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Abstract: Photovoltaic electroluminescence (EL) testing is one of the most effective
methods for assessing the condition of solar panels. The process of analysing a large
number of samples requires the application of artificial intelligence (Al). In recent years,
many experiments using machine learning have been carried out. ChatGPT is basically a
language model developed for conversation and communication. At the same time, it is also
suitable for recognizing and studying images. The main goal was to teach the identification
of completely inactive photovoltaic cells. The learning methodology was built up from
increasingly difficult trials and tests. By the end of the process, the Al demonstrated
improvement, as it was able to identify more defective cells.
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1 Introduction

In recent years, many methods for assessing the condition of photovoltaic (PV)
panel systems have been developed. These can be divided into in-situ and ex-situ
groups. The advantage of in-situ, i.e., on-site, condition assessments without
dismantling or intervention, is that they minimally influence the operation of the
system. Thermographic error detection can be considered such a method. During
the ex-situ condition assessment, by dismantling the system, the system
components can be subjected to further tests, which in laboratory conditions give
an accurate and detailed picture of the cause and extent of the failures. Multiple
field audits and reliability reports indicate that a large share of PV projects in
operation exhibit issues that warrant corrective action, while module-level
inspections frequently report double-digit defect rates. For example, a 2025
industry audit found major issues in 85% of projects [1], and a thermographic
survey of 3.3 million modules reported 36.6% defective modules [2].
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To capture a PV electroluminescence (EL) image, the silicon layer of the PV
panel must emit light instead of absorbing it. This is achieved by applying voltage
to the module during the test, which causes current to flow, so the module
operates as a consumer instead of a generator. Today’s increasingly popular LED
light sources emit visible light when operated as consumers, but the silicon cells
of PV panels emit near-infrared radiation that is invisible to the human eye.
Detecting defects in PV cells requires a camera that detects this radiation and
makes it visible. Functional (bright) and non-functional (dark) cell regions can be
clearly distinguished in such recordings [3-5].

High-resolution cameras are required to detect narrow microcracks. When the
resolution is high, a single image may suffice to show the entire module. For
lower resolutions, the camera moves across the panel using a scanning
mechanism, capturing several images that are later stitched together by software.
Alignment errors and other artefacts may occur during this process, degrading
image quality. Modern equipment often includes software-based image analysis
and defect detection capabilities [6] [7].

Electroluminescence testing provides a detailed and vivid picture of the condition
of an entire PV module. However, analysing large EL images can be a time-
consuming process for human experts. This raises the question of whether
artificial intelligence could assist in this task. ChatGPT, a large language model
developed by OpenAl, was selected for the study. The model is based on the
Generative Pre-trained Transformer (GPT) architecture, a deep neural network
designed for text generation. ChatGPT can engage in real-time communication
with humans through natural language processing and text generation. It has been
applied across diverse fields, including mechanical, medical, economic, and social
research [7] [8].

ChatGPT learns from extensive text databases, recognising patterns and contexts
to provide relevant and meaningful responses. It is useful in areas including e-
commerce, marketing, education, programming, translation, research, and
entertainment. Nevertheless, it is important to note that ChatGPT’s responses may
be biased, as its training data are created by humans. It may generate inaccurate or
misleading content and should not replace human judgment. ChatGPT remains
under active development, and its results should be interpreted critically [9] [10].

Although convolutional neural networks (CNNs) are generally the most suitable
tools for image analysis tasks such as electroluminescence image evaluation, our
research was conducted within a short university project aimed at exploring how
the use of ChatGPT might influence academic research and education. Within this
framework, the idea emerged to test whether ChatGPT, primarily a language-
based model, could interpret visual data when presented with EL images and to
evaluate the nature of its responses. This unconventional approach served as both
a technical experiment and an educational example of how Al tools can be applied
creatively in academic contexts.
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2 The First Conversation with ChatGPT

Currently, one of the biggest challenges is that the language used by users is
accurately understood by Al algorithms and gives the best answer. One of the
terms that users need to understand is prompt engineering. A prompt is the input
or instruction that we feed into the language model to get the best answer.
The more specific and nuanced our prompt is, the better solution (answer) we will
get from the system. The answer can be text, image, sound, video or even a line of
code. Prompt engineering is the process of designing how to best instruct the
language model, providing appropriate context and guidance. The more detailed
and specific the input we provide, the better the answer we get [11] [12].

