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Abstract: Accurate forecasting in the electrical energy supply sector is essential for cost 
savings, enhancing power system reliability, decisions on development, expansion, 
modification or reduction of facilities. It plays a vital role in the long-term development of 
the electric power industry. Electricity cannot be stored in large quantities, it is difficult to 
transfer, and requires continual production-consumption balance. The stochastic behavior 
of electricity consumption makes it challenging to anticipate. It is affected by a number of 
variables: climate, economy, population increase, pandemic breakout, etc. In this research 
we conduct experiments with different neural network forecasting topologies and establish 
the methodology that will most accurately anticipate the trend of the electricity production 
for various types of sources such as: wind, oil, coal, nuclear power plants, and bioenergy. 
An approach that incorporates Time Delay Neural Networks is proposed to reduce mistakes 
and improve forecasting confidence. It is shown that this strategy may significantly increase 
the forecasting accuracy of the individual networks regardless of their topologies, which 
improves the applicability of the method. The performance and efficiency of models are 
assessed using the appropriate performance criteria. Additional forecasting experiments, 
including ARIMA and Extreme Learning Machine Modeling, have been carried out to 
quantitatively compare the accuracy of the proposed technique with alternative state-of-the-
art forecasting methodologies. 
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1 Introduction 

Energy is described as a capability measure, of an object to create motion, force, 
work, a change in shape or form, etc. It cannot be created or eliminated. It can only 
be transformed from one form to another. Energy as a physical quantity can have 
six basic forms: mechanical, chemical, electrical, nuclear, thermal, radiant [1]. 
Some additional forms of energy could be found in the literature, such as 
electrochemical, acoustic, electromagnetic etc. [2]. 
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To produce electrical energy today, many traditional sources such as oil or coal-
based power plants are still widely used. They all extensively pollute the planet. 
Human society is currently confronting and will continue to confront difficult 
challenges such as resource depletion and global climate change. If the international 
goal of reduced CO2 emissions is to be met, shifting away from old “dirty” energy 
sources like coal and oil is crucial. To meet these challenges the exploration of 
renewable energy sources should be prioritized [3] [4]. Clean energy as sufficient, 
environmentally friendly, and widely available, has become an essential subject of 
study in the field of new energy resources [5]. However, certain renewable energy 
sources can be irregular and stochastic, which can have a negative impact on the 
cost management and power system, particularly when renewable and clean energy 
is integrated into traditional grid systems. Thus, increasing the precision and 
validity of energy production forecast can mitigate those problems, and improve 
power system management efficiency [6]. These all are the primary motivations for 
researchers in many areas of science and technology. 

Solar energy, for example, as one of the renewable energy sources that neither 
pollutes the air nor affects climate change, has received the most attention in recent 
years, for generating power using photovoltaic technology [7]. It is crucial to 
identify different power system parameters in order to determine maximal power 
that can be collected from various sources. 

The EU's strategy on climate change and energy is focused on energy transition. In 
2008, the EU member states have adopted the legislation document referred to as 
“2020 Climate and Energy Package” (20-20-20), that contains three directives for 
the member states: reduction of gross energy consumption by 20%, 20% of gross 
energy production from renewable energy sources (RES), and 20% reduction of the 
greenhouse gas emissions [8]. The “2050 Long Term Strategy” for building a 
climate-neutral society, which set the target of reducing greenhouse gas (GHG) 
emissions by 80-95% by 2050, was added to this agenda in 2009. All of this is done 
to help achieving the 2-degree Celsius global warming reduction target, which was 
set in 2009 in Copenhagen during the 15th Conference of the Parties, also known as 
the “United Nations Climate Change COP 15”. The power industry, which can 
quickly decrease emissions through the adoption of low-carbon technology and 
better energy efficiency, will benefit from these reductions [9]. 

From 2014 to 2018, the European Parliament crafted EU regulations, establishing 
mandatory targets for the "2030 Climate and Energy policy Framework." By 2030, 
EU Member States aim to: 

1) Cut greenhouse gas emissions by 40% compared to 1990 
2) Boost energy efficiency by 32.5% compared to a baseline 
3) Raise renewable energy share in final consumption from 20% to 32% 

In November 2018, the European Commission introduced a political vision for 
achieving a Net Zero economy by 2050, as well as the analytical foundations for 
the creation of an EU Long Term Strategy for energy and climate policy [10]. 
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Due to the COVID-19 impact, EU Emissions Trading Scheme, GHG pollution fell 
by 12% in 2020, contributing to a 41% cumulative decline from the 2005 baseline. 
The 2020 achievement, reflecting a trend predating the pandemic, follows a 9% 
emission decrease from 2018 to 2019, indicating a shift from coal to less emission-
intensive gas installations [11]. 

