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Abstract: This paper addresses the issue of how to represent the geometry of voxelized three-
dimensional scenes using domain-specific hierarchical data structures. It provides a 
comprehensive overview of these data structures, delving into the specifics of sparse voxel 
octrees in greater depth. Then, it discusses the proposed use of dimensionality upscaling, i.e. 
the transformation of a three-dimensional voxelized scene into a higher number of 
dimensions, to enable the representation of the geometry of this scene via an n-dimensional 
sparse voxel tree hierarchical data structure. This approach allows a smaller size of binary 
representation of the 3D scene geometry – compared to its representation using a sparse 
voxel octree. This is documented in the next section of the paper, where we summarize the 
results of tests encoding the geometries of the respective scenes (based on voxelization of 
polygonal surface models), into sparse voxel trees of different levels of dimensionality. We 
achieved the highest compactness of the binary representation of the resulting data structure, 
compared to the traditional sparse voxel octree (increase in compactness ranged from 2.02 
to 4.44 times), using upscaling to 6D and 7D, respectively. 

Keywords: polygonal surface model; geometry representation of voxelized scene; lossless 
data compression; hierarchical data structure; sparse voxel octree 

1 Introduction 
When it comes to encoding of a binary representation of three-dimensional (3D) 
scenes, in the field of computer graphics, there is an approach that involves creating 
a 3D regular grid of volumetric picture elements (voxels). With this approach, 
individual voxels (vox) may be assigned attributes, e.g. color, transparency or 
material properties. To define the geometry of a voxelized 3D scene, one could use 
an approach where each voxel is assigned 1𝑏𝑏. This determines whether the 
corresponding voxel is passive (the bit is set to 0) or active (the bit is set to 1). 
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For 3D scenes with an 𝑥𝑥 × 𝑦𝑦 × 𝑧𝑧 voxel resolution, this approach produces a regular 
𝑥𝑥 × 𝑦𝑦 × 𝑧𝑧 3D grid of 1𝑏𝑏 scalar values. This represents a significant amount of data, 
as is clear from the example of a 3D scene with a resolution of 1024 × 1024 ×
1024 voxels (1𝐾𝐾3 vox), which requires a memory or secondary storage device 
space of 1𝐺𝐺𝑏𝑏 (128𝑀𝑀𝑀𝑀). When doubling the scene size (measured in number of 
voxels) in each of its axes (2𝐾𝐾3 vox), the data volume increases eight times. This 
underscores the need for more compact representation of this information through 
sophisticated ways of encoding, which are also forms of data compression. 

Using universal compression algorithms for archiving or transmission (streaming) 
would allow a decrease in the amount of data required. However, this approach 
would not meet the expectation for an economic representation considering active 
use of these structures, when stored in limited storage - the computer's operating 
memory or the memory of the graphics card. A popular and frequently used solution 
that meets also this requirement is the use of domain-specific hierarchical data 
structures (HDSs) based on octant trees and directed acyclic graphs (DAGs), along 
with the corresponding encoding algorithms. These HDSs store information about 
voxels; the proportion of active voxels relative to their total number is expected to 
be low — frequently as low as 0.01% of voxels — indicating that the scene is sparse. 
Therefore, the corresponding HDSs are referred to as Sparse Voxel Octrees (SVOs), 
if they are based on octant trees, or Sparse Voxel Directed Acyclic Graphs 
(SVDAGs), if they are based on Directed Acyclic Graphs (DAGs). 

Other HDSs have been derived from SVOs and SVDAGs, which have been further 
optimized through the implementation of additional features. These features help 
achieve increasingly compact encodings of the corresponding HDS at its binary 
level. These features include, for example, the application of a mirroring 
transformation or the introduction of multiple pointer types to child nodes with 
different binary representation lengths. This made possible the use of Frequency 
Based Compaction (FBC), which changes the order of nodes in the binary 
representation of the HDS, according to the frequency of their referencing. Details 
on this can be found in the Related Works section of this paper. The advantage of 
using these domain-specific HDSs is that they can be traversed quickly.  
The operations that need to be performed during it can be considered on-the-fly 
HDS decompression. Another advantage is the ability to traverse the HDS up to any 
selected level. This is useful for supporting the Level of Details (LOD) technique. 

This paper is concerned with finding a more compact geometry of a voxelized 3D 
scene representation. This is accomplished by rearranging the voxels of scene into 
a regular grid with a higher dimensionality; then, a tree-based HDS with higher 
number of dimensions is created for the geometry representation purpose.  
The contribution of the paper is, therefore, in the proposal for the use of 
dimensionality upscaling of voxelized 3D scenes to higher number of dimensions 
to increase the compactness of their geometry representation through a 
representation using n-Dimensional Sparse Voxel Trees (nD SVTs) as a generalized 
form of Sparse Voxel Octrees. 
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2 Related Works 
The use of hierarchical data structures as a means for economical representation of 
2D data has been explored since the 1980s, when the use of quadtrees for image 
compression was addressed in [1, 2]. The use of the Common Subtree Merge (CSM) 
technique was also proposed [3]. The 2D Template-based Encoding (2DTE) data 
structure, which was introduced in [4] and extended to 3D in [5], was based on this 
principle. As with 2D images, the use of octant trees for the representation of 3D 
data was already explored in the 1980s [6-8]. 

Modern SVO-based HDSs implementing pointers to child nodes used to represent 
3D scenes include Efficient Sparse Voxel Octrees (ESVOs), which were proposed 
by Laine and Karras in 2010 [9]. These have the advantage of having the capability 
to replace entire subtrees of a data structure with contour information, which is 
represented more economically at the binary level than the subtree being replaced. 
In 2022, Madoš et al. [10] introduced Clustered Sparse Voxel Octrees (CSVOs). 
This HDS offers a more significant compression of the 3D scene geometry by using 
three different node types. Each node type is optimized for both the number and the 
length of pointers to child nodes. In 2013, Baert et al. [11] introduced a two-step 
out-of-core algorithm that allows the voxelization of a mesh of triangles, thus 
obtaining an intermediate output, used to enable the efficient construction of SVO 
HDSs. In 2015, Pätzold and Kolb [12] presented a voxelization algorithm that 
produces SVOs directly, without an intermediate product. 

