of child node pointers and their lengths in relation to the size of
the binary representation of this HDS. Section 5 summarises the results of the tests
performed on different models voxelized to different resolutions and then stored in
SVO and SVDAG with different parameter settings. Finally, Section 6 outlines the
conclusions drawn, based on the content of the preceding sections of the paper.

B. Madoš et al. Parameter Optimization in Sparse Voxel DAGs for
 Efficient Geometry Representation of Voxelized 3D Scenes

‒ 204 ‒

2 Related Work
HDSs designed for representing the geometry of voxelized scenes, based on the use
of trees, include the Sparse Voxel Octree (SVO). In 2013, Baert et al. proposed a
two-step algorithm for SVO construction in [13]. The initial step involves
processing a mesh of triangles into an intermediate product, which is a sorted list of
active voxels. The subsequent step is to process this list into an SVO. In 2015,
Pätzold and Kolb proposed a voxelization algorithm that also produces an SVO,
eliminating the requirement for the creation of a memory-intensive intermediate
product [14]. The concept of Efficient Sparse Voxel Octrees (ESVOs) was
introduced by Laine and Karras in 2010. Its advantage over the traditional SVOs
lies in the possibility of replacing entire subtrees of a data structure by contour
information [15]. This is more economical in terms of its binary representation
compared to the representation of the subtree being replaced. In 2022, a HDS was
proposed by Madoš et al. in [16], in the form of Clustered Sparse Voxel Octrees
(CSVOs). This structure has multiple types of internal nodes with differing
encodings of Header Tags (HT) of child node masks; it also incorporates different
child node pointer lengths.

HDSs designed for representing the geometry of voxelized 3D scenes, based on the
use of directed acyclic graphs, include Sparse Voxel Directed Acyclic Graphs
(SVDAGs), introduced by Kämpe et al. in 2013 [17]. In contrast to SVOs, SVDAGs
allow multiple referencing of a child node from one or more parent nodes. This
technique is termed Common Subtree Merge (CSM). It facilitates the
straightforward and efficient optimization of the size of the data structure.
An evolution of SVDAGs, Symmetry-aware Sparse Voxel Directed Acyclic Graphs
(SSVDAGs) was introduced in 2016 by Villanueva et al. [18]. This concept
introduces the possibility of employing CSM even when mirroring in one or more
scene axes is necessary to achieve identity. It also introduces several different child
node pointer lengths, thereby enabling Frequency Based Compaction (FBC).
In 2020, Pointerless Sparse Voxel Directed Acyclic Graphs (PSVDAGs) were
introduced by Vokorokos et al. in [19]. This HDS combines the advantages of the
compactness of pointerless data structures with the possibility of implementing
CSM, utilising a wide range of pointer lengths in combination with FBC.
Subsequent to this proposal, Madoš and Ádám [20] proposed a conversion
algorithm for transforming PSVDAGs into SVDAGs in 2021.

Lossy Sparse Voxel Directed Acyclic Graphs (LSVDAGs), as proposed by van der
Laan in 2020 [21], is based on the SVDAG structure; however, this concept allows
lossy data compression by modifying the subtrees of the data structure to increase
the frequency of CSM usage. In 2020, Careil et al. presented a solution that allowed
for interactive modification of the scene geometry information recorded in sparse
voxel representations [22].

Acta Polytechnica Hungarica Vol. 22, No. 7, 2025

‒ 205 ‒

3 SVOs and SVDAGs
Hierarchical data structures can be used to encode the geometry of voxelized 3D
scenes sized 𝑁𝑁3 voxels, where 𝑁𝑁 = 2𝑚𝑚; 𝑚𝑚 ∈ ℕ. This condition is imposed to enable
iterative decomposition of the scene into octants, by halving it in each of the three
axes of the image, until reaching the level of individual voxels. The corresponding
HDS is then composed of nodes embedded in 𝑚𝑚 layers, each of which can be
denoted by a natural number 𝑙𝑙 ∈< 0;𝑚𝑚 − 1 >. The layer with 𝑙𝑙 = 0 stores the root
node of the HDS, while the layer 𝑙𝑙 = 𝑚𝑚− 1 stores the leaf nodes. Nodes in layers
𝑙𝑙 ∈< 0;𝑚𝑚− 2 > are constructed as Internal Nodes (INODEs), while nodes in layer
𝑙𝑙 = 𝑚𝑚− 1 are constructed as Leaf Nodes (LNODEs). For each decomposition into
octants (iteration), eight octants are created and a node representing that
decomposition is stored in the appropriate node layer of the HDS. The depth of this
layer corresponds to the depth of the relevant iteration. If the resulting octant only
contains passive voxels, it is considered passive and will not undergo further
decomposition. This represents a significant economy in terms of the representation
of the HDS. Conversely, if an octant contains at least one active voxel, it is classified
as active and undergoes further iterative decomposition, along with the creation of
a dedicated node. This iterative decomposition process ends when an active octant
of 23 voxels is produced. Subsequently, a leaf node carrying information regarding
the passivity/activity of specific voxels is formed; this does not undergo further
decomposition. INODEs are composed of a Child Node Mask (CHNM) and an
array of child node pointers (PTS); LNODEs consist of a CHNM (they are not
further decomposed and therefore do not contain an array of child node pointers).

Figure 1

Representation of the scene geometry using: a) a 4×4 pixel 2D grid (red pixels are active); b) an SVO
with 8b child node pointers; c) an SVDAG with 8b child node pointers using CSM; and d) an SVDAG

with 8b child node pointers using CSM and FBC (CHNMs are depicted in grey)

In the case of an octant whose (parent) node is stored in layer 𝑙𝑙, this is decomposed
into eight sub-octants. In the parent node, it is necessary to record which of these
sub-octants is passive and thus will not be further decomposed, and which is active

B. Madoš et al. Parameter Optimization in Sparse Voxel DAGs for
 Efficient Geometry Representation of Voxelized 3D Scenes

‒ 206 ‒

and will have its (child) node stored in the 𝑙𝑙 + 1 node layer. This information is
recorded in the parent node in its Child Node Mask (CHNM), composed of eight
Header Tags (HTs) – one for each of the sub-octants. The order of these is subject
to agreement; for example, it can be determined using space filling curves such as
the Morton Space Filling Curve (MSFC) or the Hilbert Space Filling Curve (HSFC).
To facilitate efficient traversal of the data structure, parent nodes contain pointers
to active child nodes (PT). These pointers to child nodes form an array (PTS),
concatenated after the CHNM. The pointers are arranged in the same order as the
HTs in the CHNM. It is imperative that each INODE possesses at least one active
child node, thereby ensuring that at least one HT in its CHNM encodes information
pertaining to the active child node. Consequently, the array of child node pointers
must contain at least a single pointer. The number of active child nodes of a given
parent node is variable, ranging from 1 to 8. This range applies also to the number
of pointers to child nodes in the child node pointer array. The total size of the binary
representation of the internal node, denoted 𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙, can be calculated using the
following formula:

𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟 + 8 × ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑛𝑛 × 𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 [b] (1)

Where,

𝑟𝑟 is the number of bits allocated for CHNM alignment;

ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 is the number of bits constituting the Header Tag in the CHNM (ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 = 1);

𝑛𝑛 is the number of active child nodes and hence the number of pointers to them;

 𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 is the number of bits forming a pointer to a child node.

