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Abstract: This paper addresses the issue of geometry representation of voxelized three-
dimensional scenes, using domain-specific hierarchical data structures, utilizing lossless 
compression. It discusses the details of the sparse voxel directed acyclic graph hierarchical 
data structure with implemented child node pointers, including a detailed analysis of its 
construction. Then, based on this analysis, we discuss the possibilities of adjusting its 
parameters, in order to optimize it in terms of its binary representation size. In particular, 
the possibility of using various numbers of child node pointer types and the binary 
representation lengths of these is considered; this is also related to the different binary 
representation lengths of the child node mask and the different binary representation lengths 
and meanings of the constituent header tags. The various settings of the data structure 
parameters are then tested on three models whose original representation – surface 
polygonal models – was transformed: each model was voxelized to six different resolutions. 
The results obtained were also compared with an uncompressed representation of the 
geometry of the voxelized three-dimensional scene, encoded using a regular three-
dimensional grid of one-bit scalar values (1b/vox). Based on these tests, using a 16b child 
node mask, three different child node pointer lengths (8b, 16b and 32b) and an 8b address 
word length came out as the best parameter combination of the investigated data structure 
in terms of data representation compactness. In the tests, a 1.88–3.06-fold data compression 
rate was achieved with this parameter configuration for the used test models and scene 
resolutions, compared to the traditional SVDAG structure using 32b pointers. The maximum 
data compression ratio (1098.3) – compared to the 3D grid of 1b/vox scalar values – was 
achieved with this parameter setting for a scene resolution of 40963 voxels. 

Keywords: voxelized three-dimensional scene; geometry of the scene; hierarchical data 
structure; sparse voxel octrees; sparse voxel directed acyclic graphs; common subtree 
merge; frequency-based compaction 
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1 Introduction 
In domains such as computer graphics or computer vision, representation of image 
data utilises a variety of different methods, with one such common approach being 
its encoding as regular multi-dimensional grids of image components. These 
components are termed pixels (picture elements) for two-dimensional (2D) images 
and voxels (volume picture elements) for three-dimensional (3D) images.  
The aforementioned image components are then assigned different attributes, e.g., 
colour or different material properties. Despite the simplicity of this approach, both 
in terms of data encoding and processing, storing image data in such a 
straightforward, uncompressed form requires a lot of storage space and is not 
considered efficient, for 2D and even so for 3D image data. The criticality of this 
problem can be illustrated by the example of encoding the geometry information of 
3D voxelized scenes in computer graphics. The implementation of this approach 
involves the allocation of a single bit of information to each voxel within the scene, 
assigning a 0 value to empty (passive) voxels and 1 value to full (active) voxels. 
This approach, despite its relatively modest overhead, necessitates the allocation of 
up to 64 Gb (8GB) of operating memory, graphics card memory or secondary 
storage space for a scene with a resolution of 4096 × 4096 × 4096 (4𝐾𝐾3) voxels. 
In light of this, both lossless and lossy compression algorithms, along with their 
respective data structures, have been identified as potential solutions. 

Hierarchical data structures (HDSs), a subject of study for decades [1], have 
emerged as an effective solution. The use of quadtrees for the representation of 2D 
image data [2] has been proposed, while repeated patterns present in these data have 
been also the focus of investigation [3] [4]. Since the 1980s, there has been 
significant research interest in using equivalent HDSs for storing 3D image data, in 
the form of octrees [5-7]. The investigation continues today into their modern 
versions, which are designed for GPU-friendly representation of voxelized 3D 
scenes sparsely populated with active voxels (hence use of the sparse adjective in 
this context). Modern approaches are focused on various aspects, including scene 
geometry (see the Related Works for further details), material properties [8] [9], 
shadows [10] [11] and temporal scene dynamics [12]. In these HDSs, the iterative 
decomposition of multi-dimensional image information into quadrants (2D) and 
octants (3D), respectively, is reflected by a hierarchical decomposition of their 
nodes (i.e. the parent node) into four and eight potential nodes (i.e., child nodes), 
respectively. Quadrants (octants) can be classified as passive (composed entirely of 
passive pixels or voxels) and active (containing at least one active pixel or voxel). 
If the relationship between parent and child nodes in an HDS is encoded such that 
the parent node representation explicitly encodes the address of the child node, then 
the given HDS is classified as one having child node pointers implemented (for 
rapid traversal). If pointers are not implemented and the parent node – child node 
relationship is determined by their relative location within the HDS, it can be 
classified as a HDS without a pointer implementation, termed a pointerless HDS 
(suitable for data archiving or streaming). 
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The efficiency of these HDSs in representing the geometry of a 3D scene is 
contingent on the assumption that the scene is sparse, i.e., the ratio of active voxels, 
compared to their total number, is very small. In fact, they can represent passive 
octants, occurring with high frequency in sparse scenes, with great efficiency. This 
is directly reflected in the nomenclature of these HDSs. A tree-based HDS with 
pointers implemented is denoted a Sparse Voxel Octree (SVO). The development 
of the Sparse Voxel Directed Acyclic Graph (SVDAG) HDS involved the 
integration of a search and an economical representation of multiple occurrences of 
identical subtrees, termed Common Subtree Merge (CSM). Subsequent 
modifications to these HDSs included the incorporation of additional features, such 
as mirroring, the utilisation of multiple child-node-pointer lengths and the related 
Frequency Based Compaction (FBC) technique. This development has led to the 
creation of numerous HDSs (see the Related Works section of this paper). 

This paper focuses on HDSs called Sparse Voxel Directed Acyclic Graphs 
(SVDAGs). It examines the potential for optimising the component parameters of 
its nodes, including the size of the binary representation and the encoding of the 
Child Node Mask (CHNM), as well as the number of different types of child node 
pointers, along with the length of their binary representation. Additionally, it 
explores the mutual influence of these parameters. The objective is to evaluate their 
impact on the overall size of the SVDAG binary representation when compressing 
the geometry of voxelized 3D scenes. This paper undertakes a theoretical analysis 
of implications of specific parameter settings and provides an empirical verification 
of these, using a sample of voxelized 3D scenes, before selecting the optimal 
parameter configuration. 

The contribution of this paper primarily provides an analysis and testing of the 
parameter-setting options of SVDAG component nodes, with regard to their impact 
on the size of its binary representation; secondly, it identifies the optimal setting of 
these parameters. 

