
Acta Polytechnica Hungarica Vol. 22, No. 9, 2025

‒ 7 ‒

n-Dimensional Sparse Voxel Trees for Compact
Representation of Dimensionally Upscaled
Voxelized Three-Dimensional Scenes

Branislav Madoš, Heidar Khorshidiyeh, Martin Chovanec,
Norbert Ádám, Peter Poprík
Department of Computers and Informatics, Faculty of Electrical Engineering and
Informatics, Technical University in Košice, Letná 1/9, 042 00 Košice, Slovakia
branislav.mados@tuke.sk, heidar.khorshidiyeh@tuke.sk,
martin.chovanec@tuke.sk , norbert.adam@tuke.sk, peter.poprik@tuke.sk

Abstract: This paper addresses the issue of how to represent the geometry of voxelized three-
dimensional scenes using domain-specific hierarchical data structures. It provides a
comprehensive overview of these data structures, delving into the specifics of sparse voxel
octrees in greater depth. Then, it discusses the proposed use of dimensionality upscaling, i.e.
the transformation of a three-dimensional voxelized scene into a higher number of
dimensions, to enable the representation of the geometry of this scene via an n-dimensional
sparse voxel tree hierarchical data structure. This approach allows a smaller size of binary
representation of the 3D scene geometry – compared to its representation using a sparse
voxel octree. This is documented in the next section of the paper, where we summarize the
results of tests encoding the geometries of the respective scenes (based on voxelization of
polygonal surface models), into sparse voxel trees of different levels of dimensionality. We
achieved the highest compactness of the binary representation of the resulting data structure,
compared to the traditional sparse voxel octree (increase in compactness ranged from 2.02
to 4.44 times), using upscaling to 6D and 7D, respectively.

Keywords: polygonal surface model; geometry representation of voxelized scene; lossless
data compression; hierarchical data structure; sparse voxel octree

1 Introduction
When it comes to encoding of a binary representation of three-dimensional (3D)
scenes, in the field of computer graphics, there is an approach that involves creating
a 3D regular grid of volumetric picture elements (voxels). With this approach,
individual voxels (vox) may be assigned attributes, e.g. color, transparency or
material properties. To define the geometry of a voxelized 3D scene, one could use
an approach where each voxel is assigned 1𝑏𝑏. This determines whether the
corresponding voxel is passive (the bit is set to 0) or active (the bit is set to 1).

B. Madoš et al. n-Dimensional Sparse Voxel Trees for Compact Representation of
 Dimensionally Upscaled Voxelized Three-Dimensional Scenes

‒ 8 ‒

For 3D scenes with an 𝑥𝑥 × 𝑦𝑦 × 𝑧𝑧 voxel resolution, this approach produces a regular
𝑥𝑥 × 𝑦𝑦 × 𝑧𝑧 3D grid of 1𝑏𝑏 scalar values. This represents a significant amount of data,
as is clear from the example of a 3D scene with a resolution of 1024 × 1024 ×
1024 voxels (1𝐾𝐾3 vox), which requires a memory or secondary storage device
space of 1𝐺𝐺𝑏𝑏 (128𝑀𝑀𝑀𝑀). When doubling the scene size (measured in number of
voxels) in each of its axes (2𝐾𝐾3 vox), the data volume increases eight times. This
underscores the need for more compact representation of this information through
sophisticated ways of encoding, which are also forms of data compression.

Using universal compression algorithms for archiving or transmission (streaming)
would allow a decrease in the amount of data required. However, this approach
would not meet the expectation for an economic representation considering active
use of these structures, when stored in limited storage - the computer's operating
memory or the memory of the graphics card. A popular and frequently used solution
that meets also this requirement is the use of domain-specific hierarchical data
structures (HDSs) based on octant trees and directed acyclic graphs (DAGs), along
with the corresponding encoding algorithms. These HDSs store information about
voxels; the proportion of active voxels relative to their total number is expected to
be low — frequently as low as 0.01% of voxels — indicating that the scene is sparse.
Therefore, the corresponding HDSs are referred to as Sparse Voxel Octrees (SVOs),
if they are based on octant trees, or Sparse Voxel Directed Acyclic Graphs
(SVDAGs), if they are based on Directed Acyclic Graphs (DAGs).

Other HDSs have been derived from SVOs and SVDAGs, which have been further
optimized through the implementation of additional features. These features help
achieve increasingly compact encodings of the corresponding HDS at its binary
level. These features include, for example, the application of a mirroring
transformation or the introduction of multiple pointer types to child nodes with
different binary representation lengths. This made possible the use of Frequency
Based Compaction (FBC), which changes the order of nodes in the binary
representation of the HDS, according to the frequency of their referencing. Details
on this can be found in the Related Works section of this paper. The advantage of
using these domain-specific HDSs is that they can be traversed quickly.
The operations that need to be performed during it can be considered on-the-fly
HDS decompression. Another advantage is the ability to traverse the HDS up to any
selected level. This is useful for supporting the Level of Details (LOD) technique.

This paper is concerned with finding a more compact geometry of a voxelized 3D
scene representation. This is accomplished by rearranging the voxels of scene into
a regular grid with a higher dimensionality; then, a tree-based HDS with higher
number of dimensions is created for the geometry representation purpose.
The contribution of the paper is, therefore, in the proposal for the use of
dimensionality upscaling of voxelized 3D scenes to higher number of dimensions
to increase the compactness of their geometry representation through a
representation using n-Dimensional Sparse Voxel Trees (nD SVTs) as a generalized
form of Sparse Voxel Octrees.

Acta Polytechnica Hungarica Vol. 22, No. 9, 2025

‒ 9 ‒

2 Related Works
The use of hierarchical data structures as a means for economical representation of
2D data has been explored since the 1980s, when the use of quadtrees for image
compression was addressed in [1, 2]. The use of the Common Subtree Merge (CSM)
technique was also proposed [3]. The 2D Template-based Encoding (2DTE) data
structure, which was introduced in [4] and extended to 3D in [5], was based on this
principle. As with 2D images, the use of octant trees for the representation of 3D
data was already explored in the 1980s [6-8].

Modern SVO-based HDSs implementing pointers to child nodes used to represent
3D scenes include Efficient Sparse Voxel Octrees (ESVOs), which were proposed
by Laine and Karras in 2010 [9]. These have the advantage of having the capability
to replace entire subtrees of a data structure with contour information, which is
represented more economically at the binary level than the subtree being replaced.
In 2022, Madoš et al. [10] introduced Clustered Sparse Voxel Octrees (CSVOs).
This HDS offers a more significant compression of the 3D scene geometry by using
three different node types. Each node type is optimized for both the number and the
length of pointers to child nodes. In 2013, Baert et al. [11] introduced a two-step
out-of-core algorithm that allows the voxelization of a mesh of triangles, thus
obtaining an intermediate output, used to enable the efficient construction of SVO
HDSs. In 2015, Pätzold and Kolb [12] presented a voxelization algorithm that
produces SVOs directly, without an intermediate product.