Within the 2030 framework, the EU mandated regulations, that needed to be 
adjusted based on identified trends. In 2016, the EU proposed a law aiming for 27% 
energy efficiency by 2030. However, by 2020, they adjusted the target to a 32.5% 
improvement over the 2007 baseline. A similar strategy increased the renewable 
energy participation objective from 27% to 32% [12]. 

In every level of the power system the generated power must be strongly corelated 
and balanced with the received power [13] [14]. Decision makers need advanced 
tools to track trends over time. This enables them to assess deviations from the set 
target and adjust course, either reaching the goal ahead of schedule or allowing for 
target revisions, as was done in 2020 for energy efficiency and the share of 
renewable energy sources. 

Electricity production data represent an irregular time series that require non-linear 
methodologies for their processing and forecasting. Understanding every detail of 
an electricity production process isn't necessary for designing its regression model 
[15]. A multilayer neural network with backpropagation training can efficiently 
capture hidden patterns, providing superior predictive and statistical power 
compared to traditional models. Power systems are highly dynamic and nonlinear 
which is posing control challenges [16]. Similar to solving human cognition issues, 
building an efficient neural model from noisy data involves focusing on pertinent 
information and utilization of a small, highly relevant portion of the dataset [17]. 
Many different non-linear neural networks-based systems that analyze power 
systems behavior are lately being reported in the literature. In [18], a BI-LSTM 
algorithm proposes an accurate power prediction model for large-scale PV plants, 
specifically reliable for 1-hour large step ahead prediction. In [19], statistical time 
series models for forecasting half-daily values of global sun irradiance with a 3-day 
horizon are compared, revealing neural networks as the best approach. Authors in 
[20] introduce a framework for predicting energy consumption/distribution that 
uses LSTM, CNN, and Auto Encoders and is capable of managing uneven time 
series lengths with high prediction accuracy. 

Two main methods for multi-step-ahead prediction are recursive and direct 
algorithms. In the recursive technique, the forecast from a one-step-ahead model is 
used for future predictions, accumulating errors over subsequent horizons [21] [22]. 
The direct technique treats the multi-step-ahead problem as a multi-output 
challenge [23] [24], allowing neural networks with multiple neurons in the output 
layer to represent prediction horizons. Despite challenges like highly chaotic time 
series and missing data, non-linear filters and neural networks have been employed 
to address these issues [25]. However, such approaches increase system complexity. 
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In this paper, a neural forecasting system has been proposed and expanded to 
anticipate the annual production of electrical energy at the European continent from 
seven distinct energy sources. This model should serve decision-makers, in 
preparing plans, strategies, transitions, reductions and increases within the energy 
policies of the European governments, and in understanding the size of the risk of 
their actions, as well as in taking adequate precautions to avoid major damages and 
losses. It will be demonstrated that the developed forecasting system can accurately 
model the trend of time series representing seven different types of electrical energy 
sources: oil, coal, wind, solar, nuclear, hydro and bioenergy. 

Acknowledging limitations in current methods, we propose a robust modeling 
approach using Time Delay Neural Network (TDNN) topologies, known for their 
efficiency in short-term time series predictions [26] [27]. Employing TDNN 
topology as the foundational element for our extended forecasting system, we 
demonstrate that simple neural blocks with few neurons in one hidden layer can 
accurately forecast short time series within larger datasets. Illustrated with seven 
datasets of historical European electrical energy production, our approach 
showcases high accuracy and dependability for one-step-ahead and long-term 
predictions. This individual prediction extension exhibits notable accuracy and 
reliability, measured against well-known forecasting performance assessment 
metrics. Additionally, by tailoring our methodology to the peculiarities of energy 
production forecasting, we aim to provide a more precise and context-aware 
prediction process. Results show that our extended short-term ANN-based 
forecasting model achieves comparable accuracy to the latest state-of-the-art 
methodologies. 