During the first conversation, we showed an EL image (Figure 1) that we made in
a laboratory of the University of Miskolc with a modified Nikon Coolpix B700
digital camera. We then asked ChatGPT what it knew about PV
electroluminescence.

Figure 1

EL image of an average defective PV panel

ChatGPT immediately recognized that the attachment was an EL image of a PV
panel. It added a small textual explanation related to the picture, how it should be
made, and how it should be interpreted. After that, we asked what else it knew
about the EL test. The Al provided a much more detailed answer, in which, among
other things, it presented the most common types of PV cell failures.

We continued the conversation with Scholar GPT. Scholar GPT is a specialized
version of ChatGPT tailored for academic and research-focused tasks. While basic
ChatGPT handles general conversational tasks, Scholar GPT is equipped with
advanced tools for scholarly research, data analysis, academic writing, and
searching for academic papers.

In several test cases, we instructed ChatGPT to find a limited number of defective
cells instead of all of them. This approach was intentional: our aim was not to
achieve full defect detection accuracy but to evaluate how ChatGPT’s
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comprehension and precision evolved with increasing task complexity. The focus
of the study was therefore on the learning process and communication refinement
rather than comprehensive image segmentation.

2.1 ChatGPT's Knowledge in the Field of Photovoltaic
Electroluminescence

ChatGPT has broad knowledge in the field of PV electroluminescence. The Al
already knew that the brighter areas suggest good material quality and uniformity
(Figure 1), which generally indicate a well-functioning cell. However, it is
important to perform a detailed analysis to confirm the absence of defects such as
cracks, shunts, or other irregularities that could affect the cell's performance.
The uniform brightness and the natural appearance of crystal grains without dark
spots or irregular patterns are positive signs. In the EL image shown in Figure 1,
dark regions typically correspond to areas where the cell is not emitting infrared
radiation effectively, which can be due to several reasons:

e Inactive Areas: Portions of the cell might be inactive due to issues like poor
material quality, broken connections, or shunting.

e Cracks or Microcracks: These defects can severely impact the performance
by interrupting the current flow, leading to localized inactive regions.

e Shunts: These are pathways that allow current to bypass parts of the cell,
leading to reduced overall efficiency and dark areas in EL images.

e Degradation: Over time, solar cells can degrade due to environmental factors
or material fatigue, leading to reduced performance as seen in darker EL
images.

In electroluminescence (EL) imaging of Figure 1, this kind of dark image typically
indicates that the cell is not emitting any significant infrared radiation (inactive),
which means it is not generating electricity effectively. There are several possible
reasons for this:

e Complete Electrical Disconnection: The cell might have lost electrical
contact entirely, meaning no current is flowing through it.

e Severe Material Degradation: The cell materials could be so degraded that
they no longer support proper electron flow.

e Major Shunting: There could be significant shunts that are causing the
current to bypass the cell entirely, resulting in the lack of luminescence.

e Cracking or Fracture: If the cell is physically damaged, such as by cracking,
this could disrupt the entire cell's functionality.
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2.2. Application of ChatGPT to Analyse Photovoltaic
Electroluminescence Images

ChatGPT can provide support in several aspects of solar EL image analysis:

Preprocessing EL Images: This includes noise reduction, contrast
enhancement, and image normalization to prepare the images for further
analysis.

Defect Detection and Classification: Using image processing techniques or
machine learning models to identify and classify defects in solar cells.

Quantitative Analysis: Measuring the size, area, and intensity of defects to
quantify their impact on the solar cell's performance.

Visualization: Creating visual representations of the defects and their
distribution across the solar cell or module.

Automation: Implementing automated scripts or workflows for processing
large sets of EL images.

Subsequently, we attempted to apply the Al for image analysis, but it did not
perform successfully. We shared another EL image that contained inactive cells,
and we asked in the instructions to mark the inactive cells on a generated image.
Figure 2 shows that the Al did not correctly identify the inactive cells when the
panel was divided into 10 columns and 6 rows [13-15]. The cell locations were
marked by the Al: B2, C1, D3, D4, H5 and H6. However, the true location of
inactive cells is A2, B2, C3, D4, I3 and J6. Only B2 and D4 were correct answers.
The percentage of correct answers was 33.34%.

