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Abstract: This paper proposes a method for improving the DC motor velocity estimations 

and the estimations obtained from the state observer, when the system operates with large 

moments of inertia. First, the state observer for estimating velocity and DC motor position, 

is designed. Then, the variable structure controller is formed using estimated position and 

velocity values. State observer and designed controller are implemented in default system 

control logic. Dependences between estimated velocities and moments of inertia are 

established and presented by experimental results. It is noted that velocity time responses 

of the designed controller are not as expected when the system operates with large 

moments of inertia on the motor shaft. The feedforward neural network is empirically 

designed and implemented in control logic with purpose to solve poor velocity estimations 

and to improve overall system performances. It is experimentally shown that an artificial 

network improves estimation quality of the observer and overall control of the system for 

different input signals. 

Keywords: variable structure controller; neural network; state observer; servo system; DC 

motor; moment of inertia 

1 Introduction 

Artificial neural networks are increasingly represented in the field of power 

systems control [1-4], because of their ability to operate with a large number of 

data. A quality training procedure is a precondition for successful neural network 

usage. Conventional controllers in the presence of disturbances eventually do not 

provide a system robust enough. Both stability and robustness can be increased by 

introducing neural network into the default control logic of a system. An artificial 

neural network could be used as a compensator, whose assignment is to bring 
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system dynamics to desired states [5]. The combination of neural network and 

fuzzy logic in the form of hybrid control can also be used for the purpose of 

providing better system performances [6, 7]. Inteco model of a servo system based 

on a DC motor will be used for experimental purposes in this paper. The artificial 

network for DC motor velocity control is presented in [8], where neural network 

control logic is formed in two parts: for estimating motor velocity and for 

generating control signal. Another example of well-formed neural network, which 

successfully controls a DC motor, is shown in [9]. A state observer will be used in 

this paper for estimating motor velocity. The velocity is estimated by the state 

observer in [10], where nonlinear control input for control of serially coupled DC 

motors is used. Neural networks, used for motor velocity estimations, are 

presented in [11-13]. 

The starting point of this paper is a servo system, based on a DC motor and brass 

inertia load. For the purpose of experimental research, the state observer is 

designed in Section 2, as well as a variable structure controller in Section 3. 

Observer design procedures are presented in [14, 15]. Poor velocity estimations of 

a servo system are experimentally obtained in this paper and presented in Section 

4. The servo system possesses control limitations while working in sliding mode 

with large loads attached to the motor shaft. Those limitations directly affect 

unsatisfied observer velocity estimations, which are also presented in Section 4. 

The problem is solved by introducing neural network into the default control logic 

of the system. The artificial network is formed and trained with real experimental 

data in Section 5. Significant improvements of estimated velocities for different 

input signals are experimentally obtained in Section 6. Both velocity offset 

elimination and estimated error minimization justify the neural network 

implementation into default system control logic. 

2 State Observer Design Procedure 

State space coordinates of a motor are necessary for the practical implementation 

of the variable structure controller. A state observer represents an additional 

system for the state space coordinates estimation of the controlled object. The 

state space coordinates can be obtained at any time for a known input of the 

object. Often it is not possible to form an ideal model, whereas unknown and 

immeasurable disturbances appear on a real system. The Luenberger model is 

used in this paper in order to solve this problem. Comprehensive details and 

formulation of the Luenberger model can be found in [16]. The servo system, 

manufactured by Inteco, Poland [17], is powered by the Bühler 1.13.044.236 DC 

motor, whose characteristics and parameters are given in [18]. A mathematical 

model of the observer can be represented by the form: 

              0
ˆ ˆ ˆ ˆ ˆ; ,x t Ax t Bu t B c t c t c t Dx t      (1) 
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where  x̂ t  and  ĉ t  are the state space vector and the observer output, 

respectively. The estimated error is defined as: 

           ˆ ˆe t x t x t e t x t x t     . (2) 

It is possible to neglect viscous friction and the inductance of the rotor circuit 

during the design procedure of the observer, because Bühler DC motor used in 

this paper is a small power motor. On the basis of this possibility, a differential 

state equation and an output equation can be represented as: 

     

00 1

; 1 0 ,1
0 rs

s s

u t c tK

T T

 

 

  
                           

 (3) 

where 
sK  and 

sT  can be calculated as: 2

sK K R K   and 2

sT RJ R K  . 