Neural network-based prediction models for electricity production find diverse 
applications in real-world scenarios. In renewable energy forecasting, they predict 
output from sources like solar and wind, aiding utilities in managing supply 
fluctuations and optimizing renewable energy use [28] [29]. For load forecasting, 
neural networks assist in planning resource allocation and maintenance scheduling, 
thus avoiding unnecessary costs [30] [31]. They're also integrated into power plant 
systems to predict equipment failures, reducing downtime and enhancing 
operational efficiency [32]. Traders optimize strategies using neural networks, and 
in smart grids, they predict consumption patterns, optimize distribution, and manage 
resilience [33-36]. In microgrid management, they predict local demand, ensuring 
reliable power supply in remote areas [37]. Industries use neural networks for 
energy efficiency by predicting consumption patterns [9] [38]. Finally, neural 
networks manage distributed resources in decentralized energy systems [39]. These 
applications showcase their role in improving decision-making, operational 
efficiency, and various aspects of electricity production and distribution. The 
specific use cases vary based on individual utility or organizational goals and needs. 

The remainder of this paper is organized as follows: Section 2 analyzes European 
electrical energy production profiles, detailing time series datasets and the 
suggested neural network-based forecasting approach. Section 3 applies the 
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methodology to seven datasets representing diverse electrical energy production 
types, comparing results with alternative methodologies like Extreme Learning 
Machine and ARIMA. Section 4 provides conclusions and includes several 
suggestions for further research. 

2 Data and Methodology 

2.1 Dataset 

Seven different electricity production types and corresponding time series data will 
be the subject of this study and will be used for the development of the neural 
forecasting models. They are: coal, hydro, nuclear, oil, wind, solar and bioenergy-
based types of electrical energy production. According to available data they 
represent the large majority of all sources of electrical energy in Europe [40] [41]. 
The residual part of the energy represents the energy that is generated from waves, 
geothermal sources, ocean, tidal energy etc. 

The electrical energy production trends for different sources are shown in Fig. 1 
[42]. They illustrate a slow and long-term mitigation from non-eco-friendly to eco-
friendly types of energy sources at the European continent for 35 years. To evaluate 
a specific dataset, three groups of brief informative coefficients known as 
descriptive statistics are used [43]. They measure central tendency of the dataset, its 
variability, and its distribution. All datasets are analyzed for descriptive statistics, 
and the results are shown in Table 1. Obtained coefficients indicate that datasets 
express considerable variance and non-periodicity at the yearly level and are good 
candidates for forecasting methodology validation. 

Figure 1 
a) European electrical energy production profile over years [42], and b) Illustration of European 

electrical energy production time series by sources 
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Table 1 
Descriptive statistics of data 

Descrip. 
statistics 
measure 

Electr. 
from 

bioenergy 
[TWh] 

Electr. 
from oil 
[TWh] 

Electr. 
from 
solar 

[TWh] 

Electr. 
from 
wind 

[TWh] 

Electr. 
from 

nuclear 
[TWh] 

Electr. 
from 
hydro 
[TWh] 

Electr. 
from 
coal 

[TWh] 
Number 
of scores 

22 36 32 44 57 57 36 

Mean 125.46 331.62 41.64 103.87 792.73 644.44 1141.2 
Median 129.25 256.36 1.99 18.24 1049.63 674.75 1186.9 

25th 
percentile 

68.53 161.18 0.06 0.38 248.02 621.34 1096.4 

75th 
percentile 

183.48 307.07 96.58 174.84 1158.07 716.21 1224.6 

Interquarti
le range 

114.95 145.89 96.52 174.46 910.05 94.85 128.19 

Minimum 34.52 122.56 0.01 0.003 21.54 381.45 698.77 
Maximum 211.05 3379.24 182.53 487.69 1258.56 787.68 1346.9 

Range 176.53 3256.68 182.52 487.69 1237.02 406.23 648.13 
Variance 3651.79 280254.5 3535.7 21949.2 214846.7 11111.7 28317 

Std. 
deviation 

60.43 529.39 59.46 148.15 463.51 105.41 168.28 

Skew -0.11 5.28 1.01 1.30 -0.65 -0.97 -1.23 
Kurtosis -1.57 27.51 -0.54 0.38 -1.36 -0.12 0.77 

2.2 Methodology 

The methodology proposed in this research is based on the application of artificial 
neural network forecasting using historical data and the modified ensemble learning 
concept [44]. In general, artificial neural networks perform complex nonlinear 
input-output transformations by imitating brain functions, which consist of over 86 
billion neurons that receive environmental inputs, separate and recombine the most 
significant ones, and reason about the requirements and actions of the organism. 
ANNs consist of layers of neurons. Because of the non-linear nature of the 
activation function between its layers of processing components, they can be 
employed to solve a variety of problems. A neural network's performance is greatly 
influenced by the choice of activation function. Each epoch's error is determined by 
comparing the computed output of each input with the predicted output. A neural 
network optimization problem should be defined, with the primary objective of 
reducing error during the network training [45] [46]. 