Figure 2
The result of the first image analysis
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3 The Training Process for Examining EL Images

For training purposes, Figure 2 was divided into smaller sections to improve the
Al’s performance. In the first step, we showed standard examples for both fault-
free and inactive cells. Then we showed small images consisting of 4 cells. After
that, bigger pictures, which consisted of 9 cells. We made sure that the Al
received precise instructions. Additionally, it received feedback for both correct
and incorrect answers. At the end of the training process, the Al had to analyse an
even larger image consisting of 15 cells.

3.1 Trial Testing

In the first step of the teaching process, we showed the Al pictures of three fault-
free, functional PV cells (Figure 3). Each image was accompanied by a brief
instruction describing that fault-free cells appear bright in EL images. In the
images we captured, fault-free cells are characterized by mostly white and grey
tones. Crystal grains can be observed on it, the occurrence of which is natural in
EL images. Also, the busbars can be observed (three horizontal lines inside the
cell in the pictures), which are essential to produce electricity and the progress of
the electric current. Scholar GPT analysed the images and interpreted the
information attached to the images [16] [17]. It repeated them in text, indicating
the successful interpretation and processing of the data.

; it —————
Rbedebl o 7, o Laine, D0 2 od

fault-free sample 01 fault-free sample 02 fault-free sample 03
inactive sample 01 inactive sample 02 inactive sample 03
Figure 3

Images of error-free and inactive cell samples for identification

In the next step, we showed the Al a picture of the three completely inactive, non-
functioning PV cells (Figure 3). For the images, Scholar GPT has been given a
text description such as that non-functioning cells are dark, mostly characterized
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by black colour. Typically, no other distinguishing features can be observed in the
continuous homogeneous black area. There may be cases when the image of the
busbars can be discovered. Scholar GPT analysed the images and interpreted the
information attached to the images. It repeated them in text, indicating the
interpretation and processing of the data.

trial sample 01 trial sample 02 trial sample 03

Figure 4
Samples of the trial testing

In the third step, the pilot test could begin. Three EL images were selected for
image analysis with ChatGPT. The main aspect of the selection was that the Al
could detect the difference between inactive and fault-free cells. Three trial
images were analysed (Figure 4). The trial samples are actually image fragments,
which are structured in the same way in each case. They consist of four cells in
two columns (A and B) and two rows (1 and 2). In all three trial test images, a
different pattern can be observed regarding the position of error-free and inactive
cells. Since the purpose of the application of Al is to find errors and analyse EL
images, the instructions were aimed at identifying inactive cells in all three cases.

In the first trial image, the location of the faulty cell is A2. This sample was easily
analysed by Scholar GPT. It should be emphasized that the textual instruction
revealed that only one of the four cells is completely inactive. The Al had to look
for a completely black cell and found it. The Al generated an image on which the
location of the inactive cell was marked with a red square, as well as justified and
provided the solution in text.

The second trial test sample already contains two completely inactive cells. In the
text instruction, it was only highlighted that in this case the AI must find more
faulty cells. We did not mention the exact number of inactive cells. After
analysing and processing the image, the Al again gave a textual justification and
determined the location of the two faulty cells, which are Al and B2. The Al
generated another image, on which it perfectly marked the location of the inactive
cells with red squares.

The third trial test sample, like the second one, contains two completely inactive
cells. In the text instruction, it was again emphasized that in this case too, the Al
must find several defective cells. We did not mention the exact number of inactive
cells. After analysing and processing the image, the Al again gave a textual
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justification and determined the location of the two faulty cells, which are Al and
B1. The Al generated another image, on which it perfectly marked the location of
the inactive cells with red squares in Figure 5. The trial tests were successful
overall, in all three cases the Al correctly entered the location of the inactive cell
or cells in text form on the first try. In all three cases, Scholar GPT generated an
image that accurately marked and determined the position of the inactive cells. At
the same time, the Al answers served as positive feedback, according to which all
instructions were well explained during the learning process so far.