DAG-based HDSs that use pointers to child nodes to represent 3D scenes include
High Resolution Sparse Voxel Directed Acyclic Graphs, or HR SVDAGs,
introduced by Kämpe et al. in 2013 [13]. These offer the possibility of compact
representation of identical subtrees through the Common Subtree Merge (CSM)
technique, where multiple instances of such a subtree are represented by only a
single instance of the subtree that is multi-referenced. All subnodes and whole
nodes of this HDS are aligned to 32b. In 2016, Villanueva et al. [14] introduced
Symmetry-aware Sparse Voxel Directed Acyclic Graphs (SSVDAGs). This data
structure enables CSM using a mirroring transformation and yields two pointer
lengths to child nodes – 16b and 32b. This innovation allows for an optimization
based on the frequency of referencing nodes – Frequency Based Compaction (FBC).
HDSs based on DAGs, without any implementation of pointers to child nodes
include Pointerless Sparse Voxel Directed Acyclic Graphs (PSVDAGs), introduced
by Vokorokos et al. in 2020 [15]. Subsequently, an algorithm for fast transformation
of PSVDAGs into SVDAGs was introduced by Madoš and Ádám in 2021 [16].

While the focus has been on HDSs with a lossless compression of 3D scene
geometry and attributes in the past, there is also interest in lossy compression. In
2020, van der Laan et al. [17] introduced an HDS based on SVDAGs that modifies
the subtrees to increase their degree of identity, thereby increasing the applicability
of CSM. Thus, lossy data compression is applied, hence the name of the proposed
HDS: Lossy Sparse Voxel Directed Acyclic Graphs (LSVDAGs).

B. Madoš et al. n-Dimensional Sparse Voxel Trees for Compact Representation of
 Dimensionally Upscaled Voxelized Three-Dimensional Scenes

‒ 10 ‒

The above HDSs are suitable for the representation of static scenes. However, even
a small change in the scene geometry may require a significant change in the binary
representation of the data structure, at the cost of its complete decompression,
execution of the change and its subsequent recompression. To avoid this issue,
Careil et al. [18] introduced an HDS called HashDAGs in 2020. This allows for
interactive changes to the DAG data structure without decompression or
recompression, making it compatible with the economical voxel attribute solution
presented in [19].

Two approaches are used to extend the above-mentioned HDSs to represent
additional attributes. The first introduces even more complex SVDAGs that
integrate geometry and other attribute information into a single SVDAG.
The second brings geometry compression using HDS with links to external data
structures, carrying additional information about other attributes. Solutions
integrating voxel color information, include MoxelDAG [20] and [18] [19] [21].
DAGs are also used to represent voxelized shadows in a compact form [22] [23].

3 Sparse Voxel Octrees
To efficiently encode SVO HDS, the dimensions of the represented 3D scene must
be 𝑁𝑁3; 𝑁𝑁 = 2𝑚𝑚, where 𝑚𝑚 ≥ 1; 𝑚𝑚 ∈ ℕ. The nodes forming the SVO are then
divided hierarchically into 𝑚𝑚 layers, which are assigned ordinal numbers from the
range < 0;𝑚𝑚 − 1 >. The layer of nodes containing the root node will have an
ordinal number of 0, and the layer of nodes containing the leaf nodes (LNODEs)
will have an ordinal number of 𝑚𝑚− 1. Nodes stored in layers with an ordinal
number from the interval < 0;𝑚𝑚 − 2 > are considered internal nodes (INODEs).

The 3D scene geometry is represented by a grid of 𝑁𝑁3 values with 1𝑏𝑏 size. This
grid will be represented in the adjacent SVO by a node embedded in a layer of nodes
with ordinal number 0 (the root node). This node will contain an 8b Child Node
Mask (CHNM) vector made up of eight 1b Header Tags (HTs). The CHNM is
constructed by decomposing the grid associated with this node into eight child
octants. For the root node, these child octants have (𝑁𝑁

2
)3 dimensions. For each child

octant, it is determined whether it is passive or active. A passive octant has all its
voxels passive (the corresponding geometry attribute is set to 0 for all its voxels).
An active octant contains at least one active voxel, which has the corresponding
geometry attribute set to 1. If the child octant is passive, it is assigned a 1b HT with
value 0 in the SVO node being constructed. If the child octant is active, it is assigned
a 1b HT with value 1 in the SVO node being constructed.

The order in which the child octants are ranked and the HTs are arranged in the
CHNM can be a matter of choice. In this paper, we use the Morton order.

There is no further information provided for the passive child octant.

Acta Polytechnica Hungarica Vol. 22, No. 9, 2025

‒ 11 ‒

Further, a recursive decomposition procedure is applied to each active child octant,
represented by the corresponding child grid, which origin was described above as
the decomposition of its parent grid. The active child octant will therefore have a
separate child node created and stored in a node layer of the data structure with an
incremented ordinal number in comparison to the ordinal number of parent node
layer (for the root node, this will result in child nodes stored in the node layer with
ordinal number 1). Therefore, the recursive decomposition of the active child
octants is executed, yielding nodes stored in layers with ordinal numbers from the
interval < 0;𝑚𝑚 − 1 >.

The recursive decomposition stops at nodes stored in layer 𝑚𝑚 − 1, which are called
leaf nodes (LNODEs) and are related to the octants of 2 × 2 × 2 voxels.
The potential child nodes of leaf node, which should represent child octants formed
by only a single voxel (a child octant of 1 × 1 × 1 voxel), will not be created.
The status of such voxel – whether it is passive (bit set to 0) or active (bit set to 1)
– is recorded directly to the related HT in the CHNM of the LNODE.

The data structure must also represent the relationship between the corresponding
HT set to 1 within the parent CHNM and its associated child node. This can be done
without the use of pointers – leading to Pointerless Sparse Voxel Octrees (PSVOs),
or with the use of pointers to child nodes – leading to Sparse Voxel Octrees (SVOs).

3.1 Pointerless Sparse Voxel Octrees
In the case of Pointerless Sparse Voxel Octrees, the relationship between the HT
located in the CHNM of the parent node and the associated child node is expressed
by the location of the binary representation of the child node immediately after the
binary representation of the corresponding HT of the parent node, as shown in
Figure 1. The size of a data structure's binary representation in bits is 8 × 𝑝𝑝, where
p is the total number of nodes of the data structure. This is because each node
includes only CHNM of 8b in size. While compact, this representation does not
allow for a fast traversal of the tree.

To formalize the binary representation of PSVOs, we used the Backus-Naur Form:

PSVO ::= <NODE>

NODE ::= <INODE> | <LNODE>

INODE ::= (8)<HT>

HT ::= "0" | "1"<NODE>

LNODE ::= (8)<BIT>

BIT ::= "0" | "1"

where the following applies:

<SYM> - a mandatory non-terminal symbol SYM

B. Madoš et al. n-Dimensional Sparse Voxel Trees for Compact Representation of
 Dimensionally Upscaled Voxelized Three-Dimensional Scenes

‒ 12 ‒

"sym" - terminal symbol sym

(n)<SYM> - the SYM symbol, concatenated n-times

(n)*(m)<SYM> - the SYM symbol, concatenated n to m times

| - alternative

Figure 1
A 2D-space (for simplification of the example) discretized into 4 × 4 picture elements: a) with active

pixels marked in blue; b) depicted as a quadrant tree; c) depicted in binary representation, with the
decomposition of the respective quadrants indicated using parentheses; d) the final binary

representation of the quadrant tree

3.2 Sparse Voxel Octrees
When creating SVO HDSs with pointers to existing child nodes, the binary
representation of an array of pointers (PTS) is concatenated in the parent node after
its CHNM. This array contains pointers (PTs) to the existing child nodes of the
parent node. Every active child node has its own associated HT with a value of 1 in
the CHNM of the parent node. The order of the PTs in the PTS is the same as the
order of the HTs with value 1 in the CHNM. Each INODE must have at least one
child node and may have a maximum of eight. Therefore, the number of PTs in the
PTS is variable, and is from the interval <1;8>.