The “wisdom of the crowd” suggests that a large group with average expertise can 
provide accurate forecasts, balancing out noise better than individual experts. This 
concept is applied to neural network-based AI through ensemble learning in ANN 
forecasting, where the combined outcome of multiple models often surpasses the 
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accuracy of any single member for various tasks. Additionally, certain innovative 
models combine system dynamics with Bayesian degrees of truth to model both 
system behavior and the plausibility of each outcome [47]. 

The aim is to build an ANN forecasting model for estimating future power 
generation based on historical data. Despite various adjustments, individual models 
(referred to as "weak learners") lack satisfactory accuracy. However, these weak 
models can be valuable when combined into an ensemble. Applying the same data 
to each model for new predictions exploits their different individual learning 
approaches, effectively extending short-term learning. This combination balances 
out limitations, enhancing overall performance. 

A time series is a collection of numerical data gathered successively over time. 
Short time series, characterized by frequency, volatility, and limited trend 
information, cannot result in statistically accurate predicting due to their small 
sample sizes (N). This study focuses on such time series and their forecasts, 
employing a technique [27] proven effective for handling short irregular series. 

Creating a neural network architecture for time series prediction requires 
determining the number of layers and nodes in each layer. These features are often 
developed by experimenting with the existing data and there is no theoretical 
foundation for this. With the right number of hidden layer nodes and training 
dataset, neural networks with one hidden layer can simulate every nonlinear 
function. A Time Delay Neural Network block [48] is the neural network topology 
cell employed in this investigation. An extended neural network is built using this 
fundamental TDNN cell - TDNNC. 

We employ TDNNC form of the ANN, where discretized input signals are time-
shifted using delay elements before being sent to the neurons in the input layer. 
Typically, the topology requires a neural network with a single input and delaying 
components at the input layer as shown in Fig. 2. 

Figure 3 describes the algorithm for the extended short-term prediction of time 
series. Main phases of the procedure include data preparation, networks 
construction, accuracy assessment, selecting the most accurate topologies. The data 
set for training a single neuron block requires a window of nine consecutive samples 
of the time series. For a dataset of N samples and prediction of the Nth moment, 
(N+1)-9 individual sets of nine successive samples are required. Successive mini 
sets are shifted by one moment in time. Corresponding network gives a prediction 
of the tenth step using nine historical samples. Each TDNNC is trained with a new 
shifted dataset, enabling one-step ahead forecasting in an arbitrarily large time 
series. Using simple, small neural structures (3 to 10 neurons in the hidden layer) 
easily trained with short sequences, we achieve independent prediction steps, 
avoiding error accumulations and constructing a modular forecasting system for 
electricity production. 
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Figure 2 

Basic neural network structure 

 

Figure 3 
Extended short term neural prediction algorithm 
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The following formula describes the transformation function for one-step-ahead 
prediction: 

𝑦𝑦(𝑖𝑖 + 1) = 𝑓𝑓(𝑡𝑡𝑖𝑖+1) = 𝑦̑𝑦(𝑖𝑖 + 1) + 𝜀𝜀      (1)  

Here, y(i + 1) represents value of the initial i.e., training time series sample, f(ti+1) 
stands for the transformation function of the next time instance, target forecasting 
of the next time instance is denoted with 𝑦̑𝑦(𝑖𝑖 + 1), while 𝜀𝜀 is the forecasting error. 
More details about this block can be found in [49-51]. 

After testing with various delay block counts, due to most accurate results, it was 
chosen to employ nine prior observations for neural network training and prediction, 
along with nine neurons in the input layer. Neurons in the output layer have linear 
activation functions, and since performing one-step-ahead prediction is the main 
objective, just one output of the network and one neuron in the output layer are 
needed. During the ANN training, a variant of the steepest-descent minimization 
algorithm is employed. 

Modelling and training of the individual TDNNC block can also be considered as 
an optimization problem. A step-by-step approach of this process is illustrated in 
the Algorithm 1 [52]. 