15 trial test result 2" trial test result 3" trial test result

Figure 5
Results of the trial testing

3.2 Analysing More Complex Images

At this point, we thought the Al was ready to be given one level more difficult
tasks. The three samples of the first serious analysis were built from 9 and 15 cells
(Figure 6 and 7). In the next two samples, the PV cells were arranged in three
columns (A to C) and three rows (1 to 3). We continued to strive for the Al to
encounter patterns where there is a significant difference between black, defective
and light cells. A similarity can be discovered between the sample intended for the
first analysis and the second trial test sample.

In this case, two of the nine cells are inactive in the lower part of the image. We
did not mention the exact number of inactive cells, but the wording revealed that
you should find more than one. The Al identified three inactive cells: A2, B3, and
C2. The result can be seen in Figure 6 (a). This was the first incorrect solution of
the learning process, and the generated image was not perfectly accurate either.

We corrected Scholar GPT directly, specifying that A2 and B3 were inactive. We
have determined that, contrary to its assessment, cell C2 is functional, just as Al,
A3, B1, B2, CI and C3 are also functional. We instructed the Al to incorporate
our corrections and regenerate the image. In the corrected answer, it identified
only the two truly inactive cells and placed only two red squares on the
regenerated image. We tried to draw its attention to the fact that the size and
position of the red squares it used as markings were not perfect, but the generated
image was still not perfect in Figure 6 (b).
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Meanwhile, we came up with the idea that maybe the AI misinterprets the cell
boundaries and can be misled by the busbars. However, in another text instruction,
we asked for the resizing of the red squares (e.g. 1.2 times larger squares are
needed), then the AI marked the inoperable cells with larger squares on the
modified image, but the positioning of the red squares was not yet perfect in
Figure 6 (c). In the following instruction, we marked the cell boundaries and the
location of inactive cells on an edited image. We instructed the Al to divide the
image into nine equal parts. Scholar GPT interpreted it as the latter image should
be used and corrected this correctly when generating the image in Figure 6 (d).

PR T S oo

Figure 6

Correction of identification of inactive cells

The sample used for the second analysis also consists of nine cells but already
contains three inactive cells. We did not specify the exact number of inactive cells,
but the prompt implied that more than one should be found. The AI correctly
identified three inactive cells by name: A1, B1 and C2. In this case, the solution to
the problem is completely correct, the text answer is correct. On the other hand,
the size and placement of the red squares in the generated image were not
perfectly accurate this time either in Figure 7 (a).

As a solution, we defined a unit size, among the input instructions we specified
how many units wide the entire image is and how many units wide a cell is. Thus,
the Al received the information (a ratio) it needed to find its way around the
images. After that, the Al placed the squares perfectly in Figure 7 (b).
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(v ——

Figure 7
Results of the second sample for test analysis

This was followed by examination of the image of a larger panel consisting of 15
cells. In the panel of Figure 8, the PV cells are arranged in five columns (A to E)
and three rows (1 to 3). The panel has four inactive cells, the locations of which
are Al, B1, C2 and D3. ScholarGPT's task was once again to find and mark
inactive cells. This time, when the image was generated, the placement and size of
the red squares matched the dimensions of the cells. The Al correctly identified
three of the four inactive cells but marked cell El as inactive instead of Bl in
Figure 8 (a). Recognizing our previous mistake here, as we only showed the Al
very clear error-free cells, we misled it. We created a colour scale showing that
there is a wide range of brightness for a defect-free cell in Figure 8 (c).
Furthermore, we explained again that we are looking for inactive cells that cannot
emit photons and are completely black in colour. Understanding this, the Al
generated the correct decipherment, which became accurate in every respect.
The four inactive cells were correctly identified, the inactive cells A1, B1, C2 and
D3 were marked on the generated image with appropriately sized and well-
positioned squares in Figure 8 (b).