Desired parameters can be calculated using the data from the engine 

specifications: 1 10,526sa T   and 2273,68s sb K T  . The characteristic 

equation of the motor model is: 

    2
0

det det
0

s
SI A s s a s sa

s a

 
      

 
. (4) 

The poles of this system are 
1 0s   and 

2s a   [19]. A desired range of the 

observer poles is such that the pole at zero will be moved to the new 

position 1 20s   , while the pole at a  will be moved to 2 22s a  . The 

characteristic equation of the motor now takes the form: ( 20)( 22 ) 0s s a   . 

The observer matrix 
0A  is designed using a rule: 

 0det ( 20)( 22 ) 0SI A s s a     . (5) 

It is known that: 0

0 1

0
A

a

 
  

 
, 

1

0

2

l
B

l

 
  
 

,  1 0D  , so the characteristic 

observer equation can be found from: 

  1

0 1 2

2

1
det ( )( ) ( ) 0

s l
SI A s l s a l

l s a

  
        

 
. (6) 

Values 1 236l   and 2 9,0385l   are calculated by equalizing coefficients from 

(5) and (6). 

The final form of the designed state observer can be presented as: 

        
        

ˆ ˆˆ 236 ,

ˆˆ ˆ10,56 2273,68 9,0385 .r

t t t t

t u t t t

   

   

  

    
 (7) 
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The experimental results obtained from the servo system are shown in Figs. 1 and 

2. The estimated time response of the angular position from observer compared to 

the angular position of the motor is shown in Fig. 1. The time response of the 

estimated angular velocity of the observer is compared to the real angular motor 

velocity (Fig. 2). The presence of disturbances and noises, and the inability of 

their filtering are disadvantages of a standard linear observer. Those disturbances 

are present because some of them are slowly varying parameters which are not 

measurable. Position estimation is not significantly sensitive to the effects of 

disturbances and it is therefore accurate (Fig. 1). The velocity is sensitive to these 

disturbances, therefore, the estimation is not completely accurate. In practice, 

rotor current is introducing as a disturbance signal in the observer for the purpose 

of reducing a velocity estimation error. In our case, the motor current is not 

measurable parameter. As a result, it is not possible to introduce rotor current as a 

disturbance signal in the observer. As a result, we have velocity estimation error, 

which can be seen in Fig. 2. 

 

Figure 1 

Time responses of estimated angular 

positions from observer and motor 

Figure 2 

Time responses of estimated angular 

velocities from observer and motor 

3 Variable Structure Controller 

Variable Structure Control (VSC) is a control algorithm frequently used within 

nonlinear control systems. The main advantage of this approach is low sensitivity 

to parameter perturbations and disturbances, which makes it a robust control 

method [20, 21]. The dynamics of the second order system is represented by the 

following differential equations: 

1 2

2 2 0

,

, 0, 0.

x x

x ax bu a b b



     
 (8) 

The design procedure of VSC logic consists of two steps. The first one is 

establishing a reaching motion within the system trajectory, which will move 

towards the sliding manifold and reach it in a finite time; the second step is to 

keep the motion of the trajectory on the manifold as t  tends to infinity. 
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If we choose the switching function as: 

1 2 ,g cx x   (9) 

the sliding manifold will be defined as 0.g   

Therefore, the motion of the system trajectory is governed by: 

1 1.x cx   (10) 

From (10) it can be seen that the order of the sliding mode equation is less than the 

order of the original system, and the dynamics are determined by the parameter c. 