Algorithm 1: Training of the individual TDNNC block Initialize the network weights 
 
1. In timestep 𝑡𝑡, deliver nine previous observations as an input vector 𝒚𝒚𝑡𝑡 (𝑦𝑦𝑡𝑡−1,  𝑦𝑦𝑡𝑡−2,  …  𝑦𝑦𝑡𝑡−9) to 

the input layer of the network: 
𝒚𝒚𝑡𝑡 = [𝑦𝑦𝑡𝑡−9 𝑦𝑦𝑡𝑡−8 𝑦𝑦𝑡𝑡−7 …  𝑦𝑦𝑡𝑡−1]𝑇𝑇 

2. For each neuron in the hidden layer, compute the activations as: 

𝑎𝑎𝑖𝑖 = 𝑆𝑆 ��𝑤𝑤𝑗𝑗𝑗𝑗
(𝑖𝑖𝑖𝑖)

9

𝑗𝑗=1

𝑦𝑦𝑡𝑡−𝑖𝑖 + 𝜃𝜃𝑖𝑖
(𝑖𝑖𝑖𝑖)� 

or in a vector form: 
𝑎𝑎𝑖𝑖 = 𝑆𝑆�𝐰𝐰𝑖𝑖

(𝑖𝑖𝑖𝑖) ∙ 𝐲𝐲𝑡𝑡 + 𝜃𝜃𝑖𝑖
(𝑖𝑖𝑖𝑖)� 

Here: 
• 𝑎𝑎𝑖𝑖 is the activation of the 𝑖𝑖-th neuron in the hidden layer, while the vector of hidden neuron 

activations is: 
𝐚𝐚 = [𝑎𝑎1 𝑎𝑎2 …  𝑎𝑎ℎ]𝑇𝑇 

• 𝑤𝑤𝑗𝑗𝑗𝑗
(𝑖𝑖𝑖𝑖) is the weight connecting the 𝑗𝑗-th input and 𝑖𝑖 -th hidden neuron, 

• 𝜃𝜃𝑖𝑖
(𝑖𝑖𝑖𝑖) is the activation threshold value of each hidden neuron, 

• S(x)  =   1
1+e-x  =   ex

ex+1
 is the sigmoid activation function. 

3. Compute the predicted observation (𝑦𝑦�) at the network output: 

𝑦𝑦� = 𝑙𝑙 ��𝑤𝑤𝑖𝑖
(𝑜𝑜𝑜𝑜𝑜𝑜)

ℎ

𝑖𝑖=1

𝑎𝑎𝑖𝑖 + 𝜃𝜃(𝑜𝑜𝑜𝑜𝑜𝑜)� 

or in a vector form 
𝑦𝑦� = 𝑙𝑙�𝐰𝐰(𝑜𝑜𝑜𝑜𝑜𝑜) ∙ 𝐚𝐚 + 𝜃𝜃(𝑜𝑜𝑜𝑜𝑜𝑜)� 

Here, ℎ is the number of neurons in the hidden layer, 
• 𝑤𝑤𝑖𝑖

(𝑜𝑜𝑜𝑜𝑜𝑜) is the weight connecting the 𝑖𝑖-th hidden and the output neuron, 
• 𝜃𝜃(𝑜𝑜𝑜𝑜𝑜𝑜) is the activation threshold value of the output neuron, 
• 𝑙𝑙(𝑥𝑥) is the linear activation function with arbitrary coefficients. 
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4. Calculate the prediction error as: 
𝑒𝑒𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝑦𝑦� 

5. According to the steepest descent method, for the next timestep (𝑡𝑡 + 1) the weights should be 
updated by adding a value proportional to the gradient of the error function: 

𝑤𝑤𝑖𝑖𝑗𝑗𝑡𝑡+1 = 𝑤𝑤𝑖𝑖𝑗𝑗𝑡𝑡 + 𝜂𝜂
𝜕𝜕𝜀𝜀𝑡𝑡
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗𝑡𝑡

 

Here: 
• 𝜂𝜂 is the “learning rate” i.e., the correction factor used to ensure the learning convergence, 
• 𝜀𝜀(𝑒𝑒𝑡𝑡) is the error function subject to the optimization process 
• 𝜕𝜕𝜀𝜀𝑡𝑡

𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗𝑡𝑡
 is the step of the steepest descent which can be calculated using the backpropagation 

algorithm 
6. Shift the input values by one timestep and repeat the prediction procedure from step 2. 
7. Repeat the above steps until the early stopping error condition was achieved in order to avoid 

overfitting. 

2.3 Prediction Accuracy Measures 

Root-Mean-Square-Error, or RMSE is one of the most often used metrics when 
training regression or time series models to measure the accuracy of the model's 
anticipated values vs. the actual or observed values. It illustrates how far away from 
the line of best fit the obtained data are. It can be a determination factor when 
selecting the best performing forecasting model from a group of models trained with 
the same dataset. It can be calculated as: 

 RMSE  =  �∑ (y̑i-yi)2N
i=1

N
 (2) 

Here, N stands for the number of observations, and ŷi and yi represent the expected 
and the obtained value of the forecast, respectively. 

