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Abstract: A notion of a generated chain variation of a set function m with values in [—1,1] is pro-
posed. The space BgV of set functions of bounded g-chain variation is introduced and properties
of set functions from BgV are discussed. A general Choquet integral of bounded A-measurable
Sfunction is defined with respect to a set function m € BgV. A constructive method for obtaining this
asymmetric integral is considered. A general fuzzy integral of bounded g-variation, comonotone
@-additivite and positive ©-homogenous is represented by a general Choquet integral. The repre-
sentation of a general Choquet integral in terms of a pseudo Lebesque-Stiltjes integral is obtained.
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1 Introduction

The Choquet integral is often used in economics, pattern recognition and decision anal-
ysis as nonlinear aggregation tool [4, 5, 6, 20, 21, 23, 24]. Most of the studies of non-
additive set functions and integrals have been focused to the case when their values are
in non-negative interval (fuzzy measures), e.g., [0,1]. A fuzzy measure m: 4 — [0, 1]
(or [0,00]), m(2&¥) = 0 is a non-decreasing set function, defined on c-algebra 4. Integrals
can be viewed as an extension of underlining measures, see [9, 10].

Choquet integral (introduced in [3]) of 4-measurable non-negative function f with
respect to a fuzzy measure m : 4 — [0, 0] is defined by

Col) = [ mixlf(0) = 1),

The main properties of the Choquet integral are monotonicity and comonotone additiv-
ity, see [4, 18]. For a finite fuzzy measure m and A-measurable f : X — R, f* = fV0,



= =(—=f)VvO0 we have
Cn(f) = Cn(f ") = Canlf ),

where 77 is the conjugate set function of a fuzzy measure m, given by m(E) = m(X) —
m(E°), for E € A4, where E° = X \ E. The last integral is known under the name asym-
metric Choquet integral. In [16] it has been shown that this integral is well defined on
the class of bounded “4-measurable functions with respect to all real-valued set func-
tions, m : 4 — R of bounded chain variation, such that m(2&) = 0, even if they are
non-monotonic. The asymmetric Choquet integral is linear with respect to m, hence (see
[16, 18])

Cm(f) = le(f) _sz(f)'

Fuzzy integrals corresponding to an appropriate couple (,®) of pseudo-operations have
been studied in [12, 13, 17, 18, 19, 25]. Symmetric pseudo-operations are introduced
in [6, 7]. A construction of general fuzzy integral has been studied in [2, 10, 25]. As
a special type of such integral, the Choquet-like integral, introduced in [12], is defined
with respect to pseudo-operations with a generator. It can be viewed as a transforma-
tion of the Choquet integral. The Choquet-like integral related to some non-decreasing
function g : [0, 1] — [0,0], g(0) = 0, defined for a non-negative A-measurable function
f and a fuzzy measure m, is given by

C4(f) =g " (Coom(gof)) (1)

This integral is also defined for a real-valued function f, if for g is taken its odd extension
to the whole real line [12, 13], and we shall call it a general Choquet integral.

The aim of this paper is to present a general Choquet integral defined with respect to
set functions of bounded g- chain variation. As we shall see, this integral is of bounded
g-variation asymmetric, comonotone G-additive and positively ©-homogenous.

The paper is organized as follows. Section 2 is devoted to preliminary notions and
definitions of symmetric pseudo-operations. In Section 3 we introduce a g-chain vari-
ation of set functions and we consider the space of set functions of bounded g-chain
variation BgV'. In Section 4 we introduce the notion of a signed @ -measure. A pseudo-
difference representation of a signed ®¢-measure is obtained. In Section 5 we introduce
a general fuzzy integral defined with respect to m € BgV. We consider its relation with
the asymmetric general Choquet integral, i.e., Choquet-like integral (defined by (1),
w.r.t. m € BgV) and present its representation in the term of a pseudo Lebesque-Stiltjes
integral. As a consequence, in the case of an underlining signed @-measure this integral
reduces to a pseudo Lebesque integral.

2 Symmetric pseudo-operations

We recall definitions of a t-conorm and pseudo-operations according to [6, 7, 9, 10].

Definition 1 A triangular conorm (t-conorm) is a comutative, associative, non-decrea-
sing function S : [0,1]* — [0, 1], with neutral element 0.