This paper is structured in 6 sections. Section 2 focuses on the related works in the 
area of geometry representation of voxelized 3D scenes using HDSs. Section 3 deals 
with the analysis of the construction of SVO and SVDAG HDSs in terms of the 
construction of their internal as well as leaf nodes and highlights the source of 
SVDAG compactness compared to SVO. Section 4 discusses the possibilities, 
context and implications of different SVDAG parameter settings. These include the 
binary representation length and Child Node Mask encoding, as well as the number 
of different types of child node pointers and their lengths in relation to the size of 
the binary representation of this HDS. Section 5 summarises the results of the tests 
performed on different models voxelized to different resolutions and then stored in 
SVO and SVDAG with different parameter settings. Finally, Section 6 outlines the 
conclusions drawn, based on the content of the preceding sections of the paper. 
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2 Related Work 
HDSs designed for representing the geometry of voxelized scenes, based on the use 
of trees, include the Sparse Voxel Octree (SVO). In 2013, Baert et al. proposed a 
two-step algorithm for SVO construction in [13]. The initial step involves 
processing a mesh of triangles into an intermediate product, which is a sorted list of 
active voxels. The subsequent step is to process this list into an SVO. In 2015, 
Pätzold and Kolb proposed a voxelization algorithm that also produces an SVO, 
eliminating the requirement for the creation of a memory-intensive intermediate 
product [14]. The concept of Efficient Sparse Voxel Octrees (ESVOs) was 
introduced by Laine and Karras in 2010. Its advantage over the traditional SVOs 
lies in the possibility of replacing entire subtrees of a data structure by contour 
information [15]. This is more economical in terms of its binary representation 
compared to the representation of the subtree being replaced. In 2022, a HDS was 
proposed by Madoš et al. in [16], in the form of Clustered Sparse Voxel Octrees 
(CSVOs). This structure has multiple types of internal nodes with differing 
encodings of Header Tags (HT) of child node masks; it also incorporates different 
child node pointer lengths. 

HDSs designed for representing the geometry of voxelized 3D scenes, based on the 
use of directed acyclic graphs, include Sparse Voxel Directed Acyclic Graphs 
(SVDAGs), introduced by Kämpe et al. in 2013 [17]. In contrast to SVOs, SVDAGs 
allow multiple referencing of a child node from one or more parent nodes. This 
technique is termed Common Subtree Merge (CSM). It facilitates the 
straightforward and efficient optimization of the size of the data structure.  
An evolution of SVDAGs, Symmetry-aware Sparse Voxel Directed Acyclic Graphs 
(SSVDAGs) was introduced in 2016 by Villanueva et al. [18]. This concept 
introduces the possibility of employing CSM even when mirroring in one or more 
scene axes is necessary to achieve identity. It also introduces several different child 
node pointer lengths, thereby enabling Frequency Based Compaction (FBC).  
In 2020, Pointerless Sparse Voxel Directed Acyclic Graphs (PSVDAGs) were 
introduced by Vokorokos et al. in [19]. This HDS combines the advantages of the 
compactness of pointerless data structures with the possibility of implementing 
CSM, utilising a wide range of pointer lengths in combination with FBC. 
Subsequent to this proposal, Madoš and Ádám [20] proposed a conversion 
algorithm for transforming PSVDAGs into SVDAGs in 2021. 

Lossy Sparse Voxel Directed Acyclic Graphs (LSVDAGs), as proposed by van der 
Laan in 2020 [21], is based on the SVDAG structure; however, this concept allows 
lossy data compression by modifying the subtrees of the data structure to increase 
the frequency of CSM usage. In 2020, Careil et al. presented a solution that allowed 
for interactive modification of the scene geometry information recorded in sparse 
voxel representations [22]. 
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3 SVOs and SVDAGs 
Hierarchical data structures can be used to encode the geometry of voxelized 3D 
scenes sized 𝑁𝑁3 voxels, where 𝑁𝑁 = 2𝑚𝑚; 𝑚𝑚 ∈ ℕ. This condition is imposed to enable 
iterative decomposition of the scene into octants, by halving it in each of the three 
axes of the image, until reaching the level of individual voxels. The corresponding 
HDS is then composed of nodes embedded in 𝑚𝑚 layers, each of which can be 
denoted by a natural number 𝑙𝑙 ∈< 0;𝑚𝑚 − 1 >. The layer with 𝑙𝑙 = 0 stores the root 
node of the HDS, while the layer 𝑙𝑙 = 𝑚𝑚− 1 stores the leaf nodes. Nodes in layers 
𝑙𝑙 ∈< 0;𝑚𝑚− 2 > are constructed as Internal Nodes (INODEs), while nodes in layer 
𝑙𝑙 = 𝑚𝑚− 1 are constructed as Leaf Nodes (LNODEs). For each decomposition into 
octants (iteration), eight octants are created and a node representing that 
decomposition is stored in the appropriate node layer of the HDS. The depth of this 
layer corresponds to the depth of the relevant iteration. If the resulting octant only 
contains passive voxels, it is considered passive and will not undergo further 
decomposition. This represents a significant economy in terms of the representation 
of the HDS. Conversely, if an octant contains at least one active voxel, it is classified 
as active and undergoes further iterative decomposition, along with the creation of 
a dedicated node. This iterative decomposition process ends when an active octant 
of 23 voxels is produced. Subsequently, a leaf node carrying information regarding 
the passivity/activity of specific voxels is formed; this does not undergo further 
decomposition. INODEs are composed of a Child Node Mask (CHNM) and an 
array of child node pointers (PTS); LNODEs consist of a CHNM (they are not 
further decomposed and therefore do not contain an array of child node pointers). 

 
Figure 1 

Representation of the scene geometry using: a) a 4×4 pixel 2D grid (red pixels are active); b) an SVO 
with 8b child node pointers; c) an SVDAG with 8b child node pointers using CSM; and d) an SVDAG 

with 8b child node pointers using CSM and FBC (CHNMs are depicted in grey) 

In the case of an octant whose (parent) node is stored in layer 𝑙𝑙, this is decomposed 
into eight sub-octants. In the parent node, it is necessary to record which of these 
sub-octants is passive and thus will not be further decomposed, and which is active 
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and will have its (child) node stored in the 𝑙𝑙 + 1 node layer. This information is 
recorded in the parent node in its Child Node Mask (CHNM), composed of eight 
Header Tags (HTs) – one for each of the sub-octants. The order of these is subject 
to agreement; for example, it can be determined using space filling curves such as 
the Morton Space Filling Curve (MSFC) or the Hilbert Space Filling Curve (HSFC). 
To facilitate efficient traversal of the data structure, parent nodes contain pointers 
to active child nodes (PT). These pointers to child nodes form an array (PTS), 
concatenated after the CHNM. The pointers are arranged in the same order as the 
HTs in the CHNM. It is imperative that each INODE possesses at least one active 
child node, thereby ensuring that at least one HT in its CHNM encodes information 
pertaining to the active child node. Consequently, the array of child node pointers 
must contain at least a single pointer. The number of active child nodes of a given 
parent node is variable, ranging from 1 to 8. This range applies also to the number 
of pointers to child nodes in the child node pointer array. The total size of the binary 
representation of the internal node, denoted 𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙, can be calculated using the 
following formula: 

𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟 + 8 × ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑛𝑛 × 𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 [b] (1) 

Where, 

𝑟𝑟  is the number of bits allocated for CHNM alignment; 

ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙  is the number of bits constituting the Header Tag in the CHNM (ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 =  1); 

𝑛𝑛  is the number of active child nodes and hence the number of pointers to them; 

 𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 is the number of bits forming a pointer to a child node. 