DAG-based HDSs that use pointers to child nodes to represent 3D scenes include 
High Resolution Sparse Voxel Directed Acyclic Graphs, or HR SVDAGs, 
introduced by Kämpe et al. in 2013 [13]. These offer the possibility of compact 
representation of identical subtrees through the Common Subtree Merge (CSM) 
technique, where multiple instances of such a subtree are represented by only a 
single instance of the subtree that is multi-referenced. All subnodes and whole 
nodes of this HDS are aligned to 32b. In 2016, Villanueva et al. [14] introduced 
Symmetry-aware Sparse Voxel Directed Acyclic Graphs (SSVDAGs). This data 
structure enables CSM using a mirroring transformation and yields two pointer 
lengths to child nodes – 16b and 32b. This innovation allows for an optimization 
based on the frequency of referencing nodes – Frequency Based Compaction (FBC). 
HDSs based on DAGs, without any implementation of pointers to child nodes 
include Pointerless Sparse Voxel Directed Acyclic Graphs (PSVDAGs), introduced 
by Vokorokos et al. in 2020 [15]. Subsequently, an algorithm for fast transformation 
of PSVDAGs into SVDAGs was introduced by Madoš and Ádám in 2021 [16]. 

While the focus has been on HDSs with a lossless compression of 3D scene 
geometry and attributes in the past, there is also interest in lossy compression. In 
2020, van der Laan et al. [17] introduced an HDS based on SVDAGs that modifies 
the subtrees to increase their degree of identity, thereby increasing the applicability 
of CSM. Thus, lossy data compression is applied, hence the name of the proposed 
HDS: Lossy Sparse Voxel Directed Acyclic Graphs (LSVDAGs). 
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The above HDSs are suitable for the representation of static scenes. However, even 
a small change in the scene geometry may require a significant change in the binary 
representation of the data structure, at the cost of its complete decompression, 
execution of the change and its subsequent recompression. To avoid this issue, 
Careil et al. [18] introduced an HDS called HashDAGs in 2020. This allows for 
interactive changes to the DAG data structure without decompression or 
recompression, making it compatible with the economical voxel attribute solution 
presented in [19]. 

Two approaches are used to extend the above-mentioned HDSs to represent 
additional attributes. The first introduces even more complex SVDAGs that 
integrate geometry and other attribute information into a single SVDAG.  
The second brings geometry compression using HDS with links to external data 
structures, carrying additional information about other attributes. Solutions 
integrating voxel color information, include MoxelDAG [20] and [18] [19] [21]. 
DAGs are also used to represent voxelized shadows in a compact form [22] [23]. 

3 Sparse Voxel Octrees 
To efficiently encode SVO HDS, the dimensions of the represented 3D scene must 
be 𝑁𝑁3; 𝑁𝑁 = 2𝑚𝑚, where 𝑚𝑚 ≥ 1; 𝑚𝑚 ∈ ℕ. The nodes forming the SVO are then 
divided hierarchically into 𝑚𝑚 layers, which are assigned ordinal numbers from the 
range < 0;𝑚𝑚 − 1 >. The layer of nodes containing the root node will have an 
ordinal number of 0, and the layer of nodes containing the leaf nodes (LNODEs) 
will have an ordinal number of 𝑚𝑚− 1. Nodes stored in layers with an ordinal 
number from the interval < 0;𝑚𝑚 − 2 > are considered internal nodes (INODEs). 

The 3D scene geometry is represented by a grid of 𝑁𝑁3 values with 1𝑏𝑏 size. This 
grid will be represented in the adjacent SVO by a node embedded in a layer of nodes 
with ordinal number 0 (the root node). This node will contain an 8b Child Node 
Mask (CHNM) vector made up of eight 1b Header Tags (HTs). The CHNM is 
constructed by decomposing the grid associated with this node into eight child 
octants. For the root node, these child octants have (𝑁𝑁

2
)3 dimensions. For each child 

octant, it is determined whether it is passive or active. A passive octant has all its 
voxels passive (the corresponding geometry attribute is set to 0 for all its voxels). 
An active octant contains at least one active voxel, which has the corresponding 
geometry attribute set to 1. If the child octant is passive, it is assigned a 1b HT with 
value 0 in the SVO node being constructed. If the child octant is active, it is assigned 
a 1b HT with value 1 in the SVO node being constructed. 

The order in which the child octants are ranked and the HTs are arranged in the 
CHNM can be a matter of choice. In this paper, we use the Morton order. 

There is no further information provided for the passive child octant. 
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Further, a recursive decomposition procedure is applied to each active child octant, 
represented by the corresponding child grid, which origin was described above as 
the decomposition of its parent grid. The active child octant will therefore have a 
separate child node created and stored in a node layer of the data structure with an 
incremented ordinal number in comparison to the ordinal number of parent node 
layer (for the root node, this will result in child nodes stored in the node layer with 
ordinal number 1). Therefore, the recursive decomposition of the active child 
octants is executed, yielding nodes stored in layers with ordinal numbers from the 
interval < 0;𝑚𝑚 − 1 >. 

The recursive decomposition stops at nodes stored in layer 𝑚𝑚 − 1, which are called 
leaf nodes (LNODEs) and are related to the octants of 2 × 2 × 2 voxels.  
The potential child nodes of leaf node, which should represent child octants formed 
by only a single voxel (a child octant of 1 × 1 × 1 voxel), will not be created.  
The status of such voxel – whether it is passive (bit set to 0) or active (bit set to 1) 
– is recorded directly to the related HT in the CHNM of the LNODE. 

The data structure must also represent the relationship between the corresponding 
HT set to 1 within the parent CHNM and its associated child node. This can be done 
without the use of pointers – leading to Pointerless Sparse Voxel Octrees (PSVOs), 
or with the use of pointers to child nodes – leading to Sparse Voxel Octrees (SVOs). 

3.1 Pointerless Sparse Voxel Octrees 
In the case of Pointerless Sparse Voxel Octrees, the relationship between the HT 
located in the CHNM of the parent node and the associated child node is expressed 
by the location of the binary representation of the child node immediately after the 
binary representation of the corresponding HT of the parent node, as shown in 
Figure 1. The size of a data structure's binary representation in bits is 8 × 𝑝𝑝, where 
p is the total number of nodes of the data structure. This is because each node 
includes only CHNM of 8b in size. While compact, this representation does not 
allow for a fast traversal of the tree. 