Definition 2 An additive generator s : [0,1] — [0,00] of a t-conorm S (if it exists) is left
continuous at 1, increasing function, such that s(0) = 0, and for all (x,y) € [0,1]*> we
have

S(x,y) = sV (s(x) +5(y)),
s(x)+s(y) € Ran(s) U[s(1),],

where s~V is a pseudo-inverse function of s (see[9]).

Definition 3 Let S: [0,1]> — [0, 1] be a continuous triangular conorm. Pseudo-addition
Dy : [-1,1]* = [=1,1], is defined by

S(ry),  (xy) €01
-S(|x|,|y|), (xv)’) € [_170]2
xB.y = a, (xvy)e[OJ]X]_l’O]ax}'ﬂ
s b, (x,y)E[O,l[X[—l,O],xg‘y‘
lor-1, (x,y) € {(1,—1),(—1,1)}
¥ Dy X, else,

where a =inf{z | S(—y,z) > x} and b = —inf{z | S(x,z) > —y }.

The binary operation @, is commutative, monotone, with neutral element 0. If it is
associative, e.g., if S is a strict t-conorm, @ can be extended to n-ary operation. Then
for all n-tiple (x1,x2,...,x,) € [—1,1]" we define:

n n—1
Py xi = (@S x,-> Dy Xn- Q)
i=1 i=1
Definition 4 Let S be a continuous t-conorm. The pseudo-difference associated to t-
conorm S is given by:
xSy =x®; (—y) 3)
for all (x,y) € [-1,1>\ {(1,1),(=1,—1)}. By the convention 16,1 =a, a € {£1,0}.

Example 1 For all (x,y) € [-1,1>\ {(1,1),(—1,—1)} and for maximum V, Yager t-
conorm S[{ and Hamacher t-conorm (Einstein sum) Sgl (see [10]), we have, respectively:

(i) x©vy = sign(x—y)(|x| V[y]);
(ii) For p=2k—1,

-1, xP —yP < —1,
x@S;y: Cxp_yp’ _ISXP_YPSL
1, xP—yP > 1;

(iii) x@sgy: f‘_;xyy



Let S be a strict t-conorm with an additive generator s : [0,1] — [0,00]. Let g : [-1,1] —
[—o0,0] be defined by:

s = {iﬁﬂ;), e @

The function g is the symmetric extension of s, so it is a strictly increasing function.

A pseudo-addition &, can be transformed to a binary operation U on [0,1], i.e., to a
generated uninorm. The results contained in the following proposition have been shown
in [6,7,9].

Proposition 1 Let S be a strict t-conorm with an additive generator s, pseudo-addition
@, and function g defined by (4), then:

(i) for all x,y € [0,1]

xogy = g (g —gl);
(ii) for all x,y € [~1,1]

x@gy = g (g +g(); )
(iii) for all z,t € [0,1]

Uzt) = u'(u(2)+ulr)),

where u : [0,1] — [—oo, 00|, is given by u(x) = g(2x — 1), with the convention oo — oo €
{°°’ _°°}'

It is clear that (i) holds for all (x,y) € [=1,1]*\ {(1,1),(=1,—1)}. It is shown in [7]
that (] — 1, 1[,®y) is an Abelian group.

It is a well known fact that a pseudo-multiplication ® : [—1,1]> — [—1,1], which is
distributive with respect to @, can be defined using the additive generator of pseudo-
addition &g, i.e., for g : [—1,1] — [—oe0, 0], @ is defined by:

x0y=_g '(gx)g)), (6)

for all (x,y) € ]—1,1[%. The pseudo-multiplication defined in this manner is commuta-
tive, associative with neutral element e € ]0, 1 and distributive with respect to pseudo-
addition @y.

Example 2 Let & 5 be the pseudo-addition induced by the probabilistic sum Sp : [0,1]" —
[0,1], defined by

n

Sp(xl,x2,...,x,,) =1 —H(l —x,-).

i=1

The additive generator g of @SP is defined by:

[ —=In(1—x), x>0
g(x){ IE(H—x), x<0 ’



Let ® be given by: x®y = g~ (g(x)g(y)), for all x,y € |—1,1[, i.e.,
x@y — Slgn(x.y) (1 — eiln(li‘x‘)ln(li‘y‘)) .
For all x €] — 1,1[\{ 0} we have:

xOep=x i xOx'=ep,

)

where the neutral element is given by ec, = 1 — é and an inverse element, for x €
] —1,1[\{0} is given by x—! = sign(x) (1 —e“‘(‘lﬂ> . Hence, (] —1,1[\{0},®) is an
Abelian group.