For the size of the binary representation of a leaf node, denoted 𝐿𝐿𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙, the 
following formula applies: 

𝐿𝐿𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟 + 8 × ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 [b]  

(2) 
Where, 

𝑟𝑟  is the number of bits allocated for CHNM alignment; 

ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙  is the number of bits constituting the Header Tag in the CHNM (ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 =  1) 

In order to align the components of a node to the desired length of their binary 
representation, the CHNM is padded with a certain number of reserved bits. If the 
length of child node pointers is 𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 = 32𝑏𝑏, then an 8b CHNM can be aligned to 
32b by using the reserved bits, where 𝑟𝑟 = 24. With this alignment, it is then possible 
to use 32b addressing word length within the HDS. The decomposition of a 2D 
space into quadrants (a 2D space was selected for the sake of simplicity) is 
illustrated in Figure 1a, where a 4 × 4 pixel grid is shown and the space is iteratively 
decomposed into 4 quadrants. Due to the modest proportions of the grid, a solitary 
decomposition into 4 quadrants of size 2 × 2 voxels were executed; the quadrants 
thus formed already have a minimum dimension of 22 pixels and are therefore not 
decomposed any further). Figure 1b depicts the corresponding SVO containing a 
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solitary root node, consisting of a grey-labelled CHNM and three 8b PT pointers to 
the child nodes in the PTS. The child nodes are constructed as LNODEs and thus 
their CHNM is depicted in grey. This CHNM contains the information about the 
active and passive voxels of the quadrant; however, it holds no pointers to further 
child nodes. 

Table 1 
Number of nodes of the SVO and SVDAG hierarchical data structure and their ratio for the Lucy, 

Porsche and Skull models at a scene resolution of  40963voxels for each of the l layers 

l 

Model 
Lucy 40963 Porsche 40963 Skull 40963 

Nodes Ratio Nodes Ratio Nodes Ratio SVO SVDAG SVO SVDAG SVO SVDAG 
0 1 1 1.0 1 1 1.0 1 1 1.0 
1 3 3 1.0 2 2 1.0 8 8 1.0 
2 16 16 1.0 12 12 1.0 47 47 1.0 
3 62 62 1.0 73 73 1.0 235 235 1.0 
4 267 267 1.0 421 421 1.0 1004 1004 1.0 
5 1193 1192 1.0 2379 2376 1.0 4343 4337 1.0 
6 5291 5271 1.0 12062 11618 1.0 18170 18107 1.0 
7 22481 21972 1.0 54203 49085 1.1 74103 72769 1.0 
8 91517 84658 1.1 233040 193659 1.2 298845 281076 1.1 
9 366581 289927 1.3 969113 633097 1.5 1192044 951264 1.3 

10 1453101 245733 5.9 3938351 528437 7.5 4688083 774408 6.1 
11 5685858 219 25962.8 15539540 255 60939.4 17958714 253 70983.1 

SVOs may contain identical subtrees. These can be retrieved and represented 
economically by representing such common subtrees in the data structure in only a 
single fully expanded instance, multi-referenced from the parent nodes. This 
approach is termed Common Subtrees Merge (CSM). Consequently, the tree 
transforms into a Directed Acyclic Graph (DAG) and the data structure is 
designated Sparse Voxel Directed Acyclic Graph (SVDAG). As demonstrated in 
Figure 1c, showing an example of the encoding, one of the leaf nodes has been 
identified as such, which can be referenced from the parent node multiple times (in 
this case twice). The utilisation of CSM resulted in the conservation of space within 
the leaf node layer. CSM facilitates the reduction of number of nodes located in the 
respective SVDAG layers, which is a substantial source of compression in 
comparison to SVO. The probability of finding two or more identical subtrees in 
the HDS increases with the depth at which their root nodes are located.  
The maximum level of compression is achieved at leaf nodes, where the total 
number of nodes is reduced to at most 255. The CHNM of a leaf node is composed 
of 8 HTs, each with a length of 1b. Consequently, the total length of the CHNM is 
8b. This leads us to having only 255 different versions and, hence, different leaf 
nodes (a leaf node with a (00000000)2 configuration does not exist, as in this case 
it is a passive octant with no separate node being created for it). The reduction of 
the number of nodes of each HDS layer when converting an SVO to an SVDAG is 
illustrated in Table 1. 
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4 SVDAG Parameter Optimization Possibilities 
This section addresses the optimization of SVDAG parameters including lengths of 
the CHNM, the number of different types of child node pointers and their lengths. 

4.1 Child Node Mask 
Section 3 described the construction of SVOs and SVDAGs, where the CHNM of 
a node is composed of 8 HTs, each with a length of 1b (Figure 2a). When set to 0, 
HT represents a passive suboctant in the CHNM that is not subject to further 
decomposition. Consequently, there is no child node associated with it and no 
pointer to it in the parent node's pointer array (denoted as × in Figure 2a). If HT is 
set to 1, it represents the active suboctant. As a consequence, a child node and a 
corresponding pointer (PT1) in the parent node's pointer array will exist. The 
advantage of this construction is the compactness of the CHNM, having a mere 8b. 
It is also possible to construct the CHNM in such a way that each HT is composed 
of 2b (Figure 2b). In that case, four distinct HT codes emerge: 00, 01, 10 and 11. 
The code 00 is employed to flag the existence of a passive suboctant (denoted as × 
in Figure 2b). The remaining three codes can be used to signal the existence of an 
active suboctant. These three codes can be used to distinguish which of the three 
different types of pointers – 𝑃𝑃𝑇𝑇1, 𝑃𝑃𝑇𝑇2 and 𝑃𝑃𝑇𝑇3 – is used. The utilisation of multiple 
pointer types enables the optimisation of their use when referring to child nodes, 
thereby facilitating data compression. However, it should be noted that the 
disadvantage of such CHNM encoding is the increase in the length of its binary 
code to 16b. The formula for calculating the size of the binary representation of the 
internal node length 𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 is as follows: 

𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟 + 8 × ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 + ∑ 𝑛𝑛𝑥𝑥 ×3
𝑥𝑥=1 𝑝𝑝𝑡𝑡𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 [b]  

(3) 

Where, 

𝑟𝑟  is the number of bits allocated for CHNM alignment; 

ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙  is the number of bits constituting the Header Tag in the CHNM (ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 =  2); 

𝑛𝑛𝑥𝑥 is the number of active child nodes, to which the 𝑃𝑃𝑇𝑇𝑥𝑥 pointers point to; 

𝑝𝑝𝑡𝑡𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙  is the number of bits forming a 𝑃𝑃𝑇𝑇𝑥𝑥 pointer. 