Figure 8

Results of the third sample for test analysis
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4 The Last Test

In the final test, we showed Figure 2 to the Al again. The Al needed much more
time to perform the analysis than for smaller images. The image of the largest
panel consisted of 60 cells. In the panel of Figure 9, the PV cells are arranged in
ten columns (A to J) and six rows (1 to 6). The panel has six inactive cells, the
locations of which are A2, B2, C3, D4, 13 and J6. The percentage of correct
answers was 50% (A2, B2 and J6), which number is higher than in Figure 2.

Figure 9
Result of the final test analysis

Finally, the AI received feedback on both correct and incorrect results. It
generated a new image, which was still imperfect, although the Al correctly
identified cell C3. In this case, the percentage of correct answers was 66.67%.
The applicability of ChatGPT, including Scholar GPT, to the analysis of PV
electroluminescence images was not continued. It can be said that ChatGPT has
improved in EL damage identification.
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Figure 10

Result of the final test analysis after correction
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Conclusions

The research started with the aim of testing whether ChatGPT could replace a
human, when analysing PV electroluminescence images. At the beginning of the
conversation initiated with Al, we were able to make sure that it has detailed
information on the topic. However, ChatGPT was not primarily developed for the
feeding of images, but rather, for conversation and communication. During the
learning process, we tried to identify inactive cells. In the first image analysis, the
Al’s accuracy was only 16.7%.

After that, we initiated another conversation and started the teaching process.
Initially with simpler tests, then with more complex analyses. The first trial tests
went well when we showed the Al an image consisting of a total of 4 cells. When
images consisting of larger 9 and 15 cells followed, it happened that the Al
incorrectly identified cells, but this could be corrected. There were difficulties
during the process, and it turned out to be very instructive for us as well, when we
experienced how to communicate with Al. A good example is when it had to learn
to interpret the cell boundaries. The experience gained in this field will be very
useful if we want to continue this research in the future.

In the final test, when we showed the very first sample again (Figure 9), the
Scholar GPT already achieved a better 50% result. After correction, this value
increased to 66.7%, which is overall, a significant improvement compared to the
first analysis (Figure 2). Future research could extend this work to include the
detection of partially inactive cells (such as cracks, fractures, finger interruptions)
exhibiting grey-to-black transitions (potential induced degradation), which could
be highlighted with yellow markings on the generated images.

Acknowledgement

SUPPORTED BY THE UNKP-23-4 NEW NATIONAL EXCELLENCE PROGRAM OF THE
MINISTRY FOR CULTURE AND INNOVATION FROM THE SOURCE OF THE NATIONAL
RESEARCH, DEVELOPMENT AND INNOVATION FUND

s
Ev::;!:'«gr MINISTRY OF CULTURE
! AND INNOVATION

References

[1] HelioVolta, SolarGrade PV Health Report — State of PV Systems 2025,
HelioVolta Inc., (2025) Available online:
https://www.heliovolta.com/solargrade-pv-health-report-2025 (accessed
October 2025)

[2] Dhimish, M., Badran, G. Investigating defects and annual degradation in
UK solar PV installations through thermographic and electroluminescent
surveys. npj Mater Degrad 7, 14 (2023) https://doi.org/10.1038/s41529-
023-00331-y

-160 -



Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

(3]

(6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Redondo-Plaza, A.; Morales-Aragonés, J. 1.; Gallardo-Saavedra, S.; Mateo-
Romero, H. F.; Araujo-Rendén, S.; Zorita-Lamadrid, A. L.; Alonso-
Gomez, V.; Hernandez-Callejo, L. Passive Electroluminescence and
Photoluminescence Imaging Acquisition of Photovoltaic Modules.
Sensors 2024, 24, 1539, https://doi.org/10.3390/s24051539

Xiangying Xie, Guangzhi Lai, Meiyue You, Jianming Liang, Biao Leng
Effective transfer learning of defect detection for photovoltaic module cells
in electroluminescence images, Solar Energy 250 (2023) 312-323

Vishal E. Puranik, Ravi Kumar, Rajesh Gupta Progress in module level
quantitative electroluminescence imaging of crystalline silicon PV module:
A review, Solar Energy, Volume 264, 1 November 2023, 111994

Daniyar Kaliyev, Olga Shvets, Gyorgy Gyorok, Computer Vision-based
Fire Detection using Enhanced Chromatic Segmentation and Optical Flow
Model, Acta Polytechnica Hungarica Vol. 20, No. 6, 2023