For the size of the binary representation of a leaf node, denoted 𝐿𝐿𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙, the
following formula applies:

𝐿𝐿𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟 + 8 × ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 [b]

(2)
Where,

𝑟𝑟 is the number of bits allocated for CHNM alignment;

ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 is the number of bits constituting the Header Tag in the CHNM (ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 = 1)

In order to align the components of a node to the desired length of their binary
representation, the CHNM is padded with a certain number of reserved bits. If the
length of child node pointers is 𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 = 32𝑏𝑏, then an 8b CHNM can be aligned to
32b by using the reserved bits, where 𝑟𝑟 = 24. With this alignment, it is then possible
to use 32b addressing word length within the HDS. The decomposition of a 2D
space into quadrants (a 2D space was selected for the sake of simplicity) is
illustrated in Figure 1a, where a 4 × 4 pixel grid is shown and the space is iteratively
decomposed into 4 quadrants. Due to the modest proportions of the grid, a solitary
decomposition into 4 quadrants of size 2 × 2 voxels were executed; the quadrants
thus formed already have a minimum dimension of 22 pixels and are therefore not
decomposed any further). Figure 1b depicts the corresponding SVO containing a

Acta Polytechnica Hungarica Vol. 22, No. 7, 2025

‒ 207 ‒

solitary root node, consisting of a grey-labelled CHNM and three 8b PT pointers to
the child nodes in the PTS. The child nodes are constructed as LNODEs and thus
their CHNM is depicted in grey. This CHNM contains the information about the
active and passive voxels of the quadrant; however, it holds no pointers to further
child nodes.

Table 1
Number of nodes of the SVO and SVDAG hierarchical data structure and their ratio for the Lucy,

Porsche and Skull models at a scene resolution of 40963voxels for each of the l layers

l

Model
Lucy 40963 Porsche 40963 Skull 40963

Nodes Ratio Nodes Ratio Nodes Ratio SVO SVDAG SVO SVDAG SVO SVDAG
0 1 1 1.0 1 1 1.0 1 1 1.0
1 3 3 1.0 2 2 1.0 8 8 1.0
2 16 16 1.0 12 12 1.0 47 47 1.0
3 62 62 1.0 73 73 1.0 235 235 1.0
4 267 267 1.0 421 421 1.0 1004 1004 1.0
5 1193 1192 1.0 2379 2376 1.0 4343 4337 1.0
6 5291 5271 1.0 12062 11618 1.0 18170 18107 1.0
7 22481 21972 1.0 54203 49085 1.1 74103 72769 1.0
8 91517 84658 1.1 233040 193659 1.2 298845 281076 1.1
9 366581 289927 1.3 969113 633097 1.5 1192044 951264 1.3

10 1453101 245733 5.9 3938351 528437 7.5 4688083 774408 6.1
11 5685858 219 25962.8 15539540 255 60939.4 17958714 253 70983.1

SVOs may contain identical subtrees. These can be retrieved and represented
economically by representing such common subtrees in the data structure in only a
single fully expanded instance, multi-referenced from the parent nodes. This
approach is termed Common Subtrees Merge (CSM). Consequently, the tree
transforms into a Directed Acyclic Graph (DAG) and the data structure is
designated Sparse Voxel Directed Acyclic Graph (SVDAG). As demonstrated in
Figure 1c, showing an example of the encoding, one of the leaf nodes has been
identified as such, which can be referenced from the parent node multiple times (in
this case twice). The utilisation of CSM resulted in the conservation of space within
the leaf node layer. CSM facilitates the reduction of number of nodes located in the
respective SVDAG layers, which is a substantial source of compression in
comparison to SVO. The probability of finding two or more identical subtrees in
the HDS increases with the depth at which their root nodes are located.
The maximum level of compression is achieved at leaf nodes, where the total
number of nodes is reduced to at most 255. The CHNM of a leaf node is composed
of 8 HTs, each with a length of 1b. Consequently, the total length of the CHNM is
8b. This leads us to having only 255 different versions and, hence, different leaf
nodes (a leaf node with a (00000000)2 configuration does not exist, as in this case
it is a passive octant with no separate node being created for it). The reduction of
the number of nodes of each HDS layer when converting an SVO to an SVDAG is
illustrated in Table 1.

B. Madoš et al. Parameter Optimization in Sparse Voxel DAGs for
 Efficient Geometry Representation of Voxelized 3D Scenes

‒ 208 ‒

4 SVDAG Parameter Optimization Possibilities
This section addresses the optimization of SVDAG parameters including lengths of
the CHNM, the number of different types of child node pointers and their lengths.

4.1 Child Node Mask
Section 3 described the construction of SVOs and SVDAGs, where the CHNM of
a node is composed of 8 HTs, each with a length of 1b (Figure 2a). When set to 0,
HT represents a passive suboctant in the CHNM that is not subject to further
decomposition. Consequently, there is no child node associated with it and no
pointer to it in the parent node's pointer array (denoted as × in Figure 2a). If HT is
set to 1, it represents the active suboctant. As a consequence, a child node and a
corresponding pointer (PT1) in the parent node's pointer array will exist. The
advantage of this construction is the compactness of the CHNM, having a mere 8b.
It is also possible to construct the CHNM in such a way that each HT is composed
of 2b (Figure 2b). In that case, four distinct HT codes emerge: 00, 01, 10 and 11.
The code 00 is employed to flag the existence of a passive suboctant (denoted as ×
in Figure 2b). The remaining three codes can be used to signal the existence of an
active suboctant. These three codes can be used to distinguish which of the three
different types of pointers – 𝑃𝑃𝑇𝑇1, 𝑃𝑃𝑇𝑇2 and 𝑃𝑃𝑇𝑇3 – is used. The utilisation of multiple
pointer types enables the optimisation of their use when referring to child nodes,
thereby facilitating data compression. However, it should be noted that the
disadvantage of such CHNM encoding is the increase in the length of its binary
code to 16b. The formula for calculating the size of the binary representation of the
internal node length 𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 is as follows:

𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟 + 8 × ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 + ∑ 𝑛𝑛𝑥𝑥 ×3
𝑥𝑥=1 𝑝𝑝𝑡𝑡𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 [b]

(3)

Where,

𝑟𝑟 is the number of bits allocated for CHNM alignment;

ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 is the number of bits constituting the Header Tag in the CHNM (ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 = 2);

𝑛𝑛𝑥𝑥 is the number of active child nodes, to which the 𝑃𝑃𝑇𝑇𝑥𝑥 pointers point to;

𝑝𝑝𝑡𝑡𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 is the number of bits forming a 𝑃𝑃𝑇𝑇𝑥𝑥 pointer.