Leaf nodes do not contain a child node pointer array. For the size of their binary 
representation, denoted 𝐿𝐿𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 the following formula applies: 

𝐿𝐿𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟 + 8 × ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 [b] (4) 

Where, 

𝑟𝑟  is the number of bits allocated for CHNM alignment; 

ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙  is the number of bits constituting the Header Tag in the CHNM (ℎ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 =  1); 
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Figure 2 

The CHNM comprises HTs for 8 octants (OCT0 to OCT7), a) an 8b CHNM with 1b HTs allows only 
one type of pointers (PT1); b) a 16b CHNM with 2b HTs allows three types of pointers (PT1, PT2 and 

PT3) 

4.2 Addressing 
The addresses of individual nodes can be determined within the data structure in a 
single global address space, as demonstrated in the example in Figures 1b and 1c 
(for simplicity, addresses are represented as decimal values, in red). Once the root 
node address has been determined, the allocation of node addresses in the next layer 
continue. An alternative possibility, illustrated by the example in Figure 1d, is that 
the global address space is composed of the local address spaces of the individual 
layers of nodes, where addressing in each layer always restarts from 0. In this 
scenario, the address within a layer can alternatively be interpreted as the offset 
from the address where the encoding of the corresponding node layer commences 
in the global address space of the data structure. To illustrate this, consider a case 
where pointers permit for a 4GB address space range. In this case, the entire data 
structure would be subject to this limit, if the global address space was employed. 
If the pointer is utilised as an offset within the local layer address space, this limit 
is applied to each of the data structure layer separately. It is not necessary for the 
entire node to be contained within this address space; it is sufficient for its starting 
address to be within the address space. The determining factor in the feasibility of 
encoding a scene into a given HDS is whether the addresses of all nodes in the HDS 
can be accommodated within the global address space, if a global address space is 
employed. If the case when local address spaces of individual node layers are 
employed, the determining factor is the capacity of the local address space to 
accommodate the addresses of all nodes in the largest node layer. 

Rational lengths of pointers to child nodes are 8b, 16b and 32b. A short, 8b pointer 
includes 28 different addresses. A medium-length pointer of 16b includes 216 
addresses, while a long pointer of 32b includes up to 232 addresses. In the context 
of the CHNM, the utilisation of a 1b HT results in the selection of only one of these 
pointer lengths. However, if a 2b HT is employed, it becomes feasible to select a 
combination of the lengths of the three pointers types. Addressing can be done using 
words of different lengths. Rational lengths are 8b, 16b and 32b. The capacity of 
the space that can be addressed is delineated in Table 2. When addressing, there is 
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a correlation between the pointer and word lengths. For instance, if the lengths of 
all constituents of nodes, i.e., the length of the CHNM and the length of the child 
node pointer, are both 32b (as is the case for the SVDAG introduced in [17]), it is 
rational to use a word length of 32b for addressing. Conversely, e.g., if the objective 
is to utilise short, 8b pointers, it makes sense to use 8b words for addressing. 

Table 2 
Size of the space addressable by pointers with alternate lengths 8b, 16b, and 32b when using addressing 

words of alternate lengths (8b, 16b, and 32b) 

Pointer [b] 8b 16b 32b 

Addressed word [b] 
8b 256B 64KB 4GB 

16b 512B 128KB 8GB 
32b 1024B 256KB 16GB 

4.3 Combinations of Child Node Pointer Lengths 
In the event of employing a 1b HT, it is possible to utilise a single pointer length 
per child node, either 8b, 16b or 32b. It is important to note that a pointer length of 
8b is impractical even for very small 3D scenes. It can be demonstrated that the 
utilisation of 16b pointers to child nodes in SVDAGs facilitates the representation 
of smaller scenes (In order to use 16b words in addressing at the same time, the 8b 
CHNM needs to be aligned with 8 reserved bits to 16b). Utilising 32b pointers 
enables the use of a substantial pointer address space, and when aligning the CHNM 
to 32b, a 32b word can be employed to achieve an address space of up to 16 GB. 
This approach facilitates the encoding of the scene geometry with a high degree of 
detail. Conversely, aligning a CHNM to 32b necessitates an augmentation of its 
binary representation by a factor of 4. Significant portion of the 32b address space 
remains unused often. 

16b CHNM can be employed for frugal data representation, thus allowing the use 
of up to three types of pointers. To illustrate this point, we may consider a 
combination of the pointer types PT1 (8b), PT2 (16b) and PT3 (32b). In the case 
where the length of the addressed word is 8b, if the node address falls within the 
range < 0; 255 > B, the short 8b pointer PT1 can be used; if it falls within the range 
< 0; 65,535 > B, the use of the medium length 16b pointer PT2 is advisable; and 
finally, if it falls within the range < 0; 4,294,967,295 > B, the long, 32b pointer 
PT3 can be used. In the event of having a different combination of pointer types, for 
instance a 16b PT1, a 16b PT2 and a 32b PT3, at 16b word length for addressing, the 
first, medium-length 16b pointer (PT1) can be employed to handle the address range 
< 0; 131,071 > B, which corresponds to the first 128KB of the address space.  
The subsequent medium-length 16b pointer (PT2), can equally address the 128KB 
range. It is not logical to address the same 128KB as in the case of PT1, therefore 
resulting in a shift in the PT2 pointer's address range, to the interval <
131,072; 262,143 > B, thereby addressing 128KB of the address space subsequent 
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to the address space of the PT1 type pointers. The third, 32b pointer (PT3) is capable 
of addressing the range < 0; 8,589,934,591 > i.e., 8GB of address space. 