The following result was shown in [15].

Proposition 2 Let S be a strict t-conorm, pseudo-addition ®g with the generating func-
tion g given by (4), and pseudo-multiplication ® is defined by (6). Then we have:

(i) (|—1,1[,&,,0) is a field isomorphic to (R,+,-)
(ii) The pseudo-multiplication has the next form

x®y = sign(x-y)U®(|x],|y]),

where the uninorm U® : [0,1]? — [0, 1] is defined by U® (x,y) = s~ (s(x)s(y)) for
all x,y € [0,1], with the convention:

(a) in the case -0 =0, U® is conjunctive,

(b) in the case «-0 = oo, U® is a disjunctive uninorm.

It is clear now, that the couple of symmetric pseudo-operations (@, ®) can be expressed
in terms of a couple of uninorms, or as it is usual by (5) and (6).

3 Space BgV

According to [16, 18], the chain variation of a real valued set function m : 4 — R,
m(2) =0, for all E € 4, is defined by

n
|m(E):sup{2|m(E,-)—m(E,-_1)| |o9=FEyC...CE,=E, E€A4i= 1,...,11}7
i=1

where supremum is taken with respect to all finite chains from & to E. The chain
variation |m| of a real-valued set function m is positive, monotone, set function, |m|(@) =
0 and |m(E)| < |m|(E) for all E € 4. We say that a real-valued set function m, m(&) =
0, is of bounded chain variation if |m|(X) < oo, and we denote by BV the set of all
set functions with the bounded chain variation, vanishing at the empty set. We refer
[1, 16, 18] for an exhaustive overview of properties and results related to BV. It is
proven in [1, 18] that a real-valued set function m belongs to BV if it can be represented
as difference of two monotone set functions v and v,.



Definition 5 [15] For a given function g : [—1,1] — [—oo, 0|, defined by (4), g-chain
variation |m|g of a set function m: 4 —|—1,1], m(&) = 0, is defined by

ml(E) = g~ <p{z g(m(E)) — g(m(Ei))|

|G =EyC...CE,=E,E € 4,i= 1n})
for all E € A4 and supremum is taken with respect to all finite chains.
Using the fact that g is an odd function, we easily obtain the following result.

Proposition 3 Let m: 4 —]—1,1] be a set function, m(&) = 0, then g-chain variation
has the following properties:

(i) 0< |ml(E)<1, EecaA
(ii) |mlg(2) = 0.
(i) |m(E)| < m|y(E), Eea
(iv) |m|g is a monotone set function, i.e.,
mlg(E) < mly(F),
forall ECF,EFeA.
v) If m: 4 — [0,1] is a monotone set function, then

Im|g(E) =m(E) forall Ec€A.

We say that a set function m : 4 —] — 1,1[, m(&) = 0, is of bounded g-chain variation
if |m|g(X) < 1, and we denote by BgV the family of such set functions.

Proposition 4 Let my,my € BgV. Then
lmy @ mag(X) < [mig(X) g [ma g (X).
Proof: We will use the next notation
L={0=EyCE C...CE,=F, E;€4,i=1,...,n}.

We denote by Cr all finite chains from & to F. We have

& (sup { X le((ms @y ma) (B)) — g((ms o) (B 1)1 )

LeCy ~i=1
n

g ( sup {Z g omi(E;) +goma(E;)

LeCx ~i=1

Im1 &g ma|g(X)



— gomi(Ei-1) —gomz(Eifl)\})

g ( sup {Z|g°m1(Ei)—gOm1(Ei—1)\
LeCx ~i=1

N

& Yleom(E)-gom()l})

< & (sle (sup (Y [gom(E) —gomi(E)]})
LeCx =1
+ (e (sup {3 [goma(E) — goma(E)})
LeCx =1

= |mi[¢(X) ®y [mae(X).
O

Proposition 5 [15] A set function m : 4 —| — 1,1, m(@) = 0, belongs to BgV if and
only if it can be represented as follows

m=mj Oy my,
where my,my : A — [0, 1] are two fuzzy measures.