To formalize the binary representation of PSVOs, we used the Backus-Naur Form: 

PSVO ::= <NODE> 

NODE ::= <INODE> | <LNODE> 

INODE ::= (8)<HT> 

HT ::= "0" | "1"<NODE> 

LNODE ::= (8)<BIT> 

BIT ::= "0" | "1" 

where the following applies: 

<SYM> - a mandatory non-terminal symbol SYM 
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"sym" - terminal symbol sym 

(n)<SYM> - the SYM symbol, concatenated n-times 

(n)*(m)<SYM> - the SYM symbol, concatenated n to m times 

| - alternative 

 

Figure 1 
A 2D-space (for simplification of the example) discretized into 4 × 4 picture elements: a) with active 

pixels marked in blue; b) depicted as a quadrant tree; c) depicted in binary representation, with the 
decomposition of the respective quadrants indicated using parentheses; d) the final binary 

representation of the quadrant tree 

3.2 Sparse Voxel Octrees 
When creating SVO HDSs with pointers to existing child nodes, the binary 
representation of an array of pointers (PTS) is concatenated in the parent node after 
its CHNM. This array contains pointers (PTs) to the existing child nodes of the 
parent node. Every active child node has its own associated HT with a value of 1 in 
the CHNM of the parent node. The order of the PTs in the PTS is the same as the 
order of the HTs with value 1 in the CHNM. Each INODE must have at least one 
child node and may have a maximum of eight. Therefore, the number of PTs in the 
PTS is variable, and is from the interval <1;8>. 

To formalize the binary representation of SVOs, we used the Backus-Naur Form: 

SVO ::= (n)<NODE> 

NODE ::= <INODE>|<LNODE> 

INODE ::= <CHNM>(p)<BIT><PTS> 

LNODE ::= <CHNM>(q)<BIT> 

CHNM ::= (8)<HT> 

PTS ::= (1)*(8)<PT> 

PT ::= (r)<BIT> 

HT ::= <BIT> 

BIT ::= "0" | "1"  
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The BNF above uses the parameters p, r, and q. The parameters p and q determine 
the number of reserved bits that are added to align the CHNM to the desired number 
of bits. Parameter p is used for INODEs, parameter q for LNODEs. The parameter 
r determines the number of bits used to encode a pointer to a child node. By selecting 
these parameters correctly, one can align the size of parts of nodes or even whole 
nodes. For example, by setting the parameters as p = 24, q = 24, and r = 32, one can 
align all node parts and entire nodes to 32 bits. Figure 2 illustrates an example of a 
data structure setup (for the purpose of clarity, we used 2D). 

The clear advantage of using pointers to child nodes is that they allow for quick 
traversal of the SVO. The disadvantage is that the binary representation of the 
internal nodes of the data structure will be significantly larger. This can be 
calculated as the ratio between the length of binary representation of the internal 
node of the SVO and the PSVO, according to the following equation: 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

=
𝑝𝑝 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑛𝑛 × 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
=
𝑝𝑝 + 8 + 𝑛𝑛 × 𝑟𝑟

8
 (1) 

where n is the number of PTs in the PTS. 

For the above=mentioned setting where 𝑝𝑝 =  24, 𝑞𝑞 =  24 and 𝑟𝑟 =  32, the 
SVOINODEsize is 64b if there is one child node. This value can grow to 288b if 
there are 8 child nodes. There is an 8-to-36 times increase in the size of SVO internal 
nodes compared to PSVO internal nodes. Even in a theoretical minimalist setting, 
which would not be sufficient for representing 3D scenes where 𝑝𝑝 = 0, 𝑞𝑞 = 0 and 
𝑟𝑟 = 8 (aligned to 8b), this increase is in the range of 2 to 9 times. 

 

Figure 2 
An example of encoding a 2D space into an SVO, with the parameters set to 𝑝𝑝 = 𝑞𝑞 = 0 and 𝑟𝑟 = 8, 

where (a) is a 4 × 4 pixel 2D-scene; (b) is a binary representation of the SVO with addresses marked in 
blue and represented in decimal notation for simplicity and better visualization 

The increase in the size of the SVO leaf node in comparison to the PSVO leaf node, 
can be calculated according to the following equation: 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

=
𝑞𝑞 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
=
𝑞𝑞 + 8

8
 (2) 

If the parameter q is set to 24, the size of the binary representation of the SVO leaf 
node is up to four times larger in comparison to PSVO. Conversely, if q is set to 0, 
the sizes of their binary representations are identical. 
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4 Dimensionality Scaling Principle 
Pixels of 2D image or voxels of 3D image arranged in a regular 2D or 3D grid, 
respectively, as well as any data arranged in an n-dimensional regular grid, can be 
rearranged into a linear (1D) form. This can be achieved through the use of Space 
Filling Curves (SFCs). A prominent example of an SFC used in the field of 
computer graphics is the Morton Space Filling Curve (MSFC), also referred to as 
the Morton order or Z-order. This was initially proposed by G. M. Morton [24] in 
1966. Another prevalent SFC is the Hilbert Space Filling Curve (HSFC), which was 
initially proposed by D. Hilbert in 1935 [25]. 

For images composed of voxels stored in a regular three-dimensional grid with a 
dimension of N × N × N voxels, where N = 2𝑚𝑚, m ≥ 1, N, m ∈ ℕ, each voxel has 
three coordinates, X, Y and Z, while X ∈< 0; 2𝑚𝑚 − 1 >, Y ∈< 0; 2𝑚𝑚 − 1 > and Z ∈
< 0; 2𝑚𝑚 − 1 >, X, Y, Z ∈ ℕ +. From these three coordinates, it is possible to 
construct the so-called Morton coordinate M by interleaving bits of the coordinates, 
with M ∈< 0; 23𝑚𝑚 − 1 >, M ∈ ℕ +. This Morton coordinate then determines the 
position of the voxel in the linearized (1D) form of the image information. 

 

Figure 3 
Transformation of coordinates: a) X, Y, Z 3D to M 1D, b) M 1D to X, Y 2D and c) M 1D to X, Y, Z, Q 

4D 

As an illustration, consider the construction of a Morton coordinate for a voxel that 
is part of a 16 × 16 × 16 voxel image. Each voxel coordinate is composed of four 
bits, specifically X(3:0), Y(3:0), and Z(3:0). The Morton coordinate M is 
constructed from the 12 bits of M(11:0). This process is depicted in Figure 3(a). 