4.4  Frequency Based Compaction 
The aforementioned CSM method allows a particular HDS node to be multi-
referenced from a higher layer of nodes. In scenarios involving the use of varying 
lengths for child node pointers, there exists an opportunity to introduce an 
optimization that utilizes the address space of shorter child node pointers to store 
more frequently referenced nodes and to keep the address space reachable 
exclusively through pointers with longer binary representations for less frequently 
referenced nodes. This optimization is referred to as Frequency Based Compaction 
(FBC). The implementation of this optimisation entails sorting the nodes in 
descending order of their referencing frequency, followed by the assignment of 
addresses in the address space in ascending order. An illustration of this 
implementation is provided in Figure 1d, where the referencing frequency of leaf 
nodes from the root node is arranged in descending order (it should be noted though 
that the length of all pointers is uniform in this example, thereby rendering the 
application of FBC meaningless). The addressing frequency of the first 100 most 
frequently addressed nodes in the 10th layer of SVDAG nodes for the voxelized 
Angel Lucy model at resolution of 40963 is illustrated in Figure 3. When employing 
FBC, it is advantageous to avoid using a global addressing space where addresses 
are assigned continuously across all HDS layers. Rather, separate addressing should 
be used for each HDS layer. The rationale behind this approach is that, in the event 
of the former, a single short or medium pointer address space is created for the 
entirety of the HDS. Utilising offsets from the beginning of the respective node 
layer ensures the creation of these addressing spaces for short and medium pointers 
separately in each node layer of the HDS. 

 
Figure 3 

Frequency of addressing of the first 100 most frequently addressed nodes in layer 10 of the SVDAG 
used to store the Angel Lucy model voxelized at a 40963 resolution 
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5 Test Results and Discussion 
This section of the paper summarises test results. Subsection 5.1 presents the 
voxelized scenes and parameter settings of the tested SVDAG versions. Subsection 
5.2 summarizes the results obtained when encoding the scene geometry into the 
respective HDS versions. Finally, subsection 5.3 discusses the results obtained. 

5.1  Datasets 
Three polygonal surface models, composed of triangle meshes – Angel Lucy 
(489 × 103 triangles), Porsche (22 × 103 triangles) and Skull (80 × 103 triangles) 
– were utilised to assess various SVDAG parameter configurations. These models 
were voxelized to six resolutions, ranging from 1283 to 40963, yielding a total of 18 
test scenes. The proportion of active voxels to their total number ranged from 3.53% 
(Skull 1283) to 0.03% (Angel Lucy 40963). See Figure 4 for visualizations of the 
models voxelized at a 5123 resolution. 

 
Figure 4 

Visualizations of the models to scenes at a 5123 voxel resolution:  
a) Angel Lucy, b) Skull and c) Porsche 

Subsequently, the geometry of the resulting scenes was stored in SVOs and 
SVDAGs with different parameter configurations. Both the internal and leaf nodes 
of the SVOs incorporated 8b CHNMs, aligned using reserved bits to 32b. Pointers 
to child nodes were of only a single type, having a 32b length and the addressing 
word was also 32b long. The SVDAG denoted as SVDAG1 herein, had identical 
parameters – its parameters were set as given in [17], where this HDS was 
introduced. In contrast, the remaining five SVDAG versions (SVDAG2 to 
SVDAG6) featured 16b CHNMs, permitting three distinct child node pointer types 
and varying addressing word lengths. A comprehensive overview of the parameter 
settings is provided in Table 3. 

Table 3 
Parameter settings for the tested hierarchical data structures 

 CHNM PT1 PT2 PT3 addr. word 
SVO 8b (32b*) 32b --- --- 32b 

SVDAG1 8b (32b*) 32b --- --- 32b 
SVDAG2 16b 8b 8b 32b 8b 
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SVDAG3 16b 8b 16b 32b 8b 
SVDAG4 16b 8b 32b 32b 8b 
SVDAG5 16b 16b 16b 32b 16b 
SVDAG6 16b 16b 32b 32b 16b 

*alignment of 8b CHNMs to 32b, using 24 reserved bits.     

5.2  Results 
The tests were conducted on a computer system with the following configuration: 
Win 11 Home, 15.6", 1920x1080 FullHD, IPS, AMD Ryzen 7 7435HS, 3.1 GHz, 
octacore, nVidia GeForce RTX3060, 12 GB RAM, DDR6, 512 GB SSD. 

The objective of tests was to determine the total size of the binary representation of 
the SVO and SVDAG hierarchical data structures with different parameter 
configurations – such as the number of types and the lengths of pointers per child 
nodes – for all 18 test scenes. The results obtained for the different models, scene 
resolutions and HDSs used are summarised in Table 4, with the figures given in 
KB. 

Table 4 
SVO and SVDAG binary representation sizes (in KB) with different parameter configurations for the 

respective models and scene resolutions (best achieved results are shown in grey) 

Size 
[KB] 

Angel Lucy 

SVO 
SVDAG

1 
SVDAG

2 
SVDAG

3 
SVDAG

4 
SVDAG

5 
SVDAG

6 
1283 53.4 31.9 12.7 10.5 13.3 15.9 15.9 
2563 229.0 127.0 53.3 42.8 54.5 63.5 63.5 
5123 944.0 462.8 204.1 166.8 207.4 231.4 235.9 

10243 3807.9 1523.7 724.4 623.8 737.1 793.9 829.6 
20483 15160.3 4682.5 2479.1 2155.1 2529.1 2608.5 2708.2 
40963 59581.0 14928.3 8731.5 7637.6 8934.0 8864.9 9138.0 

Size 
[KB] 

Porsche 

SVO 
SVDAG

1 
SVDAG

2 
SVDAG

3 
SVDAG

4 
SVDAG

5 
SVDAG

6 
1283 116.8 56.8 22.6 18.6 23.4 28.4 28.4 
2563 540.3 222.4 95.8 75.6 98.6 111.2 111.2 
5123 2360.9 788.8 363.8 302.4 372.2 394.4 411.3 

10243 9932.1 2629.2 1320.6 1131.7 1356.2 1411.3 1462.2 
20483 40700.4 8918.9 4906.6 4245.9 5034.6 5100.3 5244.6 
40963 162103.1 32128.0 18768.7 16510.9 19438.7 19329.8 19765.1 

Size 
[KB] 

Skull 

SVO 
SVDAG

1 
SVDAG

2 
SVDAG

3 
SVDAG

4 
SVDAG

5 
SVDAG

6 
1283 186.0 100.4 42.7 34.2 43.6 50.2 50.2 
2563 764.9 356.7 160.7 125.7 163.7 178.4 178.4 
5123 3099.7 1182.8 576.2 481.1 585.8 606.1 634.1 
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10243 12412.5 3728.8 2012.3 1720.8 2051.7 2053.2 2143.3 
20483 49038.1 12275.2 7239.2 6295.1 7417.0 7260.4 7498.8 
40963 189340.6 47615.1 28290.6 25382.3 29387.6 29419.1 30065.2 

In its uncompressed form, the voxelized scene geometry can be represented by a 3D 
grid of 1b/vox values. For a scene with a 1283 voxel resolution, the size of such a 
grid amounts to 2,097,152 voxels, and the size of the binary representation of the 
geometry is 262,144 B, i.e., 256 KB. For a scene with a resolution of 40963 voxels, 
the size of the binary representation of this grid is then 8 GB. Table 5 provides an 
overview of the compression ratio achieved when employing the corresponding 
HDS in comparison to the 1b/vox grid for the designated model, scene resolution 
and HDS utilised. 