Proof: We have that m € BgV if and only if gom € BV. By Theorem 3.10. from
[18], there exist two fuzzy measures 771 and 7y such that g om = riny —iip. Taking
m; = g‘1 omy and myp = g_l oy we obtain the claim. O

4 Signed @ -measures

In this section we consider a set function m : 4 — [—1, 1]. We will define 6-@-additivity
of a set function m in the following manner. Let S be a strict t-conorm and @ a pseudo-
addition with an additive generator g : [—1, 1] — [—o0,0]. First, we define the notion of

a convergent Mg-series (P a;. We have the following situations:
i=I

=

(i) An expression & a; is unambiguously defined if a; > 0 for all i = 1,2.... Then

i=1

n
{@; ai}nen is a monotone increasing sequence of reals from the interval [0, 1], hence
i=1

L3 n
@S a; .= 31_{130 @S a;, (7)
i=1

i=1

i.e., the sum of @ -series is equal to a number from the interval [0, 1[ and we say that
®,-series is convergent, otherwise it diverges to 1.

(i1) In the case when a; < 0, for all i = 1,2,.... we have the similar situation as in (i),
i.e., the sum of &-series is a number from the interval | — 1,0], otherwise it diverges to



—1.
(iii) For a; € [—1,1], i =1,2,..., analogously as in the previous situations, we take (7),
n
i.e., the classical limit value of the sequence of reals { @ a;}nen, if it exists, i.e., if it is
i=1
a number from the interval | — 1, 1].
We introduce the notion of 6-@-additivity as follows. A distorted signed measure
u transformed by ¢!, i.e., any real valued signed fuzzy measure m = g~ ! o is o-By-
additive, if g is an additive generator of pseudo-addition @y and u: 4 — [—oo,c0] is an
arbitrary signed measure.

Definition 6 A set function m : A — [—1,1] is a signed @®,-measure if there exists a
signed measure p: A — [—oo, 00| (1 assumes at most one of the values from {+oo,00})

such that: .
i=1 i=1

is fulfilled for any sequence {E;}icn, E; € A, satisfying ExNE; =0 for k # j, where the
series on the right side is either convergent or divergent to +oo or —oo.

Obviously, we have m(@) = 0 and m takes on at most one of the values from {—1,1}.

Proposition 6 Let m: A — [—1,1] be a signed ®¢-measure. Then there exist unique
fuzzy measures my and my such that

m=mp S, my.

Proof. According to the classical Jordan’s theorem of representation of a signed mea-
sure (see [8]), we have y = ut — u~, where ut and u~ are measures. By Definition 6,
for all E € 4 we have

m(E) =

I
SR
Pl

=
+
I N
|
+‘C‘
—
o
N~—
SN~—

= m(E)ogm(E).
O

Example 3 Let u: 4 — [—oo,00| be a signed measure and let m be a set function defined
on c-algebra A, m: A — [—1,1] as follows:

m(E) = sign(u(E)) (1 - e—lﬂ(Eﬂ) .
The set function m is a signed Dy, -measure.

Remark 1 Let m: A — [—1,1] be a set function such that m € BgV. Then there exist m;
and my such that m = my O my. If the fuzzy measures my and my are S-measures, then
m is a signed ©- measure.



5 A general Choquet integral

Let (X, 4) be a measurable space, and F * and 7 classes of 4—measurable functions
given by
Fr={f1f:X—[0,1], supf(x) <1},

xeX

T:{f‘fixﬁ[*l,”, Sup|f(x)|<1}a

xeX

Let the operation © be given by Definition 4. For a set functionm : 4 —|—1,1[, m(@) =
0, we define a pseudo conjugate set function m” : 4 —| —1,1] by:

m-(E) = m(X) ©m(E),
forall E € 4, where E€ =X \ E.
Proposition 7 [15] We have
(i) f=frOf , forany f € F, where fT,.f~ € F*, fT=fVO0and f~ =(—f)VO.
(ii) m is monotone if and only if m® is monotone.
(iii) Let my,my : A —] — 1,1] such that m;(X) = my(X). Then

)

my < my if and only if my > mj .

In the sequel, & and ® will denote associative pseudo-operations, defined by (5) and
(6), respectively, and & the corresponding pseudo-difference. The measurable functions
f and h on X are called comonotone [4] if they are measurable with respect to the same
chain C in 4. Equivalently, comonotonicity of functions f and % can be expressed as
follows: f(x) < f(x1) = h(x) <h(x;) forall x,x; € X.