To formalize the binary representation of SVOs, we used the Backus-Naur Form:

SVO ::= (n)<NODE>

NODE ::= <INODE>|<LNODE>

INODE ::= <CHNM>(p)<BIT><PTS>

LNODE ::= <CHNM>(q)<BIT>

CHNM ::= (8)<HT>

PTS ::= (1)*(8)<PT>

PT ::= (r)<BIT>

HT ::= <BIT>

BIT ::= "0" | "1"

Acta Polytechnica Hungarica Vol. 22, No. 9, 2025

‒ 13 ‒

The BNF above uses the parameters p, r, and q. The parameters p and q determine
the number of reserved bits that are added to align the CHNM to the desired number
of bits. Parameter p is used for INODEs, parameter q for LNODEs. The parameter
r determines the number of bits used to encode a pointer to a child node. By selecting
these parameters correctly, one can align the size of parts of nodes or even whole
nodes. For example, by setting the parameters as p = 24, q = 24, and r = 32, one can
align all node parts and entire nodes to 32 bits. Figure 2 illustrates an example of a
data structure setup (for the purpose of clarity, we used 2D).

The clear advantage of using pointers to child nodes is that they allow for quick
traversal of the SVO. The disadvantage is that the binary representation of the
internal nodes of the data structure will be significantly larger. This can be
calculated as the ratio between the length of binary representation of the internal
node of the SVO and the PSVO, according to the following equation:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

=
𝑝𝑝 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑛𝑛 × 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
=
𝑝𝑝 + 8 + 𝑛𝑛 × 𝑟𝑟

8
 (1)

where n is the number of PTs in the PTS.

For the above=mentioned setting where 𝑝𝑝 = 24, 𝑞𝑞 = 24 and 𝑟𝑟 = 32, the
SVOINODEsize is 64b if there is one child node. This value can grow to 288b if
there are 8 child nodes. There is an 8-to-36 times increase in the size of SVO internal
nodes compared to PSVO internal nodes. Even in a theoretical minimalist setting,
which would not be sufficient for representing 3D scenes where 𝑝𝑝 = 0, 𝑞𝑞 = 0 and
𝑟𝑟 = 8 (aligned to 8b), this increase is in the range of 2 to 9 times.

Figure 2
An example of encoding a 2D space into an SVO, with the parameters set to 𝑝𝑝 = 𝑞𝑞 = 0 and 𝑟𝑟 = 8,

where (a) is a 4 × 4 pixel 2D-scene; (b) is a binary representation of the SVO with addresses marked in
blue and represented in decimal notation for simplicity and better visualization

The increase in the size of the SVO leaf node in comparison to the PSVO leaf node,
can be calculated according to the following equation:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

=
𝑞𝑞 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
=
𝑞𝑞 + 8

8
 (2)

If the parameter q is set to 24, the size of the binary representation of the SVO leaf
node is up to four times larger in comparison to PSVO. Conversely, if q is set to 0,
the sizes of their binary representations are identical.

B. Madoš et al. n-Dimensional Sparse Voxel Trees for Compact Representation of
 Dimensionally Upscaled Voxelized Three-Dimensional Scenes

‒ 14 ‒

4 Dimensionality Scaling Principle
Pixels of 2D image or voxels of 3D image arranged in a regular 2D or 3D grid,
respectively, as well as any data arranged in an n-dimensional regular grid, can be
rearranged into a linear (1D) form. This can be achieved through the use of Space
Filling Curves (SFCs). A prominent example of an SFC used in the field of
computer graphics is the Morton Space Filling Curve (MSFC), also referred to as
the Morton order or Z-order. This was initially proposed by G. M. Morton [24] in
1966. Another prevalent SFC is the Hilbert Space Filling Curve (HSFC), which was
initially proposed by D. Hilbert in 1935 [25].

For images composed of voxels stored in a regular three-dimensional grid with a
dimension of N × N × N voxels, where N = 2𝑚𝑚, m ≥ 1, N, m ∈ ℕ, each voxel has
three coordinates, X, Y and Z, while X ∈< 0; 2𝑚𝑚 − 1 >, Y ∈< 0; 2𝑚𝑚 − 1 > and Z ∈
< 0; 2𝑚𝑚 − 1 >, X, Y, Z ∈ ℕ +. From these three coordinates, it is possible to
construct the so-called Morton coordinate M by interleaving bits of the coordinates,
with M ∈< 0; 23𝑚𝑚 − 1 >, M ∈ ℕ +. This Morton coordinate then determines the
position of the voxel in the linearized (1D) form of the image information.

Figure 3
Transformation of coordinates: a) X, Y, Z 3D to M 1D, b) M 1D to X, Y 2D and c) M 1D to X, Y, Z, Q

4D

As an illustration, consider the construction of a Morton coordinate for a voxel that
is part of a 16 × 16 × 16 voxel image. Each voxel coordinate is composed of four
bits, specifically X(3:0), Y(3:0), and Z(3:0). The Morton coordinate M is
constructed from the 12 bits of M(11:0). This process is depicted in Figure 3(a).

Similarly, the inverse procedure can also be implemented, whereby the Morton
coordinate of a specific voxel, representing its position in the linearized voxel
stream, is converted to n coordinates to obtain the position of that voxel in n-
dimensional space. It is possible to determine the number of dimensions in this
space, which is given by the value of n, where 𝑛𝑛 ∈ ℕ. Figure 3(b) demonstrates how
a 12-bit Morton coordinate is transformed into two 6-bit X, Y coordinates of 2D
space. Figure 3(c) illustrates the transformation of the same 12-bit Morton
coordinate into 3-bit X, Y, Z, Q coordinates of 4D space.

Acta Polytechnica Hungarica Vol. 22, No. 9, 2025

‒ 15 ‒

If 𝑛𝑛 and 𝑚𝑚 represent the dimensionality of 𝑛𝑛𝑆𝑆 and 𝑚𝑚𝑆𝑆 space, respectively, it is
possible to demonstrate the transformation of the 𝑛𝑛 coordinates of the picture
element from 𝑛𝑛𝑆𝑆 space to the 1𝑆𝑆 Morton coordinate 𝑀𝑀 (𝑛𝑛𝑆𝑆 → 1𝑆𝑆) and
subsequently, the 1D Morton coordinate can be transformed to the 𝑚𝑚 coordinates
of 𝑚𝑚𝑆𝑆 space (1𝑆𝑆 → 𝑚𝑚𝑆𝑆). This process may be interpreted as a change in
dimensionality from 𝑛𝑛𝑆𝑆 to 𝑚𝑚𝑆𝑆(𝑛𝑛𝑆𝑆 → 𝑚𝑚𝑆𝑆).

Just as one can construct an octant tree (SVO) to a 3D grid of voxels storing
information about 3D scene geometry, in a manner analogous to this, a quadrant
tree may be constructed for 2D space, a binary tree for 1D space, a hexadeca tree
for 4D space, and so on. Thus, it can be posited that an n-dimensional Sparse Voxel
Tree (nD SVT) can be constructed for an nD grid. In order to formalize the binary
representation of nD SVTs, we used the BNF:

SVT ::= (n) <NODE>
NODE ::= <INODE> | <LNODE>
INODE ::= <CHNM>(p) <BIT><PTS>
LNODE ::= <CHNM>(q) <BIT>
CHNM ::= (2D)<HT>
PTS ::= (1)*(2D)<PT>
PT ::= (r)<BIT>
HT ::= <BIT>
BIT ::= "0" | "1"

Where D is the dimensionality of the SVT.