Similarly, the inverse procedure can also be implemented, whereby the Morton 
coordinate of a specific voxel, representing its position in the linearized voxel 
stream, is converted to n coordinates to obtain the position of that voxel in n-
dimensional space. It is possible to determine the number of dimensions in this 
space, which is given by the value of n, where 𝑛𝑛 ∈ ℕ. Figure 3(b) demonstrates how 
a 12-bit Morton coordinate is transformed into two 6-bit X, Y coordinates of 2D 
space. Figure 3(c) illustrates the transformation of the same 12-bit Morton 
coordinate into 3-bit X, Y, Z, Q coordinates of 4D space. 
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If 𝑛𝑛 and 𝑚𝑚 represent the dimensionality of 𝑛𝑛𝑆𝑆 and 𝑚𝑚𝑆𝑆 space, respectively, it is 
possible to demonstrate the transformation of the 𝑛𝑛 coordinates of the picture 
element from 𝑛𝑛𝑆𝑆 space to the 1𝑆𝑆 Morton coordinate 𝑀𝑀 (𝑛𝑛𝑆𝑆 → 1𝑆𝑆) and 
subsequently, the 1D Morton coordinate can be transformed to the 𝑚𝑚 coordinates 
of 𝑚𝑚𝑆𝑆 space (1𝑆𝑆 → 𝑚𝑚𝑆𝑆). This process may be interpreted as a change in 
dimensionality from 𝑛𝑛𝑆𝑆 to 𝑚𝑚𝑆𝑆(𝑛𝑛𝑆𝑆 → 𝑚𝑚𝑆𝑆). 

Just as one can construct an octant tree (SVO) to a 3D grid of voxels storing 
information about 3D scene geometry, in a manner analogous to this, a quadrant 
tree may be constructed for 2D space, a binary tree for 1D space, a hexadeca tree 
for 4D space, and so on. Thus, it can be posited that an n-dimensional Sparse Voxel 
Tree (nD SVT) can be constructed for an nD grid. In order to formalize the binary 
representation of nD SVTs, we used the BNF: 

SVT ::= (n) <NODE> 
NODE ::= <INODE> | <LNODE> 
INODE ::= <CHNM>(p) <BIT><PTS> 
LNODE ::= <CHNM>(q) <BIT> 
CHNM ::= (2D)<HT> 
PTS ::= (1)*(2D)<PT> 
PT ::= (r)<BIT> 
HT ::= <BIT> 
BIT ::= "0" | "1" 

Where D is the dimensionality of the SVT. 

For INODEs of such SVTs, the size of their CHNM equals to 2D, and the number 
of pointers to child nodes can be in the range of < 1; 2D >. For LNODEs, the size of 
their CHNM is 2D. This value is doubled by increasing D by 1. Consequently, if a 
3D SVT node has a CHNM size of 8b, a 4D SVT node has a CHNM size of 16b. 

Considering a scene in nD, having a dimensionality of n, transformed into a scene 
in mD having a dimensionality of m, then the following can be said: 

• if 𝑛𝑛 > 𝑚𝑚, we refer to the transformation as dimensionality downscaling, 
• while if 𝑛𝑛 < 𝑚𝑚, we refer to the transformation as dimensionality upscaling. 

If the scene geometry is represented by an 𝑛𝑛𝑆𝑆 SVT with a corresponding 
dimensionality of 𝑛𝑛 and the target is a representation of the same scene by an 𝑚𝑚𝑆𝑆 
SVT, with a corresponding dimensionality of 𝑚𝑚, then the dimensionality of the SVT 
is reduced (downscaled) if 𝑛𝑛 > 𝑚𝑚 and increased (upscaled) if 𝑛𝑛 < 𝑚𝑚, respectively. 

If the representation of the scene geometry in 𝑚𝑚𝑆𝑆 space is created by transforming 
a representation of the scene geometry in 𝑛𝑛𝑆𝑆 space (𝑛𝑛𝑆𝑆 → 𝑚𝑚𝑆𝑆), then if 𝑔𝑔𝑛𝑛 is the 
voxel geometry information of a particular voxel from the 𝑛𝑛𝑆𝑆 space, where the 
Morton coordinate of the particular voxel is 𝑀𝑀𝑛𝑛 and 𝑔𝑔𝑚𝑚 is the voxel geometry 
information of the voxel from 𝑚𝑚𝑆𝑆 space, where the Morton coordinate of the voxel 
is 𝑀𝑀𝑚𝑚, and it is assumed that 𝑀𝑀𝑛𝑛 = 𝑀𝑀𝑚𝑚, then 𝑔𝑔𝑛𝑛  =  𝑔𝑔𝑚𝑚. Thus, if a voxel 𝑣𝑣𝑛𝑛 with a 
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Morton coordinate 𝑀𝑀 in 𝑛𝑛𝑆𝑆 space is passive, the voxel 𝑣𝑣𝑚𝑚 with the same Morton 
coordinate 𝑀𝑀 in 𝑚𝑚𝑆𝑆 space will also be passive. Conversely, if 𝑣𝑣𝑛𝑛 is active, 𝑣𝑣𝑚𝑚 will 
also be active. By traversing the related nD SVT and mD SVT using the same 
Morton coordinate specification for the target voxel in both cases allows for the 
acquisition of identical information about its geometry. 

In the case of nD SVTs with different dimensionalities, which are equivalent 
representations of the geometry of the same 3D scene, the binary representations of 
these structures usually have different sizes. We may attempt to find the optimal 
number of dimensions of the SVT that represents the geometry of a given scene 
with a minimum binary size. The next section of the paper deals with this search in 
the case of scenes generated by voxelizing polygonal surface models. 

5 Test Results and Discussion 
This section of the paper summarizes results of tests. Subsection 5.1 describes the 
respective scenes used for testing. Subsection 5.2 summarizes the results obtained 
in terms of the size of the nD SVT binary representation for the respective models, 
3D scene sizes and degrees of dimensionality upscaling. Subsection 5.3 discusses 
the sources of the compression gains. 