Definition 7 Ler1: F —]— 1,1] be a functional. We say that

(i) Yis monotone if forall f,he F

f<h=1(f) <I(h),

(ii) 1is comonotone &-additive if
I(f&h) =1(f) &1(h)
for all comonotone f and h from F,
(iii) I is positively ®-homogenous if
La® f) =a0I(f)

forallae[0,1], f€ T,



(iv) Lis of bounded g-variation if G(I) < 1, where a g-variation G(I) of 1 is defined
by

GI)=g! (sup{i lg(X(h;)) —g(X(hi=1))| |0=ho < ... < h,=elx, h€ T}) .
i=1

Remark 2 Obviously, if 1: F —|— 1,1] is a monotone functional, then g-variation of I
is given by G(I) = I(ely).

Letm € BgV and let s € F be a simple function with Ran(s) = {s1,s2,...,s,}. We define
n
Im(s)=S|@m(El)EB@(S,'@S,;O@m(E,’), ®)
i=2
where —1 <s; <o <...<sy < land E; = {x € X | s(x) > s;}.

Proposition 8 [15] Let 1,,, be defined by (8). For all simple functions from F, and for
all m € BgV we have:

(i) 1, satisfies the properties (ii) and (iii) given in Definition 7.
(ii) Lu(s) =Lu(sT) O Lz (s7).
(iii) Ly(s) =Ly, (s) ©L,,(s), where m; and my are given by Proposition 5.

aOm(E) a€l0,1]
(iv) In(a-1g) = .
a®m®(E) ae€]-1,0

We consider now a general fuzzy integral. First we define a general fuzzy integral with
respect to a monotone, non-negative function m € BgV and then with respect to an arbi-
trary m from BgV .

Definition 8 A general fuzzy integral I, : F —] — 1, 1] is defined by:

(i) For a fuzzy measure m from BgV

L.(f) = seTS*l?gf+ Li(s) ﬁlgi{{ e Ly (s"). )
(ii) Form € BgV

where my and my are given by Proposition 5.

A general fuzzy integral I, : & —] — 1, 1| with respect to a fuzzy measure is monotone.
I, is asymmetric, i.e.,

Li(—f) = —La= (f),
forall f € F.



Proposition 9 Let 1, : F —]—1,1] be a general fuzzy integral with respect to m € BgV.
We have:

(i) L, is of bounded g-variation.
(ii) L, satisfies the properties (ii) and (iii) given in Definition 7.
(iii) Ln(f) =Lu(fY) Sl (f7), forall f € F.
Proof. (i) Let m € BgV, by Proposition 5, m = m; © my, where m; and m; are fuzzy
measures from BgV. L, ,L,, : F —]—1,1] are monotone functionals. By definition of
g-variation we have G(—I) = G(I) and
G(Iy) = G(Xn, ©Ln,) SG(Ly,) ®G(Lp,) =Ly, (elx) B Ly, (elx) =mi (X) Bma(X) < 1.

We obtain (ii) and (iii) by (8), (9), (10) and Proposition 8. O
Based on the above consideration and results proven in [2, 4, 15, 16, 18] we have the
next propositions.

Proposition 10 Ler I, : F —| — 1, 1] be a general fuzzy integral with respect to m €
BgV. Then

Li(f) =C5(f) =8 " (Coom(gof))

where C%, is a general Choquet integral.

Proposition 11 Ler I, : F —]— 1,1] be a general fuzzy integral w.r.t. m € BgV. Then

[—oo]
where the integral on the right-hand side is a pseudo Lebesgue-Stieltjes integral.

Proof. Let F:[—1,1] — [—1,1] be a function of bounded totally g-variation, i.e.,

n
g ! (sup{Z|g(F(t,~))—g(F(ti1))| |-1<n<...<t, < Li=1,...np | <1.
i=1

1D
Then there exist two non-decreasing functions F™ and F~ such that F = F* O F~ and
a signed ®- measure on a G-algebra of Borel subsets of [—1, 1], induced by F.
Let I, be a general fuzzy integral with respect to m € BgV. For f € F, let F be
defined by
Fit)=—-m{xeX|f(x) >t}, te[-1,1].
F is of bounded totally g-variation (11). f € F is bounded, therefore g o f is bounded,
L.(f) = C3(f), and according to [16] (Appendix) we have the claim. O

Corollary 1 Let L, : F —] —1,1] be a general fuzzy integral with respect to a signed
@®-measure m, m € BgV. Then

L(f)=g¢" (/gOfdu),

where integral on the right-hand side is g-integral, see [17, 18].