Table 5 
The achieved compression ratio in comparison to the 1b/vox grid of values for each model, scene 

resolution and HDS used with different parameter settings 

  
Angel Lucy 

SVO SVDAG1 SVDAG2 SVDAG3 SVDAG4 SVDAG5 SVDAG6 
1283 4.8 8.0 20.2 24.3 19.3 16.1 16.1 
2563 8.9 16.1 38.5 47.8 37.6 32.2 32.2 
5123 17.4 35.4 80.3 98.2 79.0 70.8 69.5 

10243 34.4 86.0 180.9 210.1 177.8 165.1 158.0 
20483 69.2 223.9 423.0 486.6 414.6 402.0 387.2 
40963 140.8 561.9 960.7 1098.3 938.9 946.3 918.0 

  
Porsche 

SVO SVDAG1 SVDAG2 SVDAG3 SVDAG4 SVDAG5 SVDAG6 
1283 2.2 4.5 11.3 13.8 11.0 9.0 9.0 
2563 3.8 9.2 21.4 27.1 20.8 18.4 18.4 
5123 6.9 20.8 45.0 54.2 44.0 41.5 39.8 

10243 13.2 49.9 99.3 115.8 96.6 92.9 89.6 
20483 25.8 117.6 213.7 247.0 208.3 205.6 199.9 
40963 51.7 261.1 446.9 508.1 431.5 434.0 424.4 

  
Skull 

SVO SVDAG1 SVDAG2 SVDAG3 SVDAG4 SVDAG5 SVDADG6 
1283 1.4 2.6 6.0 7.5 5.9 5.1 5.1 
2563 2.7 5.7 12.7 16.3 12.5 11.5 11.5 
5123 5.3 13.9 28.4 34.1 28.0 27.0 25.8 

10243 10.6 35.2 65.1 76.2 63.9 63.8 61.2 
20483 21.4 85.4 144.8 166.6 141.4 144.4 139.8 
40963 44.3 176.2 296.5 330.5 285.4 285.1 279.0 

This paper discusses the optimisation of the SVDAG HDS introduced in [17] with 
a parameter configuration identical to that of SVDAG1. Consequently, Table 6 
provides a comprehensive overview of the enhancement in the success rate of HDS 
compression for the specific model and scene resolution, as well as the voxelization 
level, when compared to SVDAG1 (this is why the SVDAG1 column contains only 
1.00 values). 
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Table 6 
A comparison of the success rate of scene geometry compression for specific models, scene resolutions 

and HDSs used, compared to the geometry compression rate of SVDAG1 

 Angel Lucy 
SVO SVDAG1 SVDAG2 SVDAG3 SVDAG4 SVDAG5 SVDAG6 

1283 0.60 1.00 2.52 3.02 2.40 2.00 2.00 
2563 0.55 1.00 2.38 2.97 2.33 2.00 2.00 
5123 0.49 1.00 2.27 2.78 2.23 2.00 1.96 

10243 0.40 1.00 2.10 2.44 2.07 1.92 1.84 
20483 0.31 1.00 1.89 2.17 1.85 1.80 1.73 
40963 0.25 1.00 1.71 1.95 1.67 1.68 1.63 

 Porsche 
SVO SVDAG1 SVDAG2 SVDAG3 SVDAG4 SVDAG5 SVDAG6 

1283 0.49 1.00 2.52 3.06 2.43 2.00 2.00 
2563 0.41 1.00 2.32 2.94 2.26 2.00 2.00 
5123 0.33 1.00 2.17 2.61 2.12 2.00 1.92 

10243 0.26 1.00 1.99 2.32 1.94 1.86 1.80 
20483 0.22 1.00 1.82 2.10 1.77 1.75 1.70 
40963 0.20 1.00 1.71 1.95 1.65 1.66 1.63 

 Skull 
SVO SVDAG1 SVDAG2 SVDAG3 SVDAG4 SVDAG5 SVDAG6 

1283 0.54 1.00 2.35 2.94 2.30 2.00 2.00 
2563 0.47 1.00 2.22 2.84 2.18 2.00 2.00 
5123 0.38 1.00 2.05 2.46 2.02 1.95 1.87 

10243 0.30 1.00 1.85 2.17 1.82 1.82 1.74 
20483 0.25 1.00 1.70 1.95 1.66 1.69 1.64 
40963 0.25 1.00 1.68 1.88 1.62 1.62 1.58 

The application of multiple child node pointer types in the context of the structures 
– SVDAG2 to SVDAG6 – has opened up the possibility of employing FBC, and the 
use of different child node pointer lengths in this context exerted a significant effect 
on the size of the binary representation of these HDSs. An analysis of the percentage 
rate of the individual PTs to the total number of child node pointers in the Angel 
Lucy model, voxelized to the respective resolutions and HDSs (SVDAG2 to 
SVDAG6) is summarised in Table 7. To facilitate comprehension, the percentage 
rates (i.e., in terms of the number of pointers of a given type compared to their total 
count and in terms of the sum of the sizes of the binary representation of the pointers 
of a given type, compared to the sum of the sizes of the binary representation of all 
pointers) are listed separately. 