5.1 Datasets 
Tests were performed using three 3D polygonal surface models composed of 
triangles that were voxelized into six scenes (resolutions were ranging from 1283 to 
40963). This process resulted into 18 test scenes. For each scene, active voxels were 
then extracted, their coordinates were transformed into 64b Morton addresses and 
those were sorted in ascending order and stored in a file. Finally, list of active voxels 
was then transformed into nD SVT HDS with different dimensionality for 
respective scene. The detailed parameters of the respective 3D scenes are shown in 
Table 1; their visualizations are depicted in Figure 4. Tests were performed using 
NVIDIA GeForce RTX 3060, 12 GB GDDR6. 

Table 1 
Characteristics of the 3D scenes created by embedding polygonal surface models stored in the 

WaveFront Technologies OBJ geometry definition file format into these scenes and then voxelizing 
them to various resolutions. Table summarizes the total number of voxels in the scenes, the number of 

active voxels and their percentage considering the total number of voxels, for each model and 
resolution. 

Resolution 
Resolution 1283 2563 5123 10243 20483 40963 

Voxels [106] 2 16 128 1024 8192 65,536 
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Angel Lucy—488,880 triangles 
Active voxels [103] 22.48 91.52 366.58 1453.10 5685.86 21,656.43 

[%] 1.07 0.55 0.27 0.14 0.07 0.03 
Skull—80,016 triangles 

Active voxels [103] 74.10 298.85 1192.04 4688.08 17,958.71 64,608.51 
[%] 3.53 1.78 0.89 0.44 0.21 0.09 

Porsche—22,011 triangles 
Active voxels [103] 54.20 233.04 969.11 3938.35 15,539.54 58,673.98 

[%] 2.58 1.39 0.72 0.37 0.18 0.09 

 

Figure 4 
Visualization of the voxelized scenes used for testing purposes: (a) “Angel Lucy” at 5123; (b) “Skull” 

at 5123; (c) “Porsche” at 5123. 

5.2 Test Results 
In the tests, the geometries of the Angel Lucy, Porsche, and Skull scenes were 
encoded into SVTs of varying dimensionality, ranging from three dimensions (3D 
SVT, equivalent to SVO) to eight dimensions (8D SVT). In the first set of tests, for 
both internal and leaf nodes of the SVT, we maintained the alignment of all parts of 
the nodes, and thus of the nodes as a whole, at a length of 32b across all versions of 
SVTs, from 3D SVTs to 8D SVTs. Pointers to child nodes in all SVTs – as far as 
their dimensionality is concerned – always had a binary representation length of 
32b. The CHNM length of both internal and leaf nodes had to be aligned. 

The CHNM size of the internal node as well as the size of the leaf node was set to 
8b in the case of 3D SVT. Adding 24 reserved bits was used to make them match 
32b. The CHNM size of the internal node as well as the size of the leaf node was 
set to 16b in the case of 4D SVT. Adding 16 reserved bits was used to make them 
match 32b. For SVTs with dimensionality from 5D to 8D, their internal node 
CHNM lengths as well as leaf node lengths are already naturally aligned to 32b as 
their lengths are 32b, 64b, 128b, and 256b, respectively, thus no reserved bits are 
used in the construction of the nodes, both internal and leaf nodes. 

Table 2 shows, for each model, scene resolution and dimensionality of the nD SVT, 
the size of the binary representation of the corresponding nD SVT in KB and the 
percentage of the size of this binary representation compared to the size of the 
binary representation of the uncompressed 3D scene geometry (1b/vox 3D grid). 
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Table 3 shows, for each model, scene resolution and dimensionality of the nD SVT 
the data related to the compression ratios, with two values given each time. The first 
value represents the ratio between the compression ratios obtained when coding the 
nD SVT in the corresponding dimensionality 𝑛𝑛 and in a lower dimensionality, i.e. 
𝑛𝑛 − 1, e.g. 6D SVT and 5D SVT. The second value represents the ratio between the 
compression ratios obtained when coding the nD SVT in the corresponding 
dimensionality 𝑛𝑛 and in 3D, e.g. 6D SVT and 3D SVT. The 3D SVT column always 
has a value of 1.00. Figure 5 shows ratio of the binary representation size of the nD 
SVT to the 3D SVT, for particular models and resolutions. 

As it showed in the results obtained, for a given model and scene resolution, it is 
always true that with an increase in the dimensionality of the SVT HDS, the size of 
the binary representation of this data structure gradually decreased until it reached 
a minimum and then it increased again. Thus, an optimal SVT dimensionality can 
be found where the size of the SVT binary representation is the smallest and thus 
the compression ratio is the highest in comparison to SVO (equivalent to 3D SVT). 
This optimum was found in this set of tests for 6D SVT and 7D SVT, respectively, 
when the compression ratio in a given dimensionality compared to the compression 
ratio in 3D SVT ranged from 3.23 when using 6D SVO for a scene containing the 
Skull model with a resolution of 40963 to 4.44 when using 7D SVO for a scene 
containing the Porsche model with a resolution of 1283. 

Table 2 
Size of the binary representation of the nD SVT in KB for test models and its ratio to the size of the 

geometry representation in the 1b/vox 3D grid. Node components are aligned to 32b. 

Angel Lucy 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT 

1283 
53 31 17 15 16 16 

20.87% 12.22% 6.76% 5.79% 6.24% 6.40% 

2563 
229 135 76 65 70 72 

11.18% 6.61% 3.69% 3.19% 3.42% 3.51% 

5123 
944 567 318 278 302 317 

5.76% 3.46% 1.94% 1.70% 1.85% 1.93% 

10243 (1K3) 
3808 2301 1297 1138 1259 1329 

2.91% 1.76% 0.99% 0.87% 0.96% 1.01% 

20483 (2K3) 
15600 9201 5204 4574 5088 5386 
1.49% 0.88% 0.50% 0.44% 0.49% 0.51% 

40963 (4K3) 
59562 36342 20615 18166 20308 21558 
0.71% 0.43% 0.25% 0.22% 0.24% 0.26% 

 
Porsche 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT 

1283 
117 64 36 29 26 29 

45.64% 24.96% 14.21% 11.26% 10.29% 11.14% 

2563 
540 300 181 147 145 156 

26.38% 14.65% 8.85% 7.15% 7.10% 7.60% 
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5123 
2361 1324 814 664 671 775 