Acknowledgment

The work has been supported by the project MNTRS 144012 and the project "Mathemat-
ical Models for Decision Making under Uncertain Conditions and Their Applications"
supported by Vojvodina Provincial Secretariat for Science and Technological Develop-
ment. The second author is supported by Slovak and Serbian Action SK-SRB-19 and
grant MTA of HTMT.

References

[1] R.J. Aumann, L. S. Shapley: Values of Non-Atomic Games. Princton Univ. Press,
1974.

[2] P. Benvenuti, R. Mesiar, D. Vivona: Monotone Set Functions-Based Integrals. In:
E. Pap ed. Handbook of Measure Theory, Ch 33., Elsevier, 2002, 1329-1379.

[3] G. Choquet: Theory of capacities.Ann. Inst. Fourier 5, 1954, 131-295.

[4] D. Denneberg: Non-additive Measure and Integral. Kluwer Academic Publishers,
Dordrecht, 1994.

[5S] M. Grabisch, H. T. Nguyen, E. A. Walker: Fundamentals of Uncertainty Calculi
with Applications to Fuzzy Inference. Kluwer Academic Publishers, Dordrecht-
Boston-London, 1995.

[6] M. Grabisch, B. de Baets, J. Fodor, The Quest for Rings on Bipolar Scales, Int. J.
of Uncertainty, Fuzziness and Knowledge-Based Systems 12, 2004, 499-512.

[7] M. Grabisch, J. L. Marichal, R. Mesiar, E. Pap: Aggregation Functions, Cambridge
University Press, (to appear).

[8] P. R. Halmos: Measure Theory. Springer-Verlag New York-Heidelberg-Berlin,
1950.

[9] E.P. Klement, R. Mesiar, E. Pap: Triangular Norms. Kluwer Academic Publishers,
Dordrecht, 2000.

[10] E. P. Klement, R. Mesiar, E. Pap: A universal integral, Proc. EUSFLAT 2007,
Ostrava 2007, 253-256.

[11] X.Liu: Hahn decomposition theorem for infinite signed fuzzy measure. Fuzzy Sets
and Systems 57, 1993, 189-212.

[12] R. Mesiar: Choquet-like integrals. J. Math. Anal. Appl. 194, 1995, 477-488.

[13] R. Mesiar, E. Pap: Idempotent integral as limit of g-integrals, Fuzzy Sets and Sys-
tems 102, 1999, 385-392.

[14] B. Mihailovi¢: On the class of symmetric S-separable aggregation functions, Proc.
AGOP’07, Ghent, Belgium, 213-217.



[15] B. Mihailovi¢, E. Pap: Non-monotonic set function and general fuzzy integrals.
Proc. SISY’08, Subotica, Serbia, CD.

[16] T. Murofushi, M. Sugeno and M. Machida: Non-monotonic fuzzy measures and
the Choquet integral, Fuzzy Sets and Systems 64, 1994,73-86.

[17] E. Pap: An integral generated by decomposable measure, Univ. Novom Sadu Zb.
Rad. Prirod. - Mat. Fak. Ser. Mat. 20 (1), 1990, 135-144.

[18] E. Pap: Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht,
1995.

[19] E. Pap, ed.: Handbook of Measure Theory. Elsevier, 2002.

[20] D. Schmeidler: Subjective probability and expected utility without additivity.
Econometrica 57, 1989, 517-587.

[21] D. Schmeidler: Integral representation without additivity. Proc. Amer. Math. Soc.
97, 1986, 255-261.

[22] M. Sugeno: Theory of fuzzy integrals and its applications, PhD thesis, Tokyo In-
stitute of Technology, 1974.

[23] K. Tanaka, M. Sugeno: A study on subjective evaluation of color printing image.
Int. J. Approximate Reasoning 5, 1991, 213-222.

[24] A. Tverski, D. Kahneman: Advances in prospect theory. Cumulative representation
of uncertainty. J. of Risk and Uncertainty 5, 1992, 297-323.

[25] Z. Wang, G. J. Klir: Fuzzy measure theory, Plenum Press, New York, 1992.