For INODEs of such SVTs, the size of their CHNM equals to 2D, and the number
of pointers to child nodes can be in the range of < 1; 2D >. For LNODEs, the size of
their CHNM is 2D. This value is doubled by increasing D by 1. Consequently, if a
3D SVT node has a CHNM size of 8b, a 4D SVT node has a CHNM size of 16b.

Considering a scene in nD, having a dimensionality of n, transformed into a scene
in mD having a dimensionality of m, then the following can be said:

• if 𝑛𝑛 > 𝑚𝑚, we refer to the transformation as dimensionality downscaling,
• while if 𝑛𝑛 < 𝑚𝑚, we refer to the transformation as dimensionality upscaling.

If the scene geometry is represented by an 𝑛𝑛𝑆𝑆 SVT with a corresponding
dimensionality of 𝑛𝑛 and the target is a representation of the same scene by an 𝑚𝑚𝑆𝑆
SVT, with a corresponding dimensionality of 𝑚𝑚, then the dimensionality of the SVT
is reduced (downscaled) if 𝑛𝑛 > 𝑚𝑚 and increased (upscaled) if 𝑛𝑛 < 𝑚𝑚, respectively.

If the representation of the scene geometry in 𝑚𝑚𝑆𝑆 space is created by transforming
a representation of the scene geometry in 𝑛𝑛𝑆𝑆 space (𝑛𝑛𝑆𝑆 → 𝑚𝑚𝑆𝑆), then if 𝑔𝑔𝑛𝑛 is the
voxel geometry information of a particular voxel from the 𝑛𝑛𝑆𝑆 space, where the
Morton coordinate of the particular voxel is 𝑀𝑀𝑛𝑛 and 𝑔𝑔𝑚𝑚 is the voxel geometry
information of the voxel from 𝑚𝑚𝑆𝑆 space, where the Morton coordinate of the voxel
is 𝑀𝑀𝑚𝑚, and it is assumed that 𝑀𝑀𝑛𝑛 = 𝑀𝑀𝑚𝑚, then 𝑔𝑔𝑛𝑛 = 𝑔𝑔𝑚𝑚. Thus, if a voxel 𝑣𝑣𝑛𝑛 with a

B. Madoš et al. n-Dimensional Sparse Voxel Trees for Compact Representation of
 Dimensionally Upscaled Voxelized Three-Dimensional Scenes

‒ 16 ‒

Morton coordinate 𝑀𝑀 in 𝑛𝑛𝑆𝑆 space is passive, the voxel 𝑣𝑣𝑚𝑚 with the same Morton
coordinate 𝑀𝑀 in 𝑚𝑚𝑆𝑆 space will also be passive. Conversely, if 𝑣𝑣𝑛𝑛 is active, 𝑣𝑣𝑚𝑚 will
also be active. By traversing the related nD SVT and mD SVT using the same
Morton coordinate specification for the target voxel in both cases allows for the
acquisition of identical information about its geometry.

In the case of nD SVTs with different dimensionalities, which are equivalent
representations of the geometry of the same 3D scene, the binary representations of
these structures usually have different sizes. We may attempt to find the optimal
number of dimensions of the SVT that represents the geometry of a given scene
with a minimum binary size. The next section of the paper deals with this search in
the case of scenes generated by voxelizing polygonal surface models.

5 Test Results and Discussion
This section of the paper summarizes results of tests. Subsection 5.1 describes the
respective scenes used for testing. Subsection 5.2 summarizes the results obtained
in terms of the size of the nD SVT binary representation for the respective models,
3D scene sizes and degrees of dimensionality upscaling. Subsection 5.3 discusses
the sources of the compression gains.

5.1 Datasets
Tests were performed using three 3D polygonal surface models composed of
triangles that were voxelized into six scenes (resolutions were ranging from 1283 to
40963). This process resulted into 18 test scenes. For each scene, active voxels were
then extracted, their coordinates were transformed into 64b Morton addresses and
those were sorted in ascending order and stored in a file. Finally, list of active voxels
was then transformed into nD SVT HDS with different dimensionality for
respective scene. The detailed parameters of the respective 3D scenes are shown in
Table 1; their visualizations are depicted in Figure 4. Tests were performed using
NVIDIA GeForce RTX 3060, 12 GB GDDR6.

Table 1
Characteristics of the 3D scenes created by embedding polygonal surface models stored in the

WaveFront Technologies OBJ geometry definition file format into these scenes and then voxelizing
them to various resolutions. Table summarizes the total number of voxels in the scenes, the number of

active voxels and their percentage considering the total number of voxels, for each model and
resolution.

Resolution
Resolution 1283 2563 5123 10243 20483 40963

Voxels [106] 2 16 128 1024 8192 65,536

Acta Polytechnica Hungarica Vol. 22, No. 9, 2025

‒ 17 ‒

Angel Lucy—488,880 triangles
Active voxels [103] 22.48 91.52 366.58 1453.10 5685.86 21,656.43

[%] 1.07 0.55 0.27 0.14 0.07 0.03
Skull—80,016 triangles

Active voxels [103] 74.10 298.85 1192.04 4688.08 17,958.71 64,608.51
[%] 3.53 1.78 0.89 0.44 0.21 0.09

Porsche—22,011 triangles
Active voxels [103] 54.20 233.04 969.11 3938.35 15,539.54 58,673.98

[%] 2.58 1.39 0.72 0.37 0.18 0.09

Figure 4
Visualization of the voxelized scenes used for testing purposes: (a) “Angel Lucy” at 5123; (b) “Skull”

at 5123; (c) “Porsche” at 5123.

5.2 Test Results
In the tests, the geometries of the Angel Lucy, Porsche, and Skull scenes were
encoded into SVTs of varying dimensionality, ranging from three dimensions (3D
SVT, equivalent to SVO) to eight dimensions (8D SVT). In the first set of tests, for
both internal and leaf nodes of the SVT, we maintained the alignment of all parts of
the nodes, and thus of the nodes as a whole, at a length of 32b across all versions of
SVTs, from 3D SVTs to 8D SVTs. Pointers to child nodes in all SVTs – as far as
their dimensionality is concerned – always had a binary representation length of
32b. The CHNM length of both internal and leaf nodes had to be aligned.

The CHNM size of the internal node as well as the size of the leaf node was set to
8b in the case of 3D SVT. Adding 24 reserved bits was used to make them match
32b. The CHNM size of the internal node as well as the size of the leaf node was
set to 16b in the case of 4D SVT. Adding 16 reserved bits was used to make them
match 32b. For SVTs with dimensionality from 5D to 8D, their internal node
CHNM lengths as well as leaf node lengths are already naturally aligned to 32b as
their lengths are 32b, 64b, 128b, and 256b, respectively, thus no reserved bits are
used in the construction of the nodes, both internal and leaf nodes.

Table 2 shows, for each model, scene resolution and dimensionality of the nD SVT,
the size of the binary representation of the corresponding nD SVT in KB and the
percentage of the size of this binary representation compared to the size of the
binary representation of the uncompressed 3D scene geometry (1b/vox 3D grid).