Leaf nodes do not contain a child node pointer array. For the size of their binary
representation, denoted 𝐿𝐿𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 the following formula applies:

𝐿𝐿𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟 + 8 × ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 [b] (4)

Where,

𝑟𝑟 is the number of bits allocated for CHNM alignment;

ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 is the number of bits constituting the Header Tag in the CHNM (ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 = 1);

Acta Polytechnica Hungarica Vol. 22, No. 7, 2025

‒ 209 ‒

Figure 2

The CHNM comprises HTs for 8 octants (OCT0 to OCT7), a) an 8b CHNM with 1b HTs allows only
one type of pointers (PT1); b) a 16b CHNM with 2b HTs allows three types of pointers (PT1, PT2 and

PT3)

4.2 Addressing
The addresses of individual nodes can be determined within the data structure in a
single global address space, as demonstrated in the example in Figures 1b and 1c
(for simplicity, addresses are represented as decimal values, in red). Once the root
node address has been determined, the allocation of node addresses in the next layer
continue. An alternative possibility, illustrated by the example in Figure 1d, is that
the global address space is composed of the local address spaces of the individual
layers of nodes, where addressing in each layer always restarts from 0. In this
scenario, the address within a layer can alternatively be interpreted as the offset
from the address where the encoding of the corresponding node layer commences
in the global address space of the data structure. To illustrate this, consider a case
where pointers permit for a 4GB address space range. In this case, the entire data
structure would be subject to this limit, if the global address space was employed.
If the pointer is utilised as an offset within the local layer address space, this limit
is applied to each of the data structure layer separately. It is not necessary for the
entire node to be contained within this address space; it is sufficient for its starting
address to be within the address space. The determining factor in the feasibility of
encoding a scene into a given HDS is whether the addresses of all nodes in the HDS
can be accommodated within the global address space, if a global address space is
employed. If the case when local address spaces of individual node layers are
employed, the determining factor is the capacity of the local address space to
accommodate the addresses of all nodes in the largest node layer.

Rational lengths of pointers to child nodes are 8b, 16b and 32b. A short, 8b pointer
includes 28 different addresses. A medium-length pointer of 16b includes 216
addresses, while a long pointer of 32b includes up to 232 addresses. In the context
of the CHNM, the utilisation of a 1b HT results in the selection of only one of these
pointer lengths. However, if a 2b HT is employed, it becomes feasible to select a
combination of the lengths of the three pointers types. Addressing can be done using
words of different lengths. Rational lengths are 8b, 16b and 32b. The capacity of
the space that can be addressed is delineated in Table 2. When addressing, there is

B. Madoš et al. Parameter Optimization in Sparse Voxel DAGs for
 Efficient Geometry Representation of Voxelized 3D Scenes

‒ 210 ‒

a correlation between the pointer and word lengths. For instance, if the lengths of
all constituents of nodes, i.e., the length of the CHNM and the length of the child
node pointer, are both 32b (as is the case for the SVDAG introduced in [17]), it is
rational to use a word length of 32b for addressing. Conversely, e.g., if the objective
is to utilise short, 8b pointers, it makes sense to use 8b words for addressing.

Table 2
Size of the space addressable by pointers with alternate lengths 8b, 16b, and 32b when using addressing

words of alternate lengths (8b, 16b, and 32b)

Pointer [b] 8b 16b 32b

Addressed word [b]
8b 256B 64KB 4GB

16b 512B 128KB 8GB
32b 1024B 256KB 16GB

4.3 Combinations of Child Node Pointer Lengths
In the event of employing a 1b HT, it is possible to utilise a single pointer length
per child node, either 8b, 16b or 32b. It is important to note that a pointer length of
8b is impractical even for very small 3D scenes. It can be demonstrated that the
utilisation of 16b pointers to child nodes in SVDAGs facilitates the representation
of smaller scenes (In order to use 16b words in addressing at the same time, the 8b
CHNM needs to be aligned with 8 reserved bits to 16b). Utilising 32b pointers
enables the use of a substantial pointer address space, and when aligning the CHNM
to 32b, a 32b word can be employed to achieve an address space of up to 16 GB.
This approach facilitates the encoding of the scene geometry with a high degree of
detail. Conversely, aligning a CHNM to 32b necessitates an augmentation of its
binary representation by a factor of 4. Significant portion of the 32b address space
remains unused often.

16b CHNM can be employed for frugal data representation, thus allowing the use
of up to three types of pointers. To illustrate this point, we may consider a
combination of the pointer types PT1 (8b), PT2 (16b) and PT3 (32b). In the case
where the length of the addressed word is 8b, if the node address falls within the
range < 0; 255 > B, the short 8b pointer PT1 can be used; if it falls within the range
< 0; 65,535 > B, the use of the medium length 16b pointer PT2 is advisable; and
finally, if it falls within the range < 0; 4,294,967,295 > B, the long, 32b pointer
PT3 can be used. In the event of having a different combination of pointer types, for
instance a 16b PT1, a 16b PT2 and a 32b PT3, at 16b word length for addressing, the
first, medium-length 16b pointer (PT1) can be employed to handle the address range
< 0; 131,071 > B, which corresponds to the first 128KB of the address space.
The subsequent medium-length 16b pointer (PT2), can equally address the 128KB
range. It is not logical to address the same 128KB as in the case of PT1, therefore
resulting in a shift in the PT2 pointer's address range, to the interval <
131,072; 262,143 > B, thereby addressing 128KB of the address space subsequent

Acta Polytechnica Hungarica Vol. 22, No. 7, 2025

‒ 211 ‒

to the address space of the PT1 type pointers. The third, 32b pointer (PT3) is capable
of addressing the range < 0; 8,589,934,591 > i.e., 8GB of address space.