14.41% 8.08% 4.97% 4.05% 4.10% 4.73% 

10243 (1K3) 
9932 5605 3489 2877 2920 3440 

7.58% 4.28% 2.66% 2.20% 2.23% 2.62% 

20483 (2K3) 
40700 23131 14507 12021 12296 14692 
3.88% 2.21% 1.38% 1.15% 1.17% 1.40% 

40963 (4K3) 
162103 92904 58917 49030 50521 60923 
1.93% 1.11% 0.70% 0.58% 0.60% 0.73% 

 
Skull 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT 

1283 
186 113 63 54 58 61 

72.68% 44.03% 24.80% 21.02% 22.73% 23.88% 

2563 
765 467 264 225 251 266 

37.35% 22.78% 12.89% 11.00% 12.26% 12.97% 

5123 
3100 1899 1079 922 1033 1101 

18.92% 11.59% 6.59% 5.63% 6.31% 6.72% 

10243 (1K3) 
12413 7633 4353 3727 4199 4484 
9.47% 5.82% 3.32% 2.84% 3.20% 3.42% 

20483 (2K3) 
49038 30311 17344 14891 16847 18067 
4.68% 2.89% 1.65% 1.42% 1.61% 1.72% 

40963 (4K3) 
189341 118228 68027 58666 66782 71887 
2.26% 1.41% 0.81% 0.70% 0.80% 0.86% 

Table 3 
The ratio of the size of the nD SVT to the n-1D SVT and the ratio of the size of the nD SVT to the 3D 

SVT, for test models. Node components are aligned to 32b. 

Angel Lucy 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT 

1283 
1.00 1.71 1.81 1.17 0.93 0.98 
1.00 1.71 3.09 3.61 3.35 3.26 

2563 
1.00 1.69 1.79 1.16 0.93 0.97 
1.00 1.69 3.03 3.50 3.27 3.19 

5123 
1.00 1.66 1.78 1.14 0.92 0.95 
1.00 1.66 2.96 3.39 3.12 2.98 

10243 (1K3) 
1.00 1.65 1.77 1.14 0.90 0.95 
1.00 1.65 2.94 3.35 3.02 2.87 

20483 (2K3) 
1.00 1.70 1.77 1.14 0.90 0.94 
1.00 1.70 3.00 3.41 3.07 2.90 

40963 (4K3) 
1.00 1.64 1.76 1.13 0.89 0.94 
1.00 1.64 2.89 3.28 2.93 2.76 
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Porsche 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT 

1283 
1.00 1.83 1.76 1.26 1.09 0.92 
1.00 1.83 3.21 4.05 4.44 4.10 

2563 
1.00 1.80 1.65 1.24 1.01 0.93 
1.00 1.80 2.98 3.69 3.72 3.47 

5123 
1.00 1.78 1.63 1.23 0.99 0.87 
1.00 1.78 2.90 3.56 3.52 3.05 

10243 (1K3) 
1.00 1.77 1.61 1.21 0.99 0.85 
1.00 1.77 2.85 3.45 3.40 2.89 

20483 (2K3) 
1.00 1.76 1.59 1.21 0.98 0.84 
1.00 1.76 2.81 3.39 3.31 2.77 

40963 (4K3) 
1.00 1.74 1.58 1.20 0.97 0.83 
1.00 1.74 2.75 3.31 3.21 2.66 

 
Skull 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT 

1283 
1.00 1.65 1.78 1.18 0.92 0.95 
1.00 1.65 2.93 3.46 3.20 3.04 

2563 
1.00 1.64 1.77 1.17 0.90 0.95 
1.00 1.64 2.90 3.39 3.05 2.88 

5123 
1.00 1.63 1.76 1.17 0.89 0.94 
1.00 1.63 2.87 3.36 3.00 2.81 

10243 (1K3) 
1.00 1.63 1.75 1.17 0.89 0.94 
1.00 1.63 2.85 3.33 2.96 2.77 

20483 (2K3) 
1.00 1.62 1.75 1.16 0.88 0.93 
1.00 1.62 2.83 3.29 2.91 2.71 

40963 (4K3) 
1.00 1.60 1.74 1.16 0.88 0.93 
1.00 1.60 2.78 3.23 2.84 2.63 
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Figure 5 
Ratio of the binary representation size of the nD SVT to the 3D SVT for the Angel Lucy, Porsche and 

Skull model, with optimal dimensionality indicated. Node components not aligned to 32b. 

In the second set of tests, the same models and the same scene sizes were used. 
However, the alignment to 32b was not maintained for each of the SVT 
dimensionalities. Reserved bits were not used. This was manifested in the case of 
3D and 4D SVTs, where the child node mask size and leaf node size were 8b and 
16b for 3D and 4D SVTs, respectively. This allowed for a 37.5 percent and 25 
percent reduction in the size of the binary representation of the 3D and the 4D SVTs, 
respectively, compared to the version with a 32b alignment. For 5D to 8D 
dimensionality, the SVT nodes are naturally aligned to 32b without using any 
reserved bits, as in the first set of tests. Therefore, there was no change in the size 
of the binary representation of the 5D to 8D SVTs in the second set of tests. 

Table 4 shows the size of binary representation of the nD SVT in KB and the 
percentage of the size of this binary representation compared to the size of the 
binary representation of the uncompressed 3D scene geometry (1b/vox 3D grid). 

Table 5 shows the data related to the compression ratios, with two values given each 
time. The first value represents the ratio between the compression ratios obtained 
when coding the SVT in the corresponding dimensionality 𝑛𝑛 and in a lower 
dimensionality, i.e. 𝑛𝑛 − 1, e.g. 6D SVT and 5D SVT. The second value represents 
the ratio between the compression ratios obtained when coding the nD SVT in the 
corresponding dimensionality 𝑛𝑛 and in 3D, e.g. 6D SVT and 3D SVT. 

Table 4 
Size of the binary representation of the nD SVT in KB for test models and its ratio to the size of the 

geometry representation by 1b/vox 3D grid. Node components are not aligned to 32b. 