B. Madoš et al. n-Dimensional Sparse Voxel Trees for Compact Representation of
 Dimensionally Upscaled Voxelized Three-Dimensional Scenes

‒ 18 ‒

Table 3 shows, for each model, scene resolution and dimensionality of the nD SVT
the data related to the compression ratios, with two values given each time. The first
value represents the ratio between the compression ratios obtained when coding the
nD SVT in the corresponding dimensionality 𝑛𝑛 and in a lower dimensionality, i.e.
𝑛𝑛 − 1, e.g. 6D SVT and 5D SVT. The second value represents the ratio between the
compression ratios obtained when coding the nD SVT in the corresponding
dimensionality 𝑛𝑛 and in 3D, e.g. 6D SVT and 3D SVT. The 3D SVT column always
has a value of 1.00. Figure 5 shows ratio of the binary representation size of the nD
SVT to the 3D SVT, for particular models and resolutions.

As it showed in the results obtained, for a given model and scene resolution, it is
always true that with an increase in the dimensionality of the SVT HDS, the size of
the binary representation of this data structure gradually decreased until it reached
a minimum and then it increased again. Thus, an optimal SVT dimensionality can
be found where the size of the SVT binary representation is the smallest and thus
the compression ratio is the highest in comparison to SVO (equivalent to 3D SVT).
This optimum was found in this set of tests for 6D SVT and 7D SVT, respectively,
when the compression ratio in a given dimensionality compared to the compression
ratio in 3D SVT ranged from 3.23 when using 6D SVO for a scene containing the
Skull model with a resolution of 40963 to 4.44 when using 7D SVO for a scene
containing the Porsche model with a resolution of 1283.

Table 2
Size of the binary representation of the nD SVT in KB for test models and its ratio to the size of the

geometry representation in the 1b/vox 3D grid. Node components are aligned to 32b.

Angel Lucy 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT

1283
53 31 17 15 16 16

20.87% 12.22% 6.76% 5.79% 6.24% 6.40%

2563
229 135 76 65 70 72

11.18% 6.61% 3.69% 3.19% 3.42% 3.51%

5123
944 567 318 278 302 317

5.76% 3.46% 1.94% 1.70% 1.85% 1.93%

10243 (1K3)
3808 2301 1297 1138 1259 1329

2.91% 1.76% 0.99% 0.87% 0.96% 1.01%

20483 (2K3)
15600 9201 5204 4574 5088 5386
1.49% 0.88% 0.50% 0.44% 0.49% 0.51%

40963 (4K3)
59562 36342 20615 18166 20308 21558
0.71% 0.43% 0.25% 0.22% 0.24% 0.26%

Porsche 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT

1283
117 64 36 29 26 29

45.64% 24.96% 14.21% 11.26% 10.29% 11.14%

2563
540 300 181 147 145 156

26.38% 14.65% 8.85% 7.15% 7.10% 7.60%

Acta Polytechnica Hungarica Vol. 22, No. 9, 2025

‒ 19 ‒

5123
2361 1324 814 664 671 775

14.41% 8.08% 4.97% 4.05% 4.10% 4.73%

10243 (1K3)
9932 5605 3489 2877 2920 3440

7.58% 4.28% 2.66% 2.20% 2.23% 2.62%

20483 (2K3)
40700 23131 14507 12021 12296 14692
3.88% 2.21% 1.38% 1.15% 1.17% 1.40%

40963 (4K3)
162103 92904 58917 49030 50521 60923
1.93% 1.11% 0.70% 0.58% 0.60% 0.73%

Skull 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT

1283
186 113 63 54 58 61

72.68% 44.03% 24.80% 21.02% 22.73% 23.88%

2563
765 467 264 225 251 266

37.35% 22.78% 12.89% 11.00% 12.26% 12.97%

5123
3100 1899 1079 922 1033 1101

18.92% 11.59% 6.59% 5.63% 6.31% 6.72%

10243 (1K3)
12413 7633 4353 3727 4199 4484
9.47% 5.82% 3.32% 2.84% 3.20% 3.42%

20483 (2K3)
49038 30311 17344 14891 16847 18067
4.68% 2.89% 1.65% 1.42% 1.61% 1.72%

40963 (4K3)
189341 118228 68027 58666 66782 71887
2.26% 1.41% 0.81% 0.70% 0.80% 0.86%

Table 3
The ratio of the size of the nD SVT to the n-1D SVT and the ratio of the size of the nD SVT to the 3D

SVT, for test models. Node components are aligned to 32b.

Angel Lucy 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT

1283
1.00 1.71 1.81 1.17 0.93 0.98
1.00 1.71 3.09 3.61 3.35 3.26

2563
1.00 1.69 1.79 1.16 0.93 0.97
1.00 1.69 3.03 3.50 3.27 3.19

5123
1.00 1.66 1.78 1.14 0.92 0.95
1.00 1.66 2.96 3.39 3.12 2.98

10243 (1K3)
1.00 1.65 1.77 1.14 0.90 0.95
1.00 1.65 2.94 3.35 3.02 2.87

20483 (2K3)
1.00 1.70 1.77 1.14 0.90 0.94
1.00 1.70 3.00 3.41 3.07 2.90

40963 (4K3)
1.00 1.64 1.76 1.13 0.89 0.94
1.00 1.64 2.89 3.28 2.93 2.76

B. Madoš et al. n-Dimensional Sparse Voxel Trees for Compact Representation of
 Dimensionally Upscaled Voxelized Three-Dimensional Scenes

‒ 20 ‒

Porsche 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT

1283
1.00 1.83 1.76 1.26 1.09 0.92
1.00 1.83 3.21 4.05 4.44 4.10

2563
1.00 1.80 1.65 1.24 1.01 0.93
1.00 1.80 2.98 3.69 3.72 3.47

5123
1.00 1.78 1.63 1.23 0.99 0.87
1.00 1.78 2.90 3.56 3.52 3.05

10243 (1K3)
1.00 1.77 1.61 1.21 0.99 0.85
1.00 1.77 2.85 3.45 3.40 2.89

20483 (2K3)
1.00 1.76 1.59 1.21 0.98 0.84
1.00 1.76 2.81 3.39 3.31 2.77

40963 (4K3)
1.00 1.74 1.58 1.20 0.97 0.83
1.00 1.74 2.75 3.31 3.21 2.66

Skull 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT

1283
1.00 1.65 1.78 1.18 0.92 0.95
1.00 1.65 2.93 3.46 3.20 3.04

2563
1.00 1.64 1.77 1.17 0.90 0.95
1.00 1.64 2.90 3.39 3.05 2.88

5123
1.00 1.63 1.76 1.17 0.89 0.94
1.00 1.63 2.87 3.36 3.00 2.81

10243 (1K3)
1.00 1.63 1.75 1.17 0.89 0.94
1.00 1.63 2.85 3.33 2.96 2.77

20483 (2K3)
1.00 1.62 1.75 1.16 0.88 0.93
1.00 1.62 2.83 3.29 2.91 2.71

40963 (4K3)
1.00 1.60 1.74 1.16 0.88 0.93
1.00 1.60 2.78 3.23 2.84 2.63

Acta Polytechnica Hungarica Vol. 22, No. 9, 2025

‒ 21 ‒

Figure 5
Ratio of the binary representation size of the nD SVT to the 3D SVT for the Angel Lucy, Porsche and

Skull model, with optimal dimensionality indicated. Node components not aligned to 32b.

In the second set of tests, the same models and the same scene sizes were used.
However, the alignment to 32b was not maintained for each of the SVT
dimensionalities. Reserved bits were not used. This was manifested in the case of
3D and 4D SVTs, where the child node mask size and leaf node size were 8b and
16b for 3D and 4D SVTs, respectively. This allowed for a 37.5 percent and 25
percent reduction in the size of the binary representation of the 3D and the 4D SVTs,
respectively, compared to the version with a 32b alignment. For 5D to 8D
dimensionality, the SVT nodes are naturally aligned to 32b without using any
reserved bits, as in the first set of tests. Therefore, there was no change in the size
of the binary representation of the 5D to 8D SVTs in the second set of tests.