Table 7 
Proportions of child node pointer types in terms of their counts and their aggregate binary 

representation sizes for different scene resolutions based on Angel Lucy model - SVDAG2 to 
SVDAG6 

SVDAG2 1283 2563 5123 10243 20483 40963 
PT1 [8b] 81.17 78.46 75.15 69.35 60.34 51.13 
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No.  [%] PT2 [8b] 1.62 1.07 0.98 1.24 1.60 1.90 
PT3 [32b] 17.21 20.47 23.87 29.41 38.06 46.97 

Size [%] 
PT1 [8b] 53.54 48.62 43.80 36.85 28.17 21.22 
PT2 [8b] 1.07 0.66 0.57 0.66 0.75 0.79 
PT3 [32b] 45.39 50.72 55.63 62.49 71.08 77.99 

 
SVDAG3 1283 2563 5123 10243 20483 40963 

No.  [%] 
PT1 [8b] 81.38 78.58 75.20 69.36 60.33 51.11 
PT2 [16b] 18.62 21.42 20.88 17.72 19.05 20.53 
PT3 [32b] 0.00 0.00 3.92 12.92 20.62 28.36 

Size [%] 
PT1 [8b] 68.61 64.72 56.69 44.33 33.35 24.86 
PT2 [16b] 31.39 35.28 31.48 22.65 21.06 19.97 
PT3 [32b] 0.00 0.00 11.83 33.02 45.59 55.17 

 
SVDAG4 1283 2563 5123 10243 20483 40963 

No.  [%] 
PT1 [8b] 80.55 78.15 75.04 69.27 60.24 50.85 
PT2 [32b] 19.45 21.85 24.96 30.73 39.76 49.15 
PT3 [32b] 0.00 0.00 0.00 0.00 0.00 0.00 

Size [%] 
PT1 [8b] 50.87 47.20 42.91 36.04 27.47 20.55 
PT2 [32b] 49.13 52.80 57.09 63.96 72.53 79.45 
PT3 [32b] 0.00 0.00 0.00 0.00 0.00 0.00 

 
SVDAG5 1283 2563 5123 10243 20483 40963 

No.  [%] 
PT1 [16b] 100.00 100.00 97.67 89.53 81.32 73.06 
PT2 [16b] 0.00 0.00 2.33 5.42 4.96 4.34 
PT3 [32b] 0.00 0.00 0.00 5.05 13.72 22.60 

Size [%] 
PT1 [16b] 100.00 100.00 97.67 85.22 71.51 59.58 
PT2 [16b] 0.00 0.00 2.33 5.16 4.36 3.54 
PT3 [32b] 0.00 0.00 0.00 9.62 24.13 36.88 

 
SVDAG6 1283 2563 5123 10243 20483 40963 

No.  [%] 
PT1 [16b] 100.00 100.00 97.67 89.30 81.16 72.98 
PT2 [32b] 0.00 0.00 2.33 10.70 18.84 27.02 
PT3 [32b] 0.00 0.00 0.00 0.00 0.00 0.00 

Size [%] 
PT1 [16b] 100.00 100.00 95.45 80.67 68.29 57.46 
PT2 [32b] 0.00 0.00 4.55 19.33 31.71 42.54 
PT3 [32b] 0.00 0.00 0.00 0.00 0.00 0.00 

5.3  Discussion 
The preceding synopsis of the findings of the conducted tests indicated that, in 
accordance with the prevailing expectations, the utilisation of CSM in SVDAGs led 
to an enhancement in the compactness of geometry representation, surpassing the 
performance of SVOs. This was evident even in the SVDAG1 version, employing 
32b CHNMs and maintaining a consistent 32b child node pointer length. 

In versions SVDAG2 to SVDAG6, 16b CHNMs without reserved bits have been 
employed. This represents merely half the length of the binary representation of the 
CHNM, as opposed to its 32b length in the case of SVO and SVDAG1 (8b CHNM 
+ 24b reserved space). This has been identified as a significant source of 
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compression gain (16b per internal node) with the SVDAG2 to SVDAG6 structures. 
Concurrently, this facilitates the utilisation of multiple child node pointer types, 
potentially exhibiting disparate binary representation lengths, and the employment 
of FBC. One of the pointer types (𝑃𝑃𝑇𝑇3) was invariably selected to have a length of 
32b to allow the encoding of more detailed scenes. The remaining two pointer types, 
designated 𝑃𝑃𝑇𝑇1 and 𝑃𝑃𝑇𝑇2, were selected as combinations of 8b, 16b, and 32b lengths, 
respectively, as follows: both 8b in SVDAG2; 8b and 16b in SVDAG3; 8b and 32b 
in SVDAG4, both 16b in SVDAG5 and 16b and 32b in SVDAG6. It is noteworthy 
that the combination of 32b and 32b is not utilised, as this would result in the length 
of the pointers remaining constant at 32b. The shorter overall binary representation 
of the CHNM-related part of the node, together with the fact that some of the 
pointers to child nodes have a binary representation size smaller than 32b, allows 
versions SVDAG2 to SVDAG6 to always outperform the original SVDAG1 in 
binary representation size. The amount of space saved 𝑆𝑆, when using SVDAG2 to 
SVDAG6 compared to using SVDAG1, can be calculated using the formula: 

𝑆𝑆 = 16 × 𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑛𝑛𝑚𝑚 + 𝑛𝑛 × 𝐿𝐿𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑛𝑛𝑚𝑚 + �(32− 𝑃𝑃𝑇𝑇𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙)
3

𝑥𝑥=1

× 𝑃𝑃𝑇𝑇𝑥𝑥𝑙𝑙𝑛𝑛𝑛𝑛 [𝑏𝑏]  
(5) 

Where, 

𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑛𝑛𝑚𝑚 is the number of internal nodes of HDS; 

𝐿𝐿𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑛𝑛𝑚𝑚 is the number of leaf nodes of HDS; 

n  is 24 for SVDAG2 to SVDAG4 and 16 for SVDAG5 and SVDAG6; 

𝑃𝑃𝑇𝑇𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙  is the length in bits of the pointer of type 𝑃𝑃𝑇𝑇𝑥𝑥; 𝑥𝑥 ∈< 1; 3 >; 

𝑃𝑃𝑇𝑇𝑥𝑥𝑙𝑙𝑛𝑛𝑛𝑛  is the overall number of pointers of type 𝑃𝑃𝑇𝑇𝑥𝑥; 𝑥𝑥 ∈< 1; 3 > in HDS. 

For the SVO and SVDAG1 structures, the use of 32b addressing words is an 
advantage, which, together with the use of 32b child node pointer lengths, allows 
the use of an addressing up to 16GB. For SVDAG-versions utilising 8b pointers, 
such as SVDAG2 to SVDAG4, an 8b address word length has been utilised. This 
configuration results in a reduction of the available addressable space to 4 GB (for 
SVDAG4, the adoption of two 32b pointer types increases the addressable space to 
8 GB). For SVDAGs with 16b shortest pointers, i.e., SVDAG5 and SVDAG6, a 16b 
address word length is employed, resulting in 8 GB and 16 GB of addressable space. 