That means the dynamics during the sliding mode do not depend on the original 

system dynamics. 

In order to provide stability for the system, the Lyapunov stability theory is used: 

21

2
V g , (11) 

as a Lyapunov function candidate. The derivative of V is: 

1 2 2 2 2( ) ( ) ( ) .V gg g cx x g cx ax bu g c a x bgu          (12) 

If it is assumed that the derivative of the switching function g satisfies the 

inequality: 

2

( )
( )

c a
x

x



 , (13) 

for some known (x) functions, from (12) and (13) the following inequality is 

obtained: 

  .V gg b g x bgu    (14) 

By choosing the control input signal u  as: 

0sign( ), (x) 0u g        , (15) 

where: 

1, if  >0

sgn( ) 0, if  0

1, if  0,

g

g g

g




 
 

 (16) 

and substituting (15) in (14), the reaching and existence condition can be 

expressed as: 

0 0V b  . (17) 
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We can calculate the parameter c  if condition (17) is fulfilled. 

If the control input is defined as a quasi-relay sliding mode control: 

2 sign( )u x g , (18) 

the stability, reaching, and existing conditions are calculated from: 

0V gg  , 

 1 2 2 2 2( ) ( ) ( ) 0g cx x g cx ax bu g c a x bgu        . (19) 

If we substitute (18) in (19), the following inequality is obtained: 

 2 2( ) 0,g c a x b x s    (20) 

and it is correct for all .c a    

The block diagram of a servo system with the observer and VSC is shown in the 

following Figure. 

 

 

Figure 3 

System block diagram with implemented state observer and variable structure controller 

4 Servo System with Implemented VSC – 

Experiments and Poor Estimation Analysis 

A graphic representation of the servo system used in all the experiments is shown 

in Fig. 4. The brass load weighing 2,030 kg, with the moment of inertia 
20,001105biJ kgm , is connected in Series to the shaft of DC motor. 
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Generator DC motor Inertia load

 

Figure 4 

A servo system with brass load attached to the motor shaft 

Six different step referent input values are used for experiments (Table 1). The 

main task is to find the system responses for different values of the proposed 

motor positions and to check the estimation quality. Experimental results of the 

servo system with implemented variable structure controller are shown in Figs. 5 

to 10. From Figs. 5, 6, and 7 it can be seen that the observer precisely follows the 

angular position of the motor for all six input values. 

Table 1 

Referent inputs 

Signal type Specified positions — Final values of a referent input signal 

STEP 25 2   15 2   5 2   5 2  15 2  25 2  

A big deficiency of the estimated velocity from observer, is the offset appearance 

when the motor reaches desired positions. When the desired position is reached, 

Figs. 5-7, velocity should converge to zero. Analyzing Figs. 8, 9, and 10, it can be 

concluded that for all the input values, the observer estimates non-zero velocities 

after reaching the desired positions. These results are not satisfactory. The offset 

appearance cannot be tolerated, because it decreases observer reliability and 

related estimation accuracy. The second notable problem, from Figs. 8-10, is the 

poor estimation performance of transient processes. Requirements for optimal 

transient responses (13) are determined and based on [22]. The duration of 

transient conditions is a time period of starting, braking, and transition from one 

velocity to another. The time required to change the speed of the drive from 
1  to 

2 , when all parameters have constant values, can be calculated as: 

2 1

1,2

L

t J
T T

 



, (13) 

where T is the motor torque, and TL is load torque. 
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Figure 5 

Estimated angular positions of observer and motor for specified motor positions: 5 2 and 5 2   

 

 

Figure 6 

Estimated angular positions of observer and motor for specified motor positions: 15 2  and 15 2   

 

 

Figure 7 

Estimated angular positions of observer and motor for specified motor positions: 25 2  and 

25 2   
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Figure 8 

Estimated angular velocities for observer and motor for specified motor positions: 5 2 and 5 2   

 

 

Figure 9 

Estimated angular velocities for observer and motor for specified motor positions: 15 2  and 

15 2   

 

 

Figure 10 

Estimated angular velocities for observer and motor for specified motor positions: 25 2  and 

25 2   
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Servo system time period 
1,2t  varies according to the desired motor position from 

Table 1. It can be concluded from Figs. 8, 9, and 10 that estimated observer offset 

is getting larger with the increase of referent input signal. The relation between the 

moment of inertia of motor 
motJ  and brass load inertia 

biJ  can be calculated as 

follows: 

2

2

0.001105
61.