Table 4 shows the size of binary representation of the nD SVT in KB and the
percentage of the size of this binary representation compared to the size of the
binary representation of the uncompressed 3D scene geometry (1b/vox 3D grid).

Table 5 shows the data related to the compression ratios, with two values given each
time. The first value represents the ratio between the compression ratios obtained
when coding the SVT in the corresponding dimensionality 𝑛𝑛 and in a lower
dimensionality, i.e. 𝑛𝑛 − 1, e.g. 6D SVT and 5D SVT. The second value represents
the ratio between the compression ratios obtained when coding the nD SVT in the
corresponding dimensionality 𝑛𝑛 and in 3D, e.g. 6D SVT and 3D SVT.

Table 4
Size of the binary representation of the nD SVT in KB for test models and its ratio to the size of the

geometry representation by 1b/vox 3D grid. Node components are not aligned to 32b.

Angel Lucy 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT

1283
33 23 17 15 16 16

13.04% 9.17% 6.76% 5.79% 6.24% 6.40%

2563
143 102 76 65 70 72

6.99% 4.96% 3.69% 3.19% 3.42% 3.51%

5123
590 426 318 278 302 317

3.60% 2.60% 1.94% 1.70% 1.85% 1.93%

10243 (1K3)
2380 1726 1297 1138 1259 1329

1.82% 1.32% 0.99% 0.87% 0.96% 1.01%

B. Madoš et al. n-Dimensional Sparse Voxel Trees for Compact Representation of
 Dimensionally Upscaled Voxelized Three-Dimensional Scenes

‒ 22 ‒

20483 (2K3)
9475 6901 5204 4574 5088 5386

0.90% 0.66% 0.50% 0.44% 0.49% 0.51%

40963 (4K3)
37238 27257 20615 18166 20308 21558
0.44% 0.32% 0.25% 0.22% 0.24% 0.26%

Porsche 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT

1283
73 48 36 29 26 29

28.53% 18.72% 14.21% 11.26% 10.29% 11.14%

2563
338 225 181 147 145 156

16.49% 10.99% 8.85% 7.15% 7.10% 7.60%

5123
1476 993 814 664 671 775

9.01% 6.06% 4.97% 4.05% 4.10% 4.73%

10243 (1K3)
6208 4203 3489 2877 2920 3440

4.74% 3.21% 2.66% 2.20% 2.23% 2.62%

20483 (2K3)
25438 17348 14507 12021 12296 14692
2.43% 1.65% 1.38% 1.15% 1.17% 1.40%

40963 (4K3)
101314 69678 58917 49030 50521 60923
1.21% 0.83% 0.70% 0.58% 0.60% 0.73%

Skull 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT

1283
116 85 63 54 58 61

45.42% 33.02% 24.80% 21.02% 22.73% 23.88%

2563
478 350 264 225 251 266

23.35% 17.08% 12.89% 11.00% 12.26% 12.97%

5123
1937 1424 1079 922 1033 1101

11.82% 8.69% 6.59% 5.63% 6.31% 6.72%

10243 (1K3)
7758 5725 4353 3727 4199 4484

5.92% 4.37% 3.32% 2.84% 3.20% 3.42%

20483 (2K3)
30649 22734 17344 14891 16847 18067
2.92% 2.17% 1.65% 1.42% 1.61% 1.72%

40963 (4K3)
118338 88671 68027 58666 66782 71887
1.41% 1.06% 0.81% 0.70% 0.80% 0.86%

Table 5
Size of the binary representation of the nD SVT in KB for test models and its ratio to the size of the

geometry representation in the 1b/vox 3D grid. Node components are not aligned to 32b.

Angel Lucy 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT

1283
1.00 1.42 1.36 1.17 0.93 0.98
1.00 1.42 1.93 2.25 2.09 2.04

2563
1.00 1.41 1.34 1.16 0.93 0.97
1.00 1.41 1.89 2.19 2.04 1.99

Acta Polytechnica Hungarica Vol. 22, No. 9, 2025

‒ 23 ‒

5123
1.00 1.39 1.34 1.14 0.92 0.95
1.00 1.39 1.85 2.12 1.95 1.86

10243 (1K3)
1.00 1.38 1.33 1.14 0.90 0.95
1.00 1.38 1.84 2.09 1.89 1.79

20483 (2K3)
1.00 1.37 1.33 1.14 0.90 0.94
1.00 1.37 1.82 2.07 1.86 1.76

40963 (4K3)
1.00 1.37 1.32 1.13 0.89 0.94
1.00 1.37 1.81 2.05 1.83 1.73

Porsche 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT

1283
1.00 1.52 1.32 1.26 1.09 0.92
1.00 1.52 2.01 2.53 2.77 2.56

2563
1.00 1.50 1.24 1.24 1.01 0.93
1.00 1.50 1.86 2.30 2.32 2.17

5123
1.00 1.49 1.22 1.23 0.99 0.87
1.00 1.49 1.81 2.22 2.20 1.90

10243 (1K3)
1.00 1.48 1.20 1.21 0.99 0.85
1.00 1.48 1.78 2.16 2.13 1.80

20483 (2K3)
1.00 1.47 1.20 1.21 0.98 0.84
1.00 1.47 1.75 2.12 2.07 1.73

40963 (4K3)
1.00 1.45 1.18 1.20 0.97 0.83
1.00 1.45 1.72 2.07 2.01 1.66

Skull 3D SVT 4D SVT 5D SVT 6D SVT 7D SVT 8D SVT

1283
1.00 1.38 1.33 1.18 0.92 0.95
1.00 1.38 1.83 2.16 2.00 1.90

2563
1.00 1.37 1.33 1.17 0.90 0.95
1.00 1.37 1.81 2.12 1.90 1.80

5123
1.00 1.36 1.32 1.17 0.89 0.94
1.00 1.36 1.79 2.10 1.88 1.76

10243 (1K3)
1.00 1.36 1.32 1.17 0.89 0.94
1.00 1.36 1.78 2.08 1.85 1.73

20483 (2K3)
1.00 1.35 1.31 1.16 0.88 0.93
1.00 1.35 1.77 2.06 1.82 1.70

40963 (4K3)
1.00 1.33 1.30 1.16 0.88 0.93
1.00 1.33 1.74 2.02 1.77 1.65

Figure 6 shows ratio of the binary representation size of the nD SVT to the 3D SVT,
for particular models and resolutions. The aforementioned significant size reduction
of the 3D and 4D SVT binary representation was not sufficient to make these data
structures more compact than the 5D SVT, as can be seen from the test results. Thus,

B. Madoš et al. n-Dimensional Sparse Voxel Trees for Compact Representation of
 Dimensionally Upscaled Voxelized Three-Dimensional Scenes

‒ 24 ‒

similarly to the first set of tests, for a given model and scene resolution, with an
increase in the dimensionality of the SVT, the size of the binary representation of
this data structure gradually decreased until it reached a minimum and then it
increased again.

An optimal SVT dimensionality can be found where the size of the SVT binary
representation is the smallest. This optimum was also found in this test set for the
6D and 7D SVTs, respectively, as it was found in the first test set. However,
compared to the first test set, we achieved a lower compression ratio in this
dimensionality than in the case of the 3D SVT (which corresponds to the SVO).
This is due to the smaller size of the binary representation of the 3D SVT in this
second set of tests. It ranged from 2.02 when using the 6D SVT for the scene
containing the Skull model with a resolution of 40963 to 2.77 when using the 7D
SVT for the scene containing the Porsche model with a resolution of 1283.