4.4 Frequency Based Compaction
The aforementioned CSM method allows a particular HDS node to be multi-
referenced from a higher layer of nodes. In scenarios involving the use of varying
lengths for child node pointers, there exists an opportunity to introduce an
optimization that utilizes the address space of shorter child node pointers to store
more frequently referenced nodes and to keep the address space reachable
exclusively through pointers with longer binary representations for less frequently
referenced nodes. This optimization is referred to as Frequency Based Compaction
(FBC). The implementation of this optimisation entails sorting the nodes in
descending order of their referencing frequency, followed by the assignment of
addresses in the address space in ascending order. An illustration of this
implementation is provided in Figure 1d, where the referencing frequency of leaf
nodes from the root node is arranged in descending order (it should be noted though
that the length of all pointers is uniform in this example, thereby rendering the
application of FBC meaningless). The addressing frequency of the first 100 most
frequently addressed nodes in the 10th layer of SVDAG nodes for the voxelized
Angel Lucy model at resolution of 40963 is illustrated in Figure 3. When employing
FBC, it is advantageous to avoid using a global addressing space where addresses
are assigned continuously across all HDS layers. Rather, separate addressing should
be used for each HDS layer. The rationale behind this approach is that, in the event
of the former, a single short or medium pointer address space is created for the
entirety of the HDS. Utilising offsets from the beginning of the respective node
layer ensures the creation of these addressing spaces for short and medium pointers
separately in each node layer of the HDS.

Figure 3

Frequency of addressing of the first 100 most frequently addressed nodes in layer 10 of the SVDAG
used to store the Angel Lucy model voxelized at a 40963 resolution

B. Madoš et al. Parameter Optimization in Sparse Voxel DAGs for
 Efficient Geometry Representation of Voxelized 3D Scenes

‒ 212 ‒

5 Test Results and Discussion
This section of the paper summarises test results. Subsection 5.1 presents the
voxelized scenes and parameter settings of the tested SVDAG versions. Subsection
5.2 summarizes the results obtained when encoding the scene geometry into the
respective HDS versions. Finally, subsection 5.3 discusses the results obtained.

5.1 Datasets
Three polygonal surface models, composed of triangle meshes – Angel Lucy
(489 × 103 triangles), Porsche (22 × 103 triangles) and Skull (80 × 103 triangles)
– were utilised to assess various SVDAG parameter configurations. These models
were voxelized to six resolutions, ranging from 1283 to 40963, yielding a total of 18
test scenes. The proportion of active voxels to their total number ranged from 3.53%
(Skull 1283) to 0.03% (Angel Lucy 40963). See Figure 4 for visualizations of the
models voxelized at a 5123 resolution.

Figure 4

Visualizations of the models to scenes at a 5123 voxel resolution:
a) Angel Lucy, b) Skull and c) Porsche

Subsequently, the geometry of the resulting scenes was stored in SVOs and
SVDAGs with different parameter configurations. Both the internal and leaf nodes
of the SVOs incorporated 8b CHNMs, aligned using reserved bits to 32b. Pointers
to child nodes were of only a single type, having a 32b length and the addressing
word was also 32b long. The SVDAG denoted as SVDAG1 herein, had identical
parameters – its parameters were set as given in [17], where this HDS was
introduced. In contrast, the remaining five SVDAG versions (SVDAG2 to
SVDAG6) featured 16b CHNMs, permitting three distinct child node pointer types
and varying addressing word lengths. A comprehensive overview of the parameter
settings is provided in Table 3.

Table 3
Parameter settings for the tested hierarchical data structures

 CHNM PT1 PT2 PT3 addr. word
SVO 8b (32b*) 32b --- --- 32b

SVDAG1 8b (32b*) 32b --- --- 32b
SVDAG2 16b 8b 8b 32b 8b

Acta Polytechnica Hungarica Vol. 22, No. 7, 2025

‒ 213 ‒

SVDAG3 16b 8b 16b 32b 8b
SVDAG4 16b 8b 32b 32b 8b
SVDAG5 16b 16b 16b 32b 16b
SVDAG6 16b 16b 32b 32b 16b

*alignment of 8b CHNMs to 32b, using 24 reserved bits.

5.2 Results
The tests were conducted on a computer system with the following configuration:
Win 11 Home, 15.6", 1920x1080 FullHD, IPS, AMD Ryzen 7 7435HS, 3.1 GHz,
octacore, nVidia GeForce RTX3060, 12 GB RAM, DDR6, 512 GB SSD.

The objective of tests was to determine the total size of the binary representation of
the SVO and SVDAG hierarchical data structures with different parameter
configurations – such as the number of types and the lengths of pointers per child
nodes – for all 18 test scenes. The results obtained for the different models, scene
resolutions and HDSs used are summarised in Table 4, with the figures given in
KB.

Table 4
SVO and SVDAG binary representation sizes (in KB) with different parameter configurations for the

respective models and scene resolutions (best achieved results are shown in grey)

Size
[KB]

Angel Lucy

SVO
SVDAG

1
SVDAG

2
SVDAG

3
SVDAG

4
SVDAG

5
SVDAG

6
1283 53.4 31.9 12.7 10.5 13.3 15.9 15.9
2563 229.0 127.0 53.3 42.8 54.5 63.5 63.5
5123 944.0 462.8 204.1 166.8 207.4 231.4 235.9

10243 3807.9 1523.7 724.4 623.8 737.1 793.9 829.6
20483 15160.3 4682.5 2479.1 2155.1 2529.1 2608.5 2708.2
40963 59581.0 14928.3 8731.5 7637.6 8934.0 8864.9 9138.0

Size
[KB]

Porsche

SVO
SVDAG

1
SVDAG

2
SVDAG

3
SVDAG

4
SVDAG

5
SVDAG

6
1283 116.8 56.8 22.6 18.6 23.4 28.4 28.4
2563 540.3 222.4 95.8 75.6 98.6 111.2 111.2
5123 2360.9 788.8 363.8 302.4 372.2 394.4 411.3

10243 9932.1 2629.2 1320.6 1131.7 1356.2 1411.3 1462.2
20483 40700.4 8918.9 4906.6 4245.9 5034.6 5100.3 5244.6
40963 162103.1 32128.0 18768.7 16510.9 19438.7 19329.8 19765.1

Size
[KB]

Skull

SVO
SVDAG

1
SVDAG

2
SVDAG

3
SVDAG

4
SVDAG

5
SVDAG

6
1283 186.0 100.4 42.7 34.2 43.6 50.2 50.2
2563 764.9 356.7 160.7 125.7 163.7 178.4 178.4
5123 3099.7 1182.8 576.2 481.1 585.8 606.1 634.1

B. Madoš et al. Parameter Optimization in Sparse Voxel DAGs for
 Efficient Geometry Representation of Voxelized 3D Scenes

‒ 214 ‒

10243 12412.5 3728.8 2012.3 1720.8 2051.7 2053.2 2143.3
20483 49038.1 12275.2 7239.2 6295.1 7417.0 7260.4 7498.8
40963 189340.6 47615.1 28290.6 25382.3 29387.6 29419.1 30065.2

In its uncompressed form, the voxelized scene geometry can be represented by a 3D
grid of 1b/vox values. For a scene with a 1283 voxel resolution, the size of such a
grid amounts to 2,097,152 voxels, and the size of the binary representation of the
geometry is 262,144 B, i.e., 256 KB. For a scene with a resolution of 40963 voxels,
the size of the binary representation of this grid is then 8 GB. Table 5 provides an
overview of the compression ratio achieved when employing the corresponding
HDS in comparison to the 1b/vox grid for the designated model, scene resolution
and HDS utilised.