0.000018

bi

mot

J kgm

J kgm
   (14) 

Large load inertia compared to the motor inertia (14), and transition from one 

velocity to another are two main reasons for significant changes of time period 
1,2t  

(13). The transient process time period 
1,2t  increases with the increase of the 

attached load on the motor shaft. 

Generator DC motor

 

Generator DC motor 3 Alu Wheels

 

Figure 11 

Servo system without load on the motor shaft 
Figure 12 

Servo system with aluminum wheels load 

Two experiments are performed in order to show the validity of the previous 

analysis. In these experiments, only velocity time responses will be taken into 

consideration. The first experiment is based on the servo system from Fig. 11. The 

system is formed without any load attached to the motor shaft ( 0lJ  ). VSC is 

included in the control logic and recorded angular velocity is presented in Fig. 13. 

In the second experiment, 3 aluminum wheels are attached to the motor shaft (Fig. 

12). The total weight of the wheels is 0.15 kg  and the moment of inertia is Jaw = 

0.00008 kgm
2
. Time response from this experiment is shown in Fig. 14. The value 

of referent input signal is 25 2  in both experiments. 

The relation between moment of inertia of the DC motor (
motJ ) and total moment 

of inertia of aluminum wheels (
aJ  ) is: 

2

2

0.00008
5.

0.000018

aw

mot

J kgm

J kgm
   (15) 

The designed observer estimates velocity in a satisfactory manner while the 

system operates without any load attached. The observer ability to estimate the 

motor velocity decreases when the load moment of inertia is attached and 

increased. Velocity offset is notable between 2
nd

 and 4
th

 second on Fig. 14, but it 

converges to zero after 5 seconds. In the next chapter, a neural network will be 

designed with the purpose to improve observer estimation performances and 

overall system control. 
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Figure 13 

Experiment 1 — Estimated velocity without load 

torque on the motor shaft 

Figure 14 

Experiment 2 — Estimated velocity with attached 

aluminum wheels to the motor shaft 

5 Estimated Velocity Compensator Based on the 

Feedforward Neural Network 

The block diagram of the servo system with the integrated neural network is 

shown in Fig. 15. A standard feedforward network is used for neural network 

realization. Real values from experimental model are imported for training 

purposes. Velocity test data from the observer and motor are used for network 

inputs and outputs, respectively. Four different signal types are used as referent 

input signals for training purposes: step, sinus, sawtooth, and square signal. 

 

Figure 15 

Modified servo system block diagram 

Every input and output vector at the start of the process contained 1000 elements. 

Each input/output pair is obtained by performing experiments with different 

referent input values. Sixteen different referent input signals are used for this 
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purpose and they are presented in Table 2. Experiments are performed on the 

system with default control logic, which is presented in Fig. 3. The total number 

of elements of all vectors was 36000, which made the entire database large. The 

initial training procedures showed poor results with this database and the problem 

is solved with database reduction procedure.  