Mean Absolute Percentage Error, or MAPE, is another performance indicator for 
the forecasting system that will be employed in this analysis. By averaging the 
absolute percentage errors of each value in a dataset, it demonstrates how accurate 
the predicted numbers were in comparison to the actual values. MAPE often allows 
for more efficient analysis of large datasets. The following equation can be used for 
determination of MAPE: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  =   100%
𝑁𝑁

∑ �𝑦̑𝑦𝑖𝑖−𝑦𝑦𝑖𝑖
𝑦̑𝑦𝑖𝑖

�𝑁𝑁
𝑖𝑖=1                        (3)

  
Coefficient of determination or R2 can have a value between 0 and 1. It indicates 
how accurately a forecasting model predicts the result. It serves as a criterion for 
the quality of fit. A model's forecast is better when it has a higher R2 value.  
The formula for calculating R2 is given by: 

  𝑅𝑅2 = 1 − ∑ (𝑦̑𝑦𝑖𝑖−𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1
∑ (𝑦̑𝑦𝑖𝑖−𝑦̄𝑦)2𝑁𝑁
𝑖𝑖=1

                (4) 

where y� is calculated as the mean of the observed sample set. 
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3 Results and Discussion 

As mentioned above, we proposed and developed an extended short-term prediction 
ANN model for electricity production forecasting. For reliable and accurate analysis 
of the results, we employed well-known error measuring methodologies. Seven 
different sources of electrical power generation were predicted for the European 
market: wind, solar, nuclear, hydro, oil, coal, and bioenergy. These predictions 
represent one-step-ahead annual forecasting values. 

Different types of electricity production time series sizes ranged from 22 to 57 
samples, depending on the “novelty” of the type and its initial introduction to the 
power production systems. In order to develop the suggested forecasting 
methodology, it is assumed that the values of the observed variable from the 
immediate past have the largest influence to the future prediction (nine previous 
samples are used to forecast the value in the tenth time-step). All data series were 
appropriately accommodated. They are also appropriately sequenced to train 
individual neural modules. A Sliding-window Time Series Cross-validation 
methodology was applied here, where entire dataset is divided into (N+1)-9 sets for 
iterative training and prediction of the 10th time step. First nine samples of the entire 
dataset are used for the prediction of the 10th time step. After each iteration, the 
oldest sample is discarded, and the newest sample is added to perform the next 
neural network training and forecasting. This approach is applied here for two 
reasons: dataset size is huge, and the older observations are obsolete. This makes 
the length of each training set of nine samples (90% of the set used for training), 
while the 10th sample is used to compare it to the obtained forecast of the 10th sample 
(10% of the set used for testing), in order to check its accuracy against the expected 
value. Also, to obtain each one-step-ahead forecast for one type of electricity 
production, eight different neural modules were constructed and trained where 
number of the neurons in their hidden layers was altered from 3 to 10. After filling 
up the entire forecasting matrix, we have conducted the calculation of the 
performance measures for each type of the structure in order to select the most 
accurate ones. This is shown in Table 2. 

The most accurate network, considering RMSE value of 3.28% was obtained for 
the coil data, while considering R2, with the value of 0.989, the most accurate 
network was obtained for the wind energy data. At the other hand, the simplest 
network consists of four neurons in the hidden layer and predicts the bioenergy 
production, while the most complex neural structures consist of ten neurons in the 
hidden layer and extrapolate oil, wind and solar energy production data. The final 
forecast results obtained from a forecasting trend created by successive individual 
sliding window predictions were systematized in Fig. 4 a, c, e, g, i, k, m, along with 
their corresponding correct values. Relative errors of the forecasts on the observed 
prediction intervals are shown in Fig. 4 b, d, f, h, j, l, n. It can be seen that the 
recommended forecasting method performed quite well, keeping in mind that 
different sets of data have unique properties for each electricity type. 
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Table 2 
Accuracy Measures of the forecasts 

Most accurate neural structures RMSE MAPE R2 

Nuclear - 8 hidden neurons 36.13 2.8% 0.944 
Hydro - 5 hidden neurons 18.63 2.1% 0.531 
Coil - 7 hidden neurons 3.28 2.5% 0.969 
Oil - 10 hidden neurons 13.62 5.8% 0.978 

 Wind - 10 hidden neurons 17.00 5.6% 0.989 
Solar - 10 hidden neurons 7.13 4.1% 0.935 

Bioenergy -4 hidden neurons 4.86 2.2% 0.976 

As was already said, we have only analyzed one parameter related to power 
generation during the entire research. It is the volume of electrical energy 
production at the European continent for seven different electrical energy source 
types. Since each form of electrical energy source encounters a unique set of 
impacts and various sorts of elements have an impact on its annual production, these 
datasets vary in different manners and are quite uncorrelated. As a result, we 
conclude that the chosen datasets may be utilized to evaluate the effectiveness of 
the proposed approach. 
As shown in Table 2, the developed system obtained good prediction accuracy, 
which may be an indicator of the overfitting in the neural network training process. 
Overfitting can occur in the following situations [52]: 

• Training data size is too small and does not contain enough data samples to 
accurately represent all possible input data values. 