Table 5
The achieved compression ratio in comparison to the 1b/vox grid of values for each model, scene

resolution and HDS used with different parameter settings

Angel Lucy

SVO SVDAG1 SVDAG2 SVDAG3 SVDAG4 SVDAG5 SVDAG6
1283 4.8 8.0 20.2 24.3 19.3 16.1 16.1
2563 8.9 16.1 38.5 47.8 37.6 32.2 32.2
5123 17.4 35.4 80.3 98.2 79.0 70.8 69.5

10243 34.4 86.0 180.9 210.1 177.8 165.1 158.0
20483 69.2 223.9 423.0 486.6 414.6 402.0 387.2
40963 140.8 561.9 960.7 1098.3 938.9 946.3 918.0

Porsche

SVO SVDAG1 SVDAG2 SVDAG3 SVDAG4 SVDAG5 SVDAG6
1283 2.2 4.5 11.3 13.8 11.0 9.0 9.0
2563 3.8 9.2 21.4 27.1 20.8 18.4 18.4
5123 6.9 20.8 45.0 54.2 44.0 41.5 39.8

10243 13.2 49.9 99.3 115.8 96.6 92.9 89.6
20483 25.8 117.6 213.7 247.0 208.3 205.6 199.9
40963 51.7 261.1 446.9 508.1 431.5 434.0 424.4

Skull

SVO SVDAG1 SVDAG2 SVDAG3 SVDAG4 SVDAG5 SVDADG6
1283 1.4 2.6 6.0 7.5 5.9 5.1 5.1
2563 2.7 5.7 12.7 16.3 12.5 11.5 11.5
5123 5.3 13.9 28.4 34.1 28.0 27.0 25.8

10243 10.6 35.2 65.1 76.2 63.9 63.8 61.2
20483 21.4 85.4 144.8 166.6 141.4 144.4 139.8
40963 44.3 176.2 296.5 330.5 285.4 285.1 279.0

This paper discusses the optimisation of the SVDAG HDS introduced in [17] with
a parameter configuration identical to that of SVDAG1. Consequently, Table 6
provides a comprehensive overview of the enhancement in the success rate of HDS
compression for the specific model and scene resolution, as well as the voxelization
level, when compared to SVDAG1 (this is why the SVDAG1 column contains only
1.00 values).

Acta Polytechnica Hungarica Vol. 22, No. 7, 2025

‒ 215 ‒

Table 6
A comparison of the success rate of scene geometry compression for specific models, scene resolutions

and HDSs used, compared to the geometry compression rate of SVDAG1

 Angel Lucy
SVO SVDAG1 SVDAG2 SVDAG3 SVDAG4 SVDAG5 SVDAG6

1283 0.60 1.00 2.52 3.02 2.40 2.00 2.00
2563 0.55 1.00 2.38 2.97 2.33 2.00 2.00
5123 0.49 1.00 2.27 2.78 2.23 2.00 1.96

10243 0.40 1.00 2.10 2.44 2.07 1.92 1.84
20483 0.31 1.00 1.89 2.17 1.85 1.80 1.73
40963 0.25 1.00 1.71 1.95 1.67 1.68 1.63

 Porsche
SVO SVDAG1 SVDAG2 SVDAG3 SVDAG4 SVDAG5 SVDAG6

1283 0.49 1.00 2.52 3.06 2.43 2.00 2.00
2563 0.41 1.00 2.32 2.94 2.26 2.00 2.00
5123 0.33 1.00 2.17 2.61 2.12 2.00 1.92

10243 0.26 1.00 1.99 2.32 1.94 1.86 1.80
20483 0.22 1.00 1.82 2.10 1.77 1.75 1.70
40963 0.20 1.00 1.71 1.95 1.65 1.66 1.63

 Skull
SVO SVDAG1 SVDAG2 SVDAG3 SVDAG4 SVDAG5 SVDAG6

1283 0.54 1.00 2.35 2.94 2.30 2.00 2.00
2563 0.47 1.00 2.22 2.84 2.18 2.00 2.00
5123 0.38 1.00 2.05 2.46 2.02 1.95 1.87

10243 0.30 1.00 1.85 2.17 1.82 1.82 1.74
20483 0.25 1.00 1.70 1.95 1.66 1.69 1.64
40963 0.25 1.00 1.68 1.88 1.62 1.62 1.58

The application of multiple child node pointer types in the context of the structures
– SVDAG2 to SVDAG6 – has opened up the possibility of employing FBC, and the
use of different child node pointer lengths in this context exerted a significant effect
on the size of the binary representation of these HDSs. An analysis of the percentage
rate of the individual PTs to the total number of child node pointers in the Angel
Lucy model, voxelized to the respective resolutions and HDSs (SVDAG2 to
SVDAG6) is summarised in Table 7. To facilitate comprehension, the percentage
rates (i.e., in terms of the number of pointers of a given type compared to their total
count and in terms of the sum of the sizes of the binary representation of the pointers
of a given type, compared to the sum of the sizes of the binary representation of all
pointers) are listed separately.

Table 7
Proportions of child node pointer types in terms of their counts and their aggregate binary

representation sizes for different scene resolutions based on Angel Lucy model - SVDAG2 to
SVDAG6

SVDAG2 1283 2563 5123 10243 20483 40963
PT1 [8b] 81.17 78.46 75.15 69.35 60.34 51.13

B. Madoš et al. Parameter Optimization in Sparse Voxel DAGs for
 Efficient Geometry Representation of Voxelized 3D Scenes

‒ 216 ‒

No. [%] PT2 [8b] 1.62 1.07 0.98 1.24 1.60 1.90
PT3 [32b] 17.21 20.47 23.87 29.41 38.06 46.97

Size [%]
PT1 [8b] 53.54 48.62 43.80 36.85 28.17 21.22
PT2 [8b] 1.07 0.66 0.57 0.66 0.75 0.79
PT3 [32b] 45.39 50.72 55.63 62.49 71.08 77.99

SVDAG3 1283 2563 5123 10243 20483 40963

No. [%]
PT1 [8b] 81.38 78.58 75.20 69.36 60.33 51.11
PT2 [16b] 18.62 21.42 20.88 17.72 19.05 20.53
PT3 [32b] 0.00 0.00 3.92 12.92 20.62 28.36