Table 2 

Referent inputs 

Signal type 
fvIs  — Final value of a referent input signal (Specified 

position) 

STEP 
1 2  5 2  10 2  15 2  20 2  25 2  

1 2   5 2   10 2   15 2   20 2   25 2   

SINUS 25 2  25 2    

SAWTOOTH 25 2  25 2   

SQUARE 25 2  25 2   

 

A reduction of elements inside every vector was performed in order to optimize 

the training procedure. Each new formed vector included 100 elements instead of 

1000, which made the database significantly smaller. The database reduction did 

not make a bad influence on neural network learning procedure. The main 

condition for neural network implementation into control logic is to design one-

input/one-output network. The real time experimental environment has only 

processed vectors whose length is mx1. Input and output vectors are formed by 

merging all reduced input and output vectors respectively. The number of 

iterations, the type of training procedure, and the number of neurons in the hidden 

layer are determined experimentally. Neural network activation function is 

selected to be default hyperbolic tangent sigmoid transfer function (tansig). 

Sixteen different types of training processes are used for the initial testing phase, 

and the training results are shown in Table 3. Fields in Table 3 that are labeled 

with “x” indicate unsatisfactory training procedures, due to performance 

divergence, extremely poor results or too slow convergence of performance 

factors. Those data will not be analyzed. Standard training types integrated in 

Matlab software [23] are applied in this paper. The decision parameter that is used 

for selecting training process is total error which is made during the training. The 

total error is presented as “Performance” category in Tables 3 and 4. 

The perfect result would be the one where a training procedure has Performance 

index equal to 0. Seven best training types from Table 3 are selected on the basis 

of performance results. Those 7 training types were analyzed further, the neuron 

number zones which could potentially give better results are experimentally 

selected, and new training procedures are performed. 
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Table 3 

Initial training/testing phase 

Neurons: 5 10 20 50 100 200 300 

Iterations: 1000 

Training 

type 
Performance  

trainbfg 2030.81 2121.26 2045.74 2539.57 3610.38 8231 13293.6 

trainbr 
2.35 

*106 

2.33 

*106 

2.02 

*106 

1.87 

*106 

1.71 

*106 
x x 

trainbuwb x x x x x x x 

trainc x 10013.1 11378.3 8266.13 x x x 

traincgb 2144 2140.42 2031.82 2054.61 1903.4 1744.45 3280.25 

traincgf 2332.31 2166.54 1969.6 2009.24 2447.35 3909.72 x 

traincgp 2048.78 2262.55 2020.01 2069.71 1937.8 2959 2698.41 

traingd 
2.7 

*1044 

2.7 

*1048 

2.17 

*1051 

2.2 

*1057 
x x X 

traingda 2486.53 2935.52 4174.84 7837.16 16314.6 x x 

traingdm 
3.66 

*1032 

3.01 

*1036 

1.17 

*1042 

4.7 

*1047 
x x x 

traingdx 2278.56 2161.79 15606.5 3500.76 8335.5 12280.2 x 

trainlm 2300.2 2114.77 2111.07 1946.85 1578.29 992.037 946.069 

trainoss 2266.92 2240.2 1964.89 2368.82 2470.58 4092.24 x 

trainr x 4782.69 5338.76 6632.04 x x x 

trainrp 2191.89 2179.37 2124.28 1929.01 2068.66 1678.16 2074.26 

trainscg 2100.9 2102.76 2015.77 2185.61 2093.41 1748.67 2061.14 

Table 4 

Final training/testing phase 

Training type trainscg trainrp trainlm traingdx traincgp traincgb trainbfg 

Neurons 30 40 600 7 30 15 3 

Performance 2106.3 2078.4 617.1 2549.7 2594.4 2101.1 2342.9 

Neurons 40 60 700 12 40 30 8 

Performance 1995.1 2346.8 549.3 2151.6 2118.3 2005.2 2399.2 

Neurons 125 150 800 16 70 40 15 

Performance 2277.7 1914.4 429.5 2309 2721.1 2108.6 2064 

Neurons 150 170 900 18 80 60 20 

Performance 1733.7 1886.3 665.6 2282.6 2176.7 1884.1 2148.9 

Neurons 170 190 1000 * 90 80 100 

Performance 2398.7 1805.1 572 * 2034.6 1899 1892.9 

Neurons 190 230 1100 * * 120 * 

Performance 2375.4 1715.1 534.3 * * 2314.2 * 

Neurons * 350 1200 * * 150 * 

Performance * 1688.2 339.4 * * 1947.7 * 
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The results of those additional analyses are presented in Table 4. Trainlm is a 