Figure 6
Ratio of the binary representation size of the nD SVT to the 3D SVT for the Angel Lucy, Porsche and

Skull model, with optimal dimensionality indicated. Node components not aligned to 32b.

Acta Polytechnica Hungarica Vol. 22, No. 9, 2025

‒ 25 ‒

6 Discussion
Increasing the dimensionality of a 3D scene results in two opposite tendencies when
generating nD SVTs. The negative tendency is that as the dimensionality increases,
the CHNM size of both internal and leaf nodes increases sharply, with the CHNM
size of a node doubling for every increase in dimensionality by 1. Thus, the 256b
CHNM of 8D SVT has a binary representation up to 32 times larger than the 8b
CHNM of 3D SVT. The positive tendency is that as the dimensionality increases,
the need to use reserved bits to align parts of the data structure nodes disappears in
SVTs with higher dimensionalities, which means a reduction in the size of the
binary representation by 24b compared to 3D and by 16b compared to 4D SVTs for
each node, when aligning both internal and leaf nodes to 32b. At the same time, the
reduction in the total number of nodes, and thus the number of pointers to particular
child nodes, is also a positive trend. Every node 𝑢𝑢 (except the root node) of the data
structure has a parent node 𝑝𝑝. The parent node has a pointer to this child node 𝑢𝑢.
Thus, reducing the number of nodes by 1 means reducing the size of the binary
representation of the data structure by the size of a child node mask and the size of
a pointer to the child node.

The size of the data structure 𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 can then be expressed as

𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = (𝑛𝑛 +𝑚𝑚) × 𝑆𝑆𝑆𝑆𝑁𝑁𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (𝑛𝑛 +𝑚𝑚− 1) × 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 [𝑏𝑏] (2)

where

𝑛𝑛 is the number of internal nodes of the data structure
𝑚𝑚 is the number of leaf nodes of the data structure
𝑆𝑆𝑆𝑆𝑁𝑁𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the size of the child node mask in bits
𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the size of the child node pointer in bits

The optimal dimensionality of the nD SVT then becomes the one where these
above-mentioned opposing tendencies - increase in CHNM size and reduction of
the number of nodes and pointers to nodes - reach balance.

All node components of the data structure are naturally aligned to 32 bits from the
5D SVT. This satisfies the basic requirement for creating a GPU-friendly data
structure. Traversing an nD SVT has linear time complexity 𝑆𝑆(𝑛𝑛), where 𝑛𝑛 is the
number of nodes to be traversed. The number of operations required to process a
single node remains the same regardless of SVT dimensionality.

However, as dimensionality increases, the speed of node traversal is negatively
impacted by the rapidly growing size of the CHNM (especially in 7D and 8D, where
the CHNM length exceeds 64 bits) and by the increasing number of child pointers
in the pointer array. As a result, the probability of cache misses increases. On the
other hand, higher-dimensional SVTs require fewer levels to represent the same
scene, thus reducing the total number of nodes that must be traversed from the root
of the HDS to a leaf node.

B. Madoš et al. n-Dimensional Sparse Voxel Trees for Compact Representation of
 Dimensionally Upscaled Voxelized Three-Dimensional Scenes

‒ 26 ‒

Table 6 shows the traversal times (in µs) for all three tested models voxelized at a
resolution of 10243 voxels. Traversal was performed in parallel for all active voxels
in the scene, from the root of the nD SVT to their respective leaf nodes using
NVIDIA GeForce RTX 3060 graphics card.

Table 7 and Figure 7 present the ratios of traversal times between 3D and higher-
dimensional SVTs for the same model. In all tests, the 6D SVT proved to be the
most efficient: traversal speed improved from 3D up to 6D, while in 7D and 8D, the
need to process entities larger than 64 bits had a negative impact.

Table 6
nD SVT traversing time in µs for all active voxels in the scene with resolution of 10243 vox

Time [µs] 3D 4D 5D 6D 7D 8D
Angel Lucy 10243 99.4 89.1 75.8 73.7 158.8 244.7

Porsche 10243 257.0 225.3 198.7 190.5 428.0 654.3
Skull 10243 313.4 275.5 240.7 231.4 486.4 777.2

Table 7
Ratio between 3D and nD SVT traversing time for model voxelized to 10243 vox. resolution

Ratio 3D 4D 5D 6D 7D 8D
Angel Lucy 10243 1.00 1.12 1.31 1.35 0.63 0.41

Porsche 10243 1.00 1.14 1.29 1.35 0.60 0.39
Skull 10243 1.00 1.14 1.30 1.35 0.64 0.40

Figure 7

Ratio between nD and 3D SVT traversing time for model voxelized to 10243 vox. resolution

Another potential direction for future research in this field is the application of
dimensionality upscaling in combination with CSM, which will result in an nD
SVDAG HDS. More robust nodes of nD SVT can have negative impact on the
successful use of CSM. An alternative approach is the use of FBC, where multiple
pointer lengths to child nodes are introduced, potentially reducing the memory
footprint required for representing child node pointers. This approach assumes a
negative impact of CHNM length doubling, which should be mitigated.

Acta Polytechnica Hungarica Vol. 22, No. 9, 2025

‒ 27 ‒

Conclusions

This paper has addressed the problem of representing the geometry of voxelized
three-dimensional scenes through hierarchical data structures. It has explored the
possibility of using dimensionality upscaling of 3D scenes when these scenes can
be transformed into scenes with a higher number of dimensions. The subsequent
representation of the geometry of these scenes in the nD SVT hierarchical data
structure can help to achieve a smaller size of the binary representation of the nD
SVT, compared to the classical SVO.

Tests on scenes generated by voxelizing initially polygonal surface models showed
that the optimal results, i.e. the most compact binary representations, were obtained
by upscaling the dimensionality to 6D and 7D, respectively. A 3.23 to 4.44 times
more compact binary representation of the nD SVT compared to the classical three-
dimensional SVO was obtained for the nD SVT, where all parts of the nodes were
aligned to 32b for all dimensionality versions. For the nD SVT without aligning all
parts of the nodes to 32b for all dimensionality versions, a 2.02 to 2.77 times more
compact binary representation of the nD SVT was achieved in comparison to the
classical three-dimensional SVO. The 6D proved to be the optimal dimensionality
in terms of traversing speed.

In future research, related to dimensionality upscaling, the influence of other
properties of hierarchical data structures ‒ the use of techniques such as Common
Subtree Merge or Frequency Based Compaction, or the use of symmetry and other
transformations ‒ on the achieved degree of compactness of the data structure is to
be investigated. Special attention will be paid to the compaction of child node
masks, as this becomes a limiting factor in nD SVTs in achieving a higher degree
of compactness of its binary representation.

Acknowledgement

This work was supported by KEGA Agency of the Ministry of Education, Science,
Research, and Sport of the Slovak Republic under Grant No. 015TUKE-4/2024
Modern Methods and Education Forms in the Cybersecurity Education.