Size [%]
PT1 [8b] 68.61 64.72 56.69 44.33 33.35 24.86
PT2 [16b] 31.39 35.28 31.48 22.65 21.06 19.97
PT3 [32b] 0.00 0.00 11.83 33.02 45.59 55.17

SVDAG4 1283 2563 5123 10243 20483 40963

No. [%]
PT1 [8b] 80.55 78.15 75.04 69.27 60.24 50.85
PT2 [32b] 19.45 21.85 24.96 30.73 39.76 49.15
PT3 [32b] 0.00 0.00 0.00 0.00 0.00 0.00

Size [%]
PT1 [8b] 50.87 47.20 42.91 36.04 27.47 20.55
PT2 [32b] 49.13 52.80 57.09 63.96 72.53 79.45
PT3 [32b] 0.00 0.00 0.00 0.00 0.00 0.00

SVDAG5 1283 2563 5123 10243 20483 40963

No. [%]
PT1 [16b] 100.00 100.00 97.67 89.53 81.32 73.06
PT2 [16b] 0.00 0.00 2.33 5.42 4.96 4.34
PT3 [32b] 0.00 0.00 0.00 5.05 13.72 22.60

Size [%]
PT1 [16b] 100.00 100.00 97.67 85.22 71.51 59.58
PT2 [16b] 0.00 0.00 2.33 5.16 4.36 3.54
PT3 [32b] 0.00 0.00 0.00 9.62 24.13 36.88

SVDAG6 1283 2563 5123 10243 20483 40963

No. [%]
PT1 [16b] 100.00 100.00 97.67 89.30 81.16 72.98
PT2 [32b] 0.00 0.00 2.33 10.70 18.84 27.02
PT3 [32b] 0.00 0.00 0.00 0.00 0.00 0.00

Size [%]
PT1 [16b] 100.00 100.00 95.45 80.67 68.29 57.46
PT2 [32b] 0.00 0.00 4.55 19.33 31.71 42.54
PT3 [32b] 0.00 0.00 0.00 0.00 0.00 0.00

5.3 Discussion
The preceding synopsis of the findings of the conducted tests indicated that, in
accordance with the prevailing expectations, the utilisation of CSM in SVDAGs led
to an enhancement in the compactness of geometry representation, surpassing the
performance of SVOs. This was evident even in the SVDAG1 version, employing
32b CHNMs and maintaining a consistent 32b child node pointer length.

In versions SVDAG2 to SVDAG6, 16b CHNMs without reserved bits have been
employed. This represents merely half the length of the binary representation of the
CHNM, as opposed to its 32b length in the case of SVO and SVDAG1 (8b CHNM
+ 24b reserved space). This has been identified as a significant source of

Acta Polytechnica Hungarica Vol. 22, No. 7, 2025

‒ 217 ‒

compression gain (16b per internal node) with the SVDAG2 to SVDAG6 structures.
Concurrently, this facilitates the utilisation of multiple child node pointer types,
potentially exhibiting disparate binary representation lengths, and the employment
of FBC. One of the pointer types (𝑃𝑃𝑇𝑇3) was invariably selected to have a length of
32b to allow the encoding of more detailed scenes. The remaining two pointer types,
designated 𝑃𝑃𝑇𝑇1 and 𝑃𝑃𝑇𝑇2, were selected as combinations of 8b, 16b, and 32b lengths,
respectively, as follows: both 8b in SVDAG2; 8b and 16b in SVDAG3; 8b and 32b
in SVDAG4, both 16b in SVDAG5 and 16b and 32b in SVDAG6. It is noteworthy
that the combination of 32b and 32b is not utilised, as this would result in the length
of the pointers remaining constant at 32b. The shorter overall binary representation
of the CHNM-related part of the node, together with the fact that some of the
pointers to child nodes have a binary representation size smaller than 32b, allows
versions SVDAG2 to SVDAG6 to always outperform the original SVDAG1 in
binary representation size. The amount of space saved 𝑆𝑆, when using SVDAG2 to
SVDAG6 compared to using SVDAG1, can be calculated using the formula:

𝑆𝑆 = 16 × 𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑛𝑛𝑚𝑚 + 𝑛𝑛 × 𝐿𝐿𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑛𝑛𝑚𝑚 + �(32− 𝑃𝑃𝑇𝑇𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙)
3

𝑥𝑥=1

× 𝑃𝑃𝑇𝑇𝑥𝑥𝑙𝑙𝑛𝑛𝑛𝑛 [𝑏𝑏]
(5)

Where,

𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑛𝑛𝑚𝑚 is the number of internal nodes of HDS;

𝐿𝐿𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑛𝑛𝑚𝑚 is the number of leaf nodes of HDS;

n is 24 for SVDAG2 to SVDAG4 and 16 for SVDAG5 and SVDAG6;

𝑃𝑃𝑇𝑇𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 is the length in bits of the pointer of type 𝑃𝑃𝑇𝑇𝑥𝑥; 𝑥𝑥 ∈< 1; 3 >;

𝑃𝑃𝑇𝑇𝑥𝑥𝑙𝑙𝑛𝑛𝑛𝑛 is the overall number of pointers of type 𝑃𝑃𝑇𝑇𝑥𝑥; 𝑥𝑥 ∈< 1; 3 > in HDS.

For the SVO and SVDAG1 structures, the use of 32b addressing words is an
advantage, which, together with the use of 32b child node pointer lengths, allows
the use of an addressing up to 16GB. For SVDAG-versions utilising 8b pointers,
such as SVDAG2 to SVDAG4, an 8b address word length has been utilised. This
configuration results in a reduction of the available addressable space to 4 GB (for
SVDAG4, the adoption of two 32b pointer types increases the addressable space to
8 GB). For SVDAGs with 16b shortest pointers, i.e., SVDAG5 and SVDAG6, a 16b
address word length is employed, resulting in 8 GB and 16 GB of addressable space.

In the transition from SVO to SVDAG, the reduction in the number of leaf nodes
has a substantial positive effect also on the overall size of the HDS. Nevertheless,
it is important to note that the number of pointers pointing to them from pre-leaf
nodes remains significant. Given that the maximum leaf node count in SVDAGs is
255, all of these fit into the 8b pointer address space. This observation favours data
structures SVDAG2 to SVDAG4 having exactly this pointer length type and thus
capable of addressing all leaf nodes exclusively with 8b child node pointers.