Kresimir Romi¢, Irena Gali¢, Hrvoje Leventi¢, Marija Habijan Pedestrian
Crosswalk Detection Using a Column and Row Structure Analysis in
Assistance Systems for the Visually Impaired, Acta Polytechnica
Hungarica Vol. 18, No. 7, 2021

Haque, M. A., Li, S. Exploring ChatGPT and its impact on society. Al
Ethics (2024) https://doi.org/10.1007/s43681-024-00435-4

P. Handa, D. Chhabra, N. Goel, and S. Krishnan “Exploring the role of
ChatGPT in medical image analysis,” Biomedical Signal Processing and
Control, Vol. 86, Part C, 105292, 2023,
https://doi.org/10.1016/j.bspc.2023.105292

O. V. Johnson, O. M. Alyasiri, D. Akhtom, and O. E. Johnson “Image
Analysis through the lens of ChatGPT-4,” Journal of Applied Artificial
Intelligence, 2023 Volume 4,  Issue  2: 13-46, DOI:
https://doi.org/10.48185/jaai.v4i2.870

Housley, W., & Dahl, P. (2024) Membership categorisation, sociological
description and role prompt engineering with ChatGPT. Discourse &
Communication, 0(0) 2024, https://doi.org/10.1177/17504813241267068

Giray, L. Prompt Engineering with ChatGPT: A Guide for Academic
Writers. Ann Biomed Eng 51, 2629-2633 (2023)
https://doi.org/10.1007/s10439-023-03272-4

M. Mudabbiruddin, A. Mosavi and F. Imre, "From Deep Learning to
ChatGPT for Materials Design," 2024 IEEE 11" International Conference
on Computational Cybernetics and Cyber-Medical Systems (ICCC), Hanoi,
Vietnam, 2024, pp. 1-8, doi: 10.1109/ICCC62278.2024.10582940

U. Otamendi, I. Martinez, M. Quartulli, I. G. Olaizola, E. Viles, W.
Cambarau Segmentation of cell-level anomalies in electroluminescence

-161-


https://doi.org/10.3390/s24051539
https://doi.org/10.1016/j.bspc.2023.105292
https://doi.org/10.1007/s10439-023-03272-4

D. Matusz-Kalasz et al. Testing ChatGPT with Photovoltaic Electroluminescence Image Analysis

[15]

[16]

[17]

images of photovoltaic modules, Solar Energy, Solar Energy 220 (2021)
914-926

Saborido-Barba, N.; Garcia-Lopez, C.; Clavijo-Blanco, J. A.; Jiménez-
Castafieda, R.; Alvarez-Tey, G. Methodology for Calculating the Damaged
Surface and Its Relationship with Power Loss in Photovoltaic Modules by
Electroluminescence Inspection for Corrective Maintenance. Sensors 2024,
24, 1479, https://doi.org/10.3390/5s24051479

Rathod, D., Goswami, A. (2022) Defect Analysis of Electroluminescence
Images of PV CELL. In: Chen, J. IZ., Tavares, J. M. R. S, Iliyasu, A. M.,
Du, KL. (eds) Second International Conference on Image Processing and
Capsule Networks. ICIPCN 2021, Lecture Notes in Networks and Systems,
Vol. 300, Springer, Cham. https://doi.org/10.1007/978-3-030-84760-9 57

Mustafa Yusuf Demirci, Nurettin Begli, Abdiilkadir Glimiis¢ii Efficient
deep feature extraction and classification for identifying defective
photovoltaic module cells in Electroluminescence images, Expert Systems
with  Applications, Volume 175, 1 August 2021, 114810,
https://doi.org/10.1016/j.eswa.2021.114810

-162 -


https://doi.org/10.1016/j.eswa.2021.114810

	1 Introduction
	2 The First Conversation with ChatGPT
	2.1 ChatGPT's Knowledge in the Field of Photovoltaic Electroluminescence
	2.2. Application of ChatGPT to Analyse Photovoltaic Electroluminescence Images

	3 The Training Process for Examining EL Images
	3.1 Trial Testing
	3.2 Analysing More Complex Images

	4 The Last Test