Angel Lucy 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT 

1283 
33 23 17 15 16 16 

13.04% 9.17% 6.76% 5.79% 6.24% 6.40% 

2563 
143 102 76 65 70 72 

6.99% 4.96% 3.69% 3.19% 3.42% 3.51% 

5123 
590 426 318 278 302 317 

3.60% 2.60% 1.94% 1.70% 1.85% 1.93% 

10243 (1K3) 
2380 1726 1297 1138 1259 1329 

1.82% 1.32% 0.99% 0.87% 0.96% 1.01% 
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20483 (2K3) 
9475 6901 5204 4574 5088 5386 

0.90% 0.66% 0.50% 0.44% 0.49% 0.51% 

40963 (4K3) 
37238 27257 20615 18166 20308 21558 
0.44% 0.32% 0.25% 0.22% 0.24% 0.26% 

 
Porsche 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT 

1283 
73 48 36 29 26 29 

28.53% 18.72% 14.21% 11.26% 10.29% 11.14% 

2563 
338 225 181 147 145 156 

16.49% 10.99% 8.85% 7.15% 7.10% 7.60% 

5123 
1476 993 814 664 671 775 

9.01% 6.06% 4.97% 4.05% 4.10% 4.73% 

10243 (1K3) 
6208 4203 3489 2877 2920 3440 

4.74% 3.21% 2.66% 2.20% 2.23% 2.62% 

20483 (2K3) 
25438 17348 14507 12021 12296 14692 
2.43% 1.65% 1.38% 1.15% 1.17% 1.40% 

40963 (4K3) 
101314 69678 58917 49030 50521 60923 
1.21% 0.83% 0.70% 0.58% 0.60% 0.73% 

 
Skull 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT 

1283 
116 85 63 54 58 61 

45.42% 33.02% 24.80% 21.02% 22.73% 23.88% 

2563 
478 350 264 225 251 266 

23.35% 17.08% 12.89% 11.00% 12.26% 12.97% 

5123 
1937 1424 1079 922 1033 1101 

11.82% 8.69% 6.59% 5.63% 6.31% 6.72% 

10243 (1K3) 
7758 5725 4353 3727 4199 4484 

5.92% 4.37% 3.32% 2.84% 3.20% 3.42% 

20483 (2K3) 
30649 22734 17344 14891 16847 18067 
2.92% 2.17% 1.65% 1.42% 1.61% 1.72% 

40963 (4K3) 
118338 88671 68027 58666 66782 71887 
1.41% 1.06% 0.81% 0.70% 0.80% 0.86% 

Table 5 
Size of the binary representation of the nD SVT in KB for test models and its ratio to the size of the 

geometry representation in the 1b/vox 3D grid. Node components are not aligned to 32b. 

Angel Lucy 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT 

1283 
1.00 1.42 1.36 1.17 0.93 0.98 
1.00 1.42 1.93 2.25 2.09 2.04 

2563 
1.00 1.41 1.34 1.16 0.93 0.97 
1.00 1.41 1.89 2.19 2.04 1.99 
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5123 
1.00 1.39 1.34 1.14 0.92 0.95 
1.00 1.39 1.85 2.12 1.95 1.86 

10243 (1K3) 
1.00 1.38 1.33 1.14 0.90 0.95 
1.00 1.38 1.84 2.09 1.89 1.79 

20483 (2K3) 
1.00 1.37 1.33 1.14 0.90 0.94 
1.00 1.37 1.82 2.07 1.86 1.76 

40963 (4K3) 
1.00 1.37 1.32 1.13 0.89 0.94 
1.00 1.37 1.81 2.05 1.83 1.73 

 
Porsche 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT 

1283 
1.00 1.52 1.32 1.26 1.09 0.92 
1.00 1.52 2.01 2.53 2.77 2.56 

2563 
1.00 1.50 1.24 1.24 1.01 0.93 
1.00 1.50 1.86 2.30 2.32 2.17 

5123 
1.00 1.49 1.22 1.23 0.99 0.87 
1.00 1.49 1.81 2.22 2.20 1.90 

10243 (1K3) 
1.00 1.48 1.20 1.21 0.99 0.85 
1.00 1.48 1.78 2.16 2.13 1.80 

20483 (2K3) 
1.00 1.47 1.20 1.21 0.98 0.84 
1.00 1.47 1.75 2.12 2.07 1.73 

40963 (4K3) 
1.00 1.45 1.18 1.20 0.97 0.83 
1.00 1.45 1.72 2.07 2.01 1.66 

 
Skull 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT 

1283 
1.00 1.38 1.33 1.18 0.92 0.95 
1.00 1.38 1.83 2.16 2.00 1.90 

2563 
1.00 1.37 1.33 1.17 0.90 0.95 
1.00 1.37 1.81 2.12 1.90 1.80 

5123 
1.00 1.36 1.32 1.17 0.89 0.94 
1.00 1.36 1.79 2.10 1.88 1.76 

10243 (1K3) 
1.00 1.36 1.32 1.17 0.89 0.94 
1.00 1.36 1.78 2.08 1.85 1.73 

20483 (2K3) 
1.00 1.35 1.31 1.16 0.88 0.93 
1.00 1.35 1.77 2.06 1.82 1.70 

40963 (4K3) 
1.00 1.33 1.30 1.16 0.88 0.93 
1.00 1.33 1.74 2.02 1.77 1.65 

Figure 6 shows ratio of the binary representation size of the nD SVT to the 3D SVT, 
for particular models and resolutions. The aforementioned significant size reduction 
of the 3D and 4D SVT binary representation was not sufficient to make these data 
structures more compact than the 5D SVT, as can be seen from the test results. Thus, 
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similarly to the first set of tests, for a given model and scene resolution, with an 
increase in the dimensionality of the SVT, the size of the binary representation of 
this data structure gradually decreased until it reached a minimum and then it 
increased again. 

An optimal SVT dimensionality can be found where the size of the SVT binary 
representation is the smallest. This optimum was also found in this test set for the 
6D and 7D SVTs, respectively, as it was found in the first test set. However, 
compared to the first test set, we achieved a lower compression ratio in this 
dimensionality than in the case of the 3D SVT (which corresponds to the SVO). 
This is due to the smaller size of the binary representation of the 3D SVT in this 
second set of tests. It ranged from 2.02 when using the 6D SVT for the scene 
containing the Skull model with a resolution of 40963 to 2.77 when using the 7D 
SVT for the scene containing the Porsche model with a resolution of 1283. 