B. Madoš et al. Parameter Optimization in Sparse Voxel DAGs for
 Efficient Geometry Representation of Voxelized 3D Scenes

‒ 218 ‒

For each model and all SVDAGs with multiple pointer lengths (SVDAG2 to
SVDAG6), along with an increase of the resolution to which a given model has been
voxelized, the positive effect of using multiple pointer lengths progressively
diminishes. As demonstrated in Table 7, this phenomenon can be attributed to the
fact that, the more complicated the scene gets, the more the proportion of short (8b)
and medium-length (16b) child node pointers declines in favour of long (32b)
pointers, both in terms of their number and, to a greater extent, in terms of their total
binary representation length.

To determine the size of the SVDAG2 to SVDAG6 data structure prior to its
construction, a statistical analysis of the related classical SVDAG1 HDS can be
performed. This analysis starts at the leaf node layer, where the node length is
adjusted for each leaf node to ensure addressability using the optimal (shortest)
pointer type from the optimized SVDAG. The process is then applied recursively
from the leaf layer up to the root layer, when for each pair of adjacent node layers 𝑙𝑙
and 𝑙𝑙 − 1, the following steps are performed:

Step 1 Sort the nodes in layer 𝑙𝑙 based on the frequency of their referencing
from layer 𝑙𝑙 − 1 (to enable Frequency-Based Compaction)

Step 2 Assign the nodes of layer 𝑙𝑙 (and thus the pointers to them) to the
addressing space of specific pointer types

Step 3 Update the pointer length information for each pointer in the parent
layer 𝑙𝑙 − 1, according to the assignment of those pointers to specific
pointer types

Step 4 Assign updated information about binary representation length of the
nodes in layer 𝑙𝑙 − 1 (due to changes in CHNM size and the pointer
lengths to child nodes)

Step 5 Determine the total size of binary representation of layer 𝑙𝑙 − 1

By iteratively executing these steps, it is possible to calculate the binary sizes of all
node layers in the potentially optimized SVDAG, and therefore, the total size of its
binary representation. Applying this statistical analysis to various configurations of
the optimized SVDAGs (i.e., different combinations of pointer types) allows us to
identify the optimal configuration of pointer types that minimizes the overall size
of the binary representation of optimised SVDAG.

In the tests, the most compact HDS was achieved for all models and resolutions by
combining 8b PT1, 16b PT2, and 32b PT3 pointer lengths with an 8b address word
length, i.e., in SVDAG3.

The traversal time of the optimized SVDAG data structures (SVDAG2 to SVDAG6)
is influenced, in comparison to the original SVDAG1, by several negative factors.
While SVDAG1 is 32b-aligned, which is GPU-friendly, SVDAG2 to SVDAG4 are
only 8b-aligned, and SVDAG5 and SVDAG6 are 16b-aligned. Addressing using 16b
words within SVDAG5 and SVDAG6 requires additional decoding operation.

Acta Polytechnica Hungarica Vol. 22, No. 7, 2025

‒ 219 ‒

SVDAG2, SVDAG4, SVDAG5 and SVDAG6 versions implement two pointer types
of the same length and it requires additional operation of shifting addressing space
for one of them. The introduction of three different pointer types also complicates
CHNM processing, determining the offset of the child node pointer within the
parent node and the actual loading of this pointer. On the other hand, the optimized
SVDAG versions are more compact, which helps reduce potential cache misses. All
those factors result into slower traversal in the optimized versions of SVDAG
compared to the original SVDAG1.

Table 8 shows traversal time in µs for individual models voxelized to scenes with
resolution of 40963 voxels. Traversal was performed in parallel from the root node
to the leaf nodes for all active voxels in the scene using nVidia RTX 3060 graphics
card. Table 9 and Figure 5 show the ratio between the traversal times of SVDAG1
and each optimized SVDAG variant. Results show that traversal speed was reduced
by 15% to 25% when optimized versions of SVDAG were used.

Table 8
SVDAG traversing time in µs for all active voxels in the scene with resolution of 40963 vox

time [µs] SVDAG1 SVDAG2 SVDAG3 SVDAG4 SVDAG5 SVDAG6
Angel Lucy 40963 1839.1 2169.9 2276.4 2248.7 2311.9 2284.5

Porsche 40963 4397.1 5358.0 5679.1 5598.2 5825.4 5784.6
Skull 40963 5299.2 6306.8 6503.4 6585.3 6617.8 6557.7

Table 9

Ratio between SVDAG1 and SVDAGn traversing time in scene with resolution of 40963 vox

Ratio SVDAG1 SVDAG2 SVDAG3 SVDAG4 SVDAG5 SVDAG6
Angel Lucy 40963 1.00 0.85 0.81 0.82 0.80 0.81

Porsche 40963 1.00 0.82 0.77 0.79 0.75 0.76
Skull 40963 1.00 0.84 0.81 0.80 0.80 0.81

Figure 5

Ratio between SVDAG1 and SVDAGn traversing time in scene with resolution of 40963 vox

Conclusions

This paper addressed the problem of representing the geometry of voxelized 3D
scenes, through hierarchical data structures, with a focus on SVDAGs.
The objective was to analyse the potential of parameter optimizations of this data
structure, including the CHNM size and child node pointer types and lengths.

B. Madoš et al. Parameter Optimization in Sparse Voxel DAGs for
 Efficient Geometry Representation of Voxelized 3D Scenes

‒ 220 ‒

The analysis of these possibilities was complemented by empirical testing, through
experiments performed on encoding the geometry of polygonal surface models,
voxelized at different resolutions.

The findings indicate that the employment of an SVDAGs using 16b CHNM and
three types of pointers to child nodes is able to lower the binary size of SVDAG
HDS and in tests was empirically determined that using three child node pointer
types of lengths 8b, 16b, and 32b, respectively, emerged as the optimal
configuration of child node pointer types. This is evidenced by a substantial
enhancement in data compression, ranging from 1.88 (at a scene resolution of 40963
voxels) to 3.06 (at a scene resolution of 1283 voxels), when compared with
conventional SVDAG HDS.

Concurrently, the positive impact of employing a greater variety of child node
pointer types was demonstrated for all settings of combinations of their lengths;
however, it was also observed that the effect diminished with increasing scene detail
for all pointer combinations. Traversal speed, when optimized SVDAGs were used,
was reduced by 15% to 25%, in comparison to traversal speed of a conventional
SVDAG.

Acknowledgement

This work was supported by KEGA Agency of the Ministry of Education, Science,
Research, and Sport of the Slovak Republic under Grant No. 015TUKE-4/2024
Modern Methods and Education Forms in the Cybersecurity Education.