In the transition from SVO to SVDAG, the reduction in the number of leaf nodes 
has a substantial positive effect also on the overall size of the HDS. Nevertheless, 
it is important to note that the number of pointers pointing to them from pre-leaf 
nodes remains significant. Given that the maximum leaf node count in SVDAGs is 
255, all of these fit into the 8b pointer address space. This observation favours data 
structures SVDAG2 to SVDAG4 having exactly this pointer length type and thus 
capable of addressing all leaf nodes exclusively with 8b child node pointers. 
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For each model and all SVDAGs with multiple pointer lengths (SVDAG2 to 
SVDAG6), along with an increase of the resolution to which a given model has been 
voxelized, the positive effect of using multiple pointer lengths progressively 
diminishes. As demonstrated in Table 7, this phenomenon can be attributed to the 
fact that, the more complicated the scene gets, the more the proportion of short (8b) 
and medium-length (16b) child node pointers declines in favour of long (32b) 
pointers, both in terms of their number and, to a greater extent, in terms of their total 
binary representation length. 

To determine the size of the SVDAG2 to SVDAG6 data structure prior to its 
construction, a statistical analysis of the related classical SVDAG1 HDS can be 
performed. This analysis starts at the leaf node layer, where the node length is 
adjusted for each leaf node to ensure addressability using the optimal (shortest) 
pointer type from the optimized SVDAG. The process is then applied recursively 
from the leaf layer up to the root layer, when for each pair of adjacent node layers 𝑙𝑙 
and 𝑙𝑙 − 1, the following steps are performed: 

Step 1  Sort the nodes in layer 𝑙𝑙 based on the frequency of their referencing 
from layer 𝑙𝑙 − 1 (to enable Frequency-Based Compaction) 

Step 2  Assign the nodes of layer 𝑙𝑙 (and thus the pointers to them) to the 
addressing space of specific pointer types 

Step 3  Update the pointer length information for each pointer in the parent 
layer 𝑙𝑙 − 1, according to the assignment of those pointers to specific 
pointer types 

Step 4  Assign updated information about binary representation length of the 
nodes in layer 𝑙𝑙 − 1 (due to changes in CHNM size and the pointer 
lengths to child nodes) 

Step 5  Determine the total size of binary representation of layer 𝑙𝑙 − 1 

By iteratively executing these steps, it is possible to calculate the binary sizes of all 
node layers in the potentially optimized SVDAG, and therefore, the total size of its 
binary representation. Applying this statistical analysis to various configurations of 
the optimized SVDAGs (i.e., different combinations of pointer types) allows us to 
identify the optimal configuration of pointer types that minimizes the overall size 
of the binary representation of optimised SVDAG. 

In the tests, the most compact HDS was achieved for all models and resolutions by 
combining 8b PT1, 16b PT2, and 32b PT3 pointer lengths with an 8b address word 
length, i.e., in SVDAG3. 

The traversal time of the optimized SVDAG data structures (SVDAG2 to SVDAG6) 
is influenced, in comparison to the original SVDAG1, by several negative factors. 
While SVDAG1 is 32b-aligned, which is GPU-friendly, SVDAG2 to SVDAG4 are 
only 8b-aligned, and SVDAG5 and SVDAG6 are 16b-aligned. Addressing using 16b 
words within SVDAG5 and SVDAG6 requires additional decoding operation. 
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SVDAG2, SVDAG4, SVDAG5 and SVDAG6 versions implement two pointer types 
of the same length and it requires additional operation of shifting addressing space 
for one of them. The introduction of three different pointer types also complicates 
CHNM processing, determining the offset of the child node pointer within the 
parent node and the actual loading of this pointer. On the other hand, the optimized 
SVDAG versions are more compact, which helps reduce potential cache misses. All 
those factors result into slower traversal in the optimized versions of SVDAG 
compared to the original SVDAG1. 

Table 8 shows traversal time in µs for individual models voxelized to scenes with 
resolution of 40963 voxels. Traversal was performed in parallel from the root node 
to the leaf nodes for all active voxels in the scene using nVidia RTX 3060 graphics 
card. Table 9 and Figure 5 show the ratio between the traversal times of SVDAG1 
and each optimized SVDAG variant. Results show that traversal speed was reduced 
by 15% to 25% when optimized versions of SVDAG were used. 

Table 8 
SVDAG traversing time in µs for all active voxels in the scene with resolution of 40963 vox 

time [µs]  SVDAG1 SVDAG2 SVDAG3 SVDAG4 SVDAG5 SVDAG6 
Angel Lucy 40963 1839.1 2169.9 2276.4 2248.7 2311.9 2284.5 

Porsche 40963 4397.1 5358.0 5679.1 5598.2 5825.4 5784.6 
Skull 40963 5299.2 6306.8 6503.4 6585.3 6617.8 6557.7 

Table 9 

Ratio between SVDAG1 and SVDAGn traversing time in scene with resolution of 40963 vox 

Ratio SVDAG1 SVDAG2 SVDAG3 SVDAG4 SVDAG5 SVDAG6 
Angel Lucy 40963 1.00 0.85 0.81 0.82 0.80 0.81 

Porsche 40963 1.00 0.82 0.77 0.79 0.75 0.76 
Skull 40963 1.00 0.84 0.81 0.80 0.80 0.81 

 
Figure 5 

Ratio between SVDAG1 and SVDAGn traversing time in scene with resolution of 40963 vox 

Conclusions 

This paper addressed the problem of representing the geometry of voxelized 3D 
scenes, through hierarchical data structures, with a focus on SVDAGs.  
The objective was to analyse the potential of parameter optimizations of this data 
structure, including the CHNM size and child node pointer types and lengths.  
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The analysis of these possibilities was complemented by empirical testing, through 
experiments performed on encoding the geometry of polygonal surface models, 
voxelized at different resolutions. 

The findings indicate that the employment of an SVDAGs using 16b CHNM and 
three types of pointers to child nodes is able to lower the binary size of SVDAG 
HDS and in tests was empirically determined that using three child node pointer 
types of lengths 8b, 16b, and 32b, respectively, emerged as the optimal 
configuration of child node pointer types. This is evidenced by a substantial 
enhancement in data compression, ranging from 1.88 (at a scene resolution of 40963 
voxels) to 3.06 (at a scene resolution of 1283 voxels), when compared with 
conventional SVDAG HDS.  

Concurrently, the positive impact of employing a greater variety of child node 
pointer types was demonstrated for all settings of combinations of their lengths; 
however, it was also observed that the effect diminished with increasing scene detail 
for all pointer combinations. Traversal speed, when optimized SVDAGs were used, 
was reduced by 15% to 25%, in comparison to traversal speed of a conventional 
SVDAG. 
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