References

[1] Hunter, G. M.; Steiglitz, K.: Operations on Images Using Quad Trees. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-1,
1979, No. 2, pp. 145-153, doi: 10.1109/TPAMI.1979.4766900

[2] Kawaguchi, E.; Endo, T.: On a Method of Binary Picture Representation and
Its Application to Data Compression. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-2, 1980, No. 1, pp. 27-35,
doi:10.1109/TPAMI.1980.4766967

[3] Webber, R. E.; Dillencourt, M. B.: Compressing Quadtrees via Common
Subtree Merging. Pattern Recognition Letters, Vol. 9, 1989, No. 3, pp. 193-
200, doi:10.1016/0167-8655(89)90054-8

B. Madoš et al. n-Dimensional Sparse Voxel Trees for Compact Representation of
 Dimensionally Upscaled Voxelized Three-Dimensional Scenes

‒ 28 ‒

[4] Chang, H. K.: C.—Liu, S.-H.; Tso, C.-K.: Two-Dimensional Template-
Based Encoding for Linear Quadtree Representation. Photogrammetric
Engineering and Remote Sensing, Vol. 63, 1997, No. 11, pp. 1275-1282

[5] Parker, E.; Udeshi, T.: Exploiting Self-Similarity in Geometry for Voxel
Based Solid Modeling. Proceedings of the Eighth ACM Symposium on Solid
Modeling and Applications (SM ’03), 2003, pp. 157-166, doi:
10.1145/781606.781631

[6] Srihari, S. N.: Representation of Three Dimensional Digital Images.
Technical Report No. 162, Department of Computer Science, State
University of New York at Bufallo, Amherst, New York, pp. 26, 1980

[7] Rubin, S. M.; Whitted, T.: A 3-Dimensional Representation for Fast
Rendering of Complex Scenes. Proceedings of the 7th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’80), ACM,
1980, pp. 110-116, doi: 10.1145/800250.807479

[8] Tanimoto, S. L.: OctTrees and Their Use in Representing Three-Dimensional
Objects. Computer Graphics and Image Processing, Vol. 14, 1980, No. 3, pp.
249-270, doi: 10.1016/0146-664X(80)90055-6

[9] Laine, S.; Karras, T. Efficient Sparse Voxel Octrees-Analysis, Extensions,
and Implementation, NVIDIA Technical Report NVR-2010-001, NVIDIA
Corporation, Santa Clara, USA, 2010; p. 30

[10] Madoš, B.; Chovancová, E.; Chovanec, M.; Ádám, N. CSVO: Clustered
Sparse Voxel Octrees—A Hierarchical Data Structure for Geometry
Representation of Voxelized 3D Scenes. Symmetry 2022, 14, 2114,
https://doi.org/10.3390/sym14102114

[11] Baert, J.; Lagae, A.; Dutré, Ph. Out-of-Core Construction of Sparse Voxel
Octrees. In Proceedings of the 5th High-Performance Graphics Conference
(HPG ’13), Anaheim, CA, USA, 19-21 July, 2013, pp. 27-32,
https://doi.org/10.1145/2492045.2492048

[12] Pätzold, M.; Kolb, A. Grid-free out-of-core voxelization to sparse voxel
octrees on GPU. In Proceedings of the 7th Conference on High-Performance
Graphics (HPG '15), Los Angeles, CA, USA, 7-9 August 2015, pp. 95-103,
ISBN 9781450337076, https://doi.org/10.1145/2790060.2790067

[13] Kämpe, V.; Sintorn, E.; Assarson, U. High Resolution Sparse Voxel DAGs.
ACM Transactions on Graphics 2013} 32, pp. 1-13, ISSN 0730-0301,
https://doi.org/10.1145/2461912.2462024

[14] Villanueva, A. J.; Marton, F.; Gobetti, E. Symmetry-aware Sparse Voxel
DAGs (SSVDAGs) for compression-domain tracing of high-resolution
geometric scene. {\em J. Comput. Graph. Tech. (JCGT)} 2017, 6, p. 30,
http://jcgt. org/ published/0006/02/01

Acta Polytechnica Hungarica Vol. 22, No. 9, 2025

‒ 29 ‒

[15] Vokorokos, L.; Madoš, B.; Bilanová, Z. PSVDAG: Compact Voxelized
Representation of 3D Scenes Using Pointerless Sparse Voxel Directed
Acyclic Graphs. Computing and Informatics, 2020, 39, pp. 587-616, ISSN
1335-9150 (print) https://doi.org/10.31577/cai_2020_3_587

[16] Madoš, B.; Ádám, N. Transforming Hierarchical Data Structures-A
PSVDAG-SVDAG Conversion Algorithm. Acta Polytechnica Hungarica,
2021, 18, pp. 47-66, ISSN 1785-8860, doi.org/10.12700/ APH.18.8.2021.8.3

[17] van der Laan, R.; Scandolo, L.; Eisemann, E. Lossy Geometry Compression
for High Resolution Voxel Scenes. Proc. of the ACM on Comp. Graph. and
Inter. Techniques 2020, p. 13, ISSN 2577-6193, doi.org/10.1145/3384541

[18] Careil, V.; Billeter, M.; Eisemann, E. Interactively Modifying Compressed
Sparse Voxel Representations. In Computer Graphics Forum, 2020, 39, pp.
111-119, ISSN 0167-7055, https://doi.org/10.1111/cgf.13916

[19] Dolonius, D.; Sintorn, E.; Kämpe,V.; Assarsson, U. Compressing Color Data
for Voxelized Surface Geometry. IEEE Transactions on Visualization and
Computer Graphics 2019, 25, pp. 1270-1282, ISSN 1077-2626,
https://doi.org/10.1109/TVCG.2017.2741480

[20] Williams, R. B. Moxel DAGs: Connecting Material Information to High
Resolution Sparse Voxel DAGs. Master Thesis, California Polytechnic State
University, San Luis Obispo, USA, 2015, doi.org/10.15368/theses.2015.112

[21] Dado, B.; Timothy R. K.; Bauszat, P.; Thiery J.-M.; Eisemann, E. Geometry
and Attribute Compression for Voxel Scenes. In Proceedings of the 37th
Annual Conference of the European Association for Computer Graphics,
Lisbon, Portugal, 9-13 May 2016; pp. 397-407

[22] Sintorn, E.; Kämpe, V.; Olsson, O.; Assarson U. Compact precomputed
voxelized shadows. ACM Transactions on Graphics 2014, 33, p. 8, ISSN
0730-0301, https://doi.org/10.1145/2601097.2601221

[23] Kämpe, V.; Sintorn, E.; Assarson U. Fast, Memory-Efficient Construction of
Voxelized Shadows. In Proceedings of the 19th Symposium on Interactive
3D Graphics and Games, San Francisco, CA, USA, 27 Feb.-1 Mar. 2015; pp.
25-30, ISBN 978-1-4503-3392-4, doi.org/10.1145/2699 276.2699284

[24] Morton, G. M. A Computer Oriented Geodetic Data Base and a New
Technique in File Sequencing, Research Report. International Business
Machines Corporation (IBM), Ottawa, Canada, 1 March 1966; p. 20

[25] Hilbert, D. \Via the continuous mapping of a line onto a patch of area (Über
die stetige Abbildung einer Linie auf ein Flächenstück). Dritter Band:
Analysis Grundlagen der Mathematik Physik Verschiedenes; Springer,
Germany, 1935; ISBN 978-3-662-37657-7; ISBN 978-3-662-38452-7

	1 Introduction
	2 Related Works
	3 Sparse Voxel Octrees
	3.1 Pointerless Sparse Voxel Octrees
	3.2 Sparse Voxel Octrees

	4 Dimensionality Scaling Principle
	5 Test Results and Discussion
	5.1 Datasets
	5.2 Test Results
	6 Discussion