References

[1] Klinger, A.; Dyer, C.R.: Experiments in Picture Representation Using
Regular Decomposition. Computer Graphics and Image Processing, Vol. 5,
1976, No. 1, pp. 68-105, doi: 10.1016/S0146-664X(76)80006-8

[2] Gargantini, I.: An Effective Way to Represent Quadtrees. Communications
of the ACM, Vol. 25, 1982, No. 12, pp. 905-910, doi:
10.1145/358728.358741

[3] Webber, R. E.; Dillencourt, M. B.: Compressing Quadtrees via Common
Subtree Merging. Pattern Recognition Letters, Vol. 9, 1989, No. 3, pp. 193-
200, doi:10.1016/0167-8655(89)90054-8

[4] Chang, H. K.: C.—Liu, S.-H.; Tso, C.-K.: Two-Dimensional Template-
Based Encoding for Linear Quadtree Representation. Photogrammetric
Engineering and Remote Sensing, Vol. 63, 1997, No. 11, pp. 1275-1282

[5] Meagher, D. J. R.: Octree Encoding: A New Technique for the
Representation, Manipulation, and Display of Arbitrary 3-D Objects by
Computer. Technical Report No. IPL-TR-80-111, Rensselaer Polytechnic
Institute, Troy, NY, 1980

Acta Polytechnica Hungarica Vol. 22, No. 7, 2025

‒ 221 ‒

[6] Meagher, D. J. R.: Geometric Modeling Using Octree Encoding. Computer
Graphics and Image Processing, Vol. 19, 1982, No. 2, pp. 129-147, doi:
10.1016/0146-664X(82)90104-6

[7] Meagher, D. J. R.: The Octree Encoding Method for Efficient Solid
Modeling. Technical Report IPL-TR-032, Image Processing Laboratory,
Rensselaer Polytechnic Institute, Troy, New York, 1982

[8] Dolonius, D.; Sintorn, E.; Kämpe,V.; Assarsson, U. Compressing Color Data
for Voxelized Surface Geometry. IEEE Transactions on Visualization and
Computer Graphics 2019, 25, pp. 1270-1282, ISSN 1077-2626,
https://doi.org/10.1109/TVCG.2017.2741480

[9] Dado, B.; Timothy R. K.; Bauszat, P.; Thiery J.-M.; Eisemann, E. Geometry
and Attribute Compression for Voxel Scenes. In Proceedings of the 37th
Annual Conference of the European Association for Computer Graphics,
Lisbon, Portugal, 9-13 May 2016; pp. 397-407

[10] Sintorn, E.; Kämpe, V.; Olsson, O.; Assarson U. Compact precomputed
voxelized shadows. ACM Transactions on Graphics 2014, 33, p. 8, ISSN
0730-0301, https://doi.org/10.1145/2601097.260122

[11] Kämpe, V.; Sintorn, E.; Assarson U. Fast, Memory-Efficient Construction of
Voxelized Shadows. In Proceedings of the 19th Symposium on Interactive
3D Graphics and Games, San Francisco, CA, USA, 27 February-1 March
2015; pp. 25-30, ISBN: https://doi.org/10.1145/ 2699276.2699284

[12] Kämpe, V.; Rasmuson, S.; Billeter, M.; Sintorn, E.; Assarsson, U. Exploiting
Coherence in Time-Varying Voxel Data. In Proceedings of the 20th ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, Redmond,
WA, USA, 27-28 February 2016; pp. 15-21, ISBN 9781450340434,
https://doi.org/10.1145/2856400.2856413

[13] Baert, J.; Lagae, A.; Dutré, Ph. Out-of-Core Construction of Sparse Voxel
Octrees, Computer Graphics Forum 2014, 33, pp. 220-227, ISSN 0167-7055,
https://doi.org/10.1111/cgf.12345

[14] Pätzold, M.; Kolb, A. Grid-free out-of-core voxelization to sparse voxel
octrees on GPU. In Proceedings of the 7th Conference on High-Performance
Graphics (HPG '15), Los Angeles, CA, USA, 7-9 August 2015, pp. 95-103,
ISBN 9781450337076, https://doi.org/10.1145/2790060. 2790067

[15] Laine, S.; Karras, T. Efficient Sparse Voxel Octrees-Analysis, Extensions,
and Implementation, NVIDIA Technical Report NVR-2010-001, NVIDIA
Corporation, Santa Clara, USA, 2010; p. 30

[16] Madoš, B.; Chovancová, E.; Chovanec, M.; Ádám, N. CSVO: Clustered
Sparse Voxel Octrees—A Hierarchical Data Structure for Geometry
Representation of Voxelized 3D Scenes. Symmetry 2022, 14, 2114,
https://doi.org/10.3390/sym14102114

B. Madoš et al. Parameter Optimization in Sparse Voxel DAGs for
 Efficient Geometry Representation of Voxelized 3D Scenes

‒ 222 ‒

[17] Kämpe, V.; Sintorn, E.; Assarson, U. High Resolution Sparse Voxel DAGs.
ACM Transactions on Graphics 2013}, 32, pp. 1-13, ISSN 0730-0301,
https://doi.org/10.1145/2461912.2462024

[18] Villanueva, A. J.; Marton, F.; Gobetti, E. Symmetry-aware Sparse Voxel
DAGs. In Proceedings of the 20th ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games (I3D ’16), Redmond, WA, USA, 27-28
February, 2016; pp. 7-14, ISBN https://doi.org/10. 1145/2856400.2856420

[19] Vokorokos, L.; Madoš, B.; Bilanová, Z. PSVDAG: Compact Voxelized
Representation of 3D Scenes Using Pointerless Sparse Voxel Directed
Acyclic Graphs. CAI, 2020, 39, pp. 587-616, ISSN 1335-9150 (print); 2585-
8807 (online) https://doi.org/10.31577/cai_2020 _3_587

[20] Madoš, B.; Ádám, N. Transforming Hierarchical Data Structures-A
PSVDAG-SVDAG Conversion Algorithm. Acta Polytechnica Hungarica,
2021, 18, pp. 47-66, ISSN 1785-8860. doi.org/10.12700/APH.18.8. 2021.8.3

[21] van der Laan, R.; Scandolo, L.; Eisemann, E. Lossy Geometry Compression
for High Resolution Voxel Scenes. Proceedings of the ACM on Computer
Graphics and Interactive Techniques 2020, 3, pp. 13, EISSN: 2577-6193,
https://doi.org/10.1145/3384541

[22] Careil, V.; Billeter, M.; Eisemann, E. Interactively Modifying Compressed
Sparse Voxel Representations. In Computer Graphics Forum, 2020, 39, pp.
111-119, ISSN 0167-7055, https://doi.org/10.1111/cgf.13916

	1 Introduction
	2 Related Work
	3 SVOs and SVDAGs
	4 SVDAG Parameter Optimization Possibilities
	4.1 Child Node Mask
	4.2 Addressing
	4.3 Combinations of Child Node Pointer Lengths
	4.4 Frequency Based Compaction

	5 Test Results and Discussion
	5.1 Datasets
	5.2 Results
	5.3 Discussion