• The training data contains large amount of irrelevant information called 
noisy data. 

• Overfitting due to prolonged training on a single sample set. 

• Overfitting caused by high model complexity, where the model learns the 
noise within the training data. 
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Figure 4 
Prediction of different types of electrical energy production for the period 2012-2021 (2015-2021),  

and their relative prediction errors for three different methodologies: 
a) Nuclear-based electrical energy and b) relative error of Nuclear energy prediction 
c) Hydro-based electrical energy and d) relative error of Coal energy prediction 
e) Coil-based electrical energy and f) relative error of Coal energy prediction 
g)  Oil-based electrical energy and h) relative error of Oil energy prediction 
i) Wind-based electrical energy and j) relative error of Wind energy prediction 
k) Solr-based electrical energy and l) relative error of Solar energy prediction 
m) Bio-based electrical energy and n) relative error of Bio energy prediction 

High accuracy of our predictions is not caused by overfitting since our data sets 
contain enough data, they were carefully prepared to avoid the presence of a large 
amount of irrelevant information, models were trained according to early stopping 
criteria while each neural network had at most ten neurons in the hidden layer. 

Graphs in Fig. 5 illustrate the training progress of a typical neural network with 10 
neurons in a hidden layer. Notably, despite its complexity, the network rapidly 
diminishes forecasting errors, showing a significant reduction even by the 5th 
iteration. This rapid error reduction highlights the efficiency of the training process, 
demonstrating the network's ability to learn and adapt quickly, ultimately achieving 
a highly accurate forecasting performance. Early stopping criteria here is achieved 
after 17 iterations with the prediction error for the particular step of 4.99269E-17. 

 
Figure 5 

Learning speed of a typical TDNNC (10 hidden neurons) (Wind – based electrical energy prediction) 

In order to assess the accuracy of the proposed methodology, two sets of alternative 
forecasting models have been developed, trained and verified for seven available 
datasets. These methodologies include a neural network based Extreme learning 
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machine (ELM) forecasting [53] [54] and a traditional statistical Autoregressive 
integrated moving average (ARIMA) time series modelling [27] [55] [56]. Beside 
the TDNN forecasting results for the observed prediction intervals, Fig. 4 a, c, e, g, 
i, k, also shows results of the alternative forecasting methodologies. Corresponding 
relative errors of the European energy forecasts are shown in Fig. 4 b, d, f, h, j, l, n. 
Performance measures for all three methodologies are systematized in Table 3, and 
illustrated in Fig. 6. It should be emphasized that ARIMA models for the particular 
intervals were built using the entire available datasets. That is the reason for their 
better performance measures. However, these models do make mistakes in time 
series modelling even on the data that was used for the trend modelling. On the 
other hand, ELM approach could not always catch the trends of analyzed time series 
due to its simpler structure (10 neurons in the hidden layer). They would perform 
much better on larger datasets. 

Table 3 
Systematization of Prediction accuracy measures for TDNN, ELM, and ARIMA 

Elec. 
energy 

type 

MAPE RMSE [%] R2 
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Nuclear 2.68 1.54 0.61 29.87 22.60 8.11 0.64 0.48 0.99 
Hydro 2.09 4.55 1.61 18.63 42.16 14.43 0.53 0.20 0.39 
Coal 3.62 3.77 2.43 4.28 40.29 24.24 0.97 0.95 0.99 
Oil 3.52 4.60 2.25 6.31 7.94 4.59 0.84 0.78 0.93 

Wind 4.24 7.53 5.09 17.00 34.72 20.72 0.97 0.87 0.96 
Solar 4.64 27.98 5.49 7.62 41.15 8.05 0.92 0.24 0.94 
Bio 2.31 2.54 2.24 5.08 6.20 5.69 0.97 0.92 0.93 

    
Figure 6 

Prediction accuracy measures for TDNN, Extreme learning machine, and ARIMA long term 
energy forecasting methodologies 

Results obtained with the proposed extended short-term prediction approach have 
various benefits for predicting the yearly power generation. This approach can find 
its purpose in business logic for balancing responsible parties regarding their 
strategy planning for participating in financial instruments markets (derivatives 
markets). For instance, they can more precisely calculate the “future amount of 
energy” they need to buy or sell at the beginning of the year, or on a quarterly basis. 
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It the same manner, the regulators can determine optimal level of subsidies for 
upcoming RES projects via feed-in tariff or market premiums, depending on how 
much energy can be anticipated from existing power plants based on the prediction 
model. The observed variables were quite prone to disturbances and a wide range 
of effects. Our system handled this issue well. 