 

 

 

Figure 6 
Ratio of the binary representation size of the nD SVT to the 3D SVT for the Angel Lucy, Porsche and 

Skull model, with optimal dimensionality indicated. Node components not aligned to 32b. 
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6 Discussion 
Increasing the dimensionality of a 3D scene results in two opposite tendencies when 
generating nD SVTs. The negative tendency is that as the dimensionality increases, 
the CHNM size of both internal and leaf nodes increases sharply, with the CHNM 
size of a node doubling for every increase in dimensionality by 1. Thus, the 256b 
CHNM of 8D SVT has a binary representation up to 32 times larger than the 8b 
CHNM of 3D SVT. The positive tendency is that as the dimensionality increases, 
the need to use reserved bits to align parts of the data structure nodes disappears in 
SVTs with higher dimensionalities, which means a reduction in the size of the 
binary representation by 24b compared to 3D and by 16b compared to 4D SVTs for 
each node, when aligning both internal and leaf nodes to 32b. At the same time, the 
reduction in the total number of nodes, and thus the number of pointers to particular 
child nodes, is also a positive trend. Every node 𝑢𝑢 (except the root node) of the data 
structure has a parent node 𝑝𝑝. The parent node has a pointer to this child node 𝑢𝑢. 
Thus, reducing the number of nodes by 1 means reducing the size of the binary 
representation of the data structure by the size of a child node mask and the size of 
a pointer to the child node. 

The size of the data structure 𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  can then be expressed as 

𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = (𝑛𝑛 +𝑚𝑚)  × 𝑆𝑆𝑆𝑆𝑁𝑁𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (𝑛𝑛 +𝑚𝑚− 1) × 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠       [𝑏𝑏] (2) 

where 

𝑛𝑛 is the number of internal nodes of the data structure 
𝑚𝑚 is the number of leaf nodes of the data structure 
𝑆𝑆𝑆𝑆𝑁𝑁𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the size of the child node mask in bits 
𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the size of the child node pointer in bits 

The optimal dimensionality of the nD SVT then becomes the one where these 
above-mentioned opposing tendencies - increase in CHNM size and reduction of 
the number of nodes and pointers to nodes - reach balance. 

All node components of the data structure are naturally aligned to 32 bits from the 
5D SVT. This satisfies the basic requirement for creating a GPU-friendly data 
structure. Traversing an nD SVT has linear time complexity 𝑆𝑆(𝑛𝑛), where 𝑛𝑛 is the 
number of nodes to be traversed. The number of operations required to process a 
single node remains the same regardless of SVT dimensionality. 

However, as dimensionality increases, the speed of node traversal is negatively 
impacted by the rapidly growing size of the CHNM (especially in 7D and 8D, where 
the CHNM length exceeds 64 bits) and by the increasing number of child pointers 
in the pointer array. As a result, the probability of cache misses increases. On the 
other hand, higher-dimensional SVTs require fewer levels to represent the same 
scene, thus reducing the total number of nodes that must be traversed from the root 
of the HDS to a leaf node. 
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Table 6 shows the traversal times (in µs) for all three tested models voxelized at a 
resolution of 10243 voxels. Traversal was performed in parallel for all active voxels 
in the scene, from the root of the nD SVT to their respective leaf nodes using 
NVIDIA GeForce RTX 3060 graphics card. 

Table 7 and Figure 7 present the ratios of traversal times between 3D and higher-
dimensional SVTs for the same model. In all tests, the 6D SVT proved to be the 
most efficient: traversal speed improved from 3D up to 6D, while in 7D and 8D, the 
need to process entities larger than 64 bits had a negative impact. 

Table 6 
nD SVT traversing time in µs for all active voxels in the scene with resolution of 10243 vox 

Time [µs]  3D 4D 5D 6D 7D 8D 
Angel Lucy 10243 99.4 89.1 75.8 73.7 158.8 244.7 

Porsche 10243 257.0 225.3 198.7 190.5 428.0 654.3 
Skull 10243 313.4 275.5 240.7 231.4 486.4 777.2 

Table 7 
Ratio between 3D and nD SVT traversing time for model voxelized to 10243 vox. resolution 

Ratio  3D 4D 5D 6D 7D 8D 
Angel Lucy 10243 1.00 1.12 1.31 1.35 0.63 0.41 

Porsche 10243 1.00 1.14 1.29 1.35 0.60 0.39 
Skull 10243 1.00 1.14 1.30 1.35 0.64 0.40 

 
Figure 7 

Ratio between nD and 3D SVT traversing time for model voxelized to 10243 vox. resolution 

Another potential direction for future research in this field is the application of 
dimensionality upscaling in combination with CSM, which will result in an nD 
SVDAG HDS. More robust nodes of nD SVT can have negative impact on the 
successful use of CSM. An alternative approach is the use of FBC, where multiple 
pointer lengths to child nodes are introduced, potentially reducing the memory 
footprint required for representing child node pointers. This approach assumes a 
negative impact of CHNM length doubling, which should be mitigated. 
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Conclusions 

This paper has addressed the problem of representing the geometry of voxelized 
three-dimensional scenes through hierarchical data structures. It has explored the 
possibility of using dimensionality upscaling of 3D scenes when these scenes can 
be transformed into scenes with a higher number of dimensions. The subsequent 
representation of the geometry of these scenes in the nD SVT hierarchical data 
structure can help to achieve a smaller size of the binary representation of the nD 
SVT, compared to the classical SVO. 

Tests on scenes generated by voxelizing initially polygonal surface models showed 
that the optimal results, i.e. the most compact binary representations, were obtained 
by upscaling the dimensionality to 6D and 7D, respectively. A 3.23 to 4.44 times 
more compact binary representation of the nD SVT compared to the classical three-
dimensional SVO was obtained for the nD SVT, where all parts of the nodes were 
aligned to 32b for all dimensionality versions. For the nD SVT without aligning all 
parts of the nodes to 32b for all dimensionality versions, a 2.02 to 2.77 times more 
compact binary representation of the nD SVT was achieved in comparison to the 
classical three-dimensional SVO. The 6D proved to be the optimal dimensionality 
in terms of traversing speed. 

In future research, related to dimensionality upscaling, the influence of other 
properties of hierarchical data structures ‒ the use of techniques such as Common 
Subtree Merge or Frequency Based Compaction, or the use of symmetry and other 
transformations ‒ on the achieved degree of compactness of the data structure is to 
be investigated. Special attention will be paid to the compaction of child node 
masks, as this becomes a limiting factor in nD SVTs in achieving a higher degree 
of compactness of its binary representation. 
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