With our forecasting system, we have estimated the distribution of different types 
of electricity for Europe for the year 2022. This is shown in Fig. 7a. After acquiring 
the statistical measures for these parameters, relative errors of these out of sample 
forecasts for three methodologies could be evaluated. This is shown in Table 4, and 
in Fig. 7b. 

Figure 7 
a) Trend of different energy types production distribution for the European continent. Values 

for the year 2022., represent the predictions achieved by the proposed forecasting system. 
b) Relative errors of energy production predictions for 2022., for different methodologies 

Table 4 
Systematization of relative prediction errors for energy forecasting in 2022, for suggested TDNN, 

Extreme learning machine, and ARIMA forecasting methodologies 

Electrical 
energy type 

Relative errors [%] 
TDNN ELM ARIMA 

Bioenergy 2.11 4.76 3.03 
Coal 14.53 17.04 12.37 

Hydro 1.29 1.00 0.96 
Nuclear 8.04 0.62 0.10 

Oil 1.93 2.90 1.79 
Solar 4.07 6.28 2.65 
Wind 0.12 3.55 1.85 

In summary, for small datasets, ARIMA models are usually computationally more 
efficient than a simple one-hidden-layer neural network. The choice between them 
depends on the specific characteristics of the data and the modeling requirements. 
If the time series patterns are simple and well-captured by ARIMA, it might be a 
more practical choice in terms of computational efficiency. However, if the data has 
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complex patterns that ARIMA struggles to model, a small neural network like 
TDNN should be considered despite the higher computational cost. 

We have also investigated some other solutions to the prediction problem related to 
electrical power production and consumption that are accessible in the current 
literature in order to assess the efficiency of the suggested technique. Table 5 
summarizes these findings for seven different types of electrical energy sources. We 
have examined the accuracy of these approaches and the provided forecast results 
for different areas in the world. 

Table 5 
Systematization of the reported accuracies for latest state-of-the-art power production forecasting 

methods for various energy source types 

Parameter Methodology Performance meas. Ref. 
RMSE MAPE [%] 

Solar energy output 
power from PV 

Multivariate neural network  
 ensemble framework 

- 3.1 [57] 

Wind speed  
prediction  

Wavelet transformation and  
recurrent neural networks 

1.21 0.93 [58] 

Wind speed 
forecasting 

Convolutional support vector 
machine 

0.39 42.85 [59] 

Oil and gas well 
production 

ARIMA-LSTM model 11.584 0.144 [60] 

Nuclear energy 
consumption 

An optimized structure-adaptative 
grey model 

5.889 2.094 [61] 

Monthly peak energy 
demand in India 

Fb Prophet models 4.23 3.3 [62] 

Bioenergy power 
generation 

Grey compositional data model - 3.7 [63] 

Biomass-based 
energy potential 

Artificial intelligence and 
geographic information forecasting 

systems 

- - [64] 

Although we are aware that the datasets and methodologies, we have examined vary 
from one solution to the next, the most crucial performance metrics of our 
methodology, such as MAPE, are comparable to the most recent state-of-the-art 
forecasting power production methodologies. 

Conclusions 

This research proposes a unique way for extending the short-term prediction 
horizon, for various ANN-based forecasting systems. Any time-series dataset, can 
be “sliced” in windows that shift in time, and be used to train simple neural 
structures to perform one-step-ahead prediction. In our study we applied this 
modular neural topology to seven different electrical energy production sources, for 
Europe. Such modular neural structures were developed and assessed for their 
accuracy. 
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One may draw the conclusion that the results of case studies involving seven 
different sources of electrical energy demonstrate the ability of such individual 
predictions to anticipate the direction of future changes with high accuracy and 
reliability. The forecast's precision and reliability even surpassed some of the latest 
state-of-the-art forecasting methodologies. We may anticipate the method's 
applicability being broadened to other AI forecasting approaches, as well as other 
types of ANN topologies. Our future research will concentrate on further error 
reductions and a discussion concerning the smallest number of neurons in the ANN 
layers required to achieve the objective. 
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