network training function that updates weight and bias values according to the 

Levenberg–Marquardt optimization method. It is considered to be one of the 

fastest backpropagation algorithms. A deficiency of this function is the 

requirement of much more computer memory for its realization, in comparison to 

the other algorithms. The quantity of neurons in the hidden layer, the memory that 

is used, and the elapsed time for training processes are not considered while 

making the network choice. The final decision was to use 1200 neurons in the 

hidden layer and to use the Levenberg–Marquardt optimization training method 

on the basis of the results in Table 4. 

6 Modified Servo System with Implemented VSC – 

Experiments 

Figures 16-21 present time responses of controlled modified servo system from 

Fig. 15. Six step referent inputs, shown in Table 2, are used, and the system 

responses for each input signal are determined experimentally. The performance 

evaluation will be based on four parameters: a quality of the estimated angular 

position, an offset appearance degree, a speed of transient process, and a quality of 

the estimated angular velocity during the transient process. 

The observer kept the estimation quality of angular positions for all input signals, 

as it is shown in Figs. 16, 17, 18. Figures 19, 20, and 21 show comparisons 

between estimated angular velocities from observer and motor. The observer 

velocity estimations in the steady states improved in comparison to the system 

responses presented in Figs. 8, 9, 10. Offset appearances problem is resolved and 

the errors for all the referent input signals from Table 1 were removed. 

Table 5 is formed on the basis of the analysis of the transient processes before and 

after neural network implementation. The servo system transient process time 

duration is labeled as 
_tp sst , the modified servo system (with implemented neural 

network) transient process time duration is labeled as 
_tp ss nnt 

, it  represents 

increased time duration of transient process of the servo system after neural 

network implementation, 
fvIs  is a symbol for the final value of referent input 

signal, and (%)tI  represents increased time duration comparing systems with and 

without a neural network. It can be concluded that all transient process speeds 

decrease in the range between 25.6% and 46.2% after neural network 

implementation. That implies that overall system responses get slower after 

artificial network implementation. The influence on speed performances can be 

classified as a deficiency, if there is a need for obtaining faster responses. 
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Table 6 represents observer estimation quality comparisons between experimental 

results of the system before and after neural network implementation. 
ssErr  and 

ss nnErr 
 represent absolute errors of the systems without and with neural network, 

respectively. Each error is formed as an absolute value of the difference between 

the velocity estimated by observer and the actual motor velocity. It must be noted 

that only transient process parts of signals are analyzed. Further, 
ssErpr  represents 

the estimated error per second for the default servo system, 
ss nnErpr 

 the 

estimated error per second in the modified servo system, EQI represents the 

Estimation Quality Improvement after neural network implementation, and 

(%)OEI  represents an Improvement of Observer Estimation in percentage — 

comparing the results before and after neural network implementation. 

 

 

Figure 16 

Estimated angular positions from observer and motor for specified motor positions: 5 2 and 5 2  , 

after neural network implementation 

 

 

Figure 17 

Estimated angular positions for observer and motor for specified motor positions: 15 2  and 

15 2  , after neural network implementation 
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Figure 18 

Estimated angular positions for observer and motor for specified motor positions: 25 2  and 

25 2  , after neural network implementation 

 

 

Figure 19 

Estimated angular velocities for observer and motor for specified motor positions: 5 2 and 5 2  , 

after neural network implementation 

 

 

Figure 20 

Estimated angular velocities for observer and motor for specified motor positions: 15 2  and 

15 2  , after neural network implementation 
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Figure 21 

Estimated angular velocities for observer and motor for specified motor positions: 25 2  and 
25 2  , after neural network implementation 

Table 5 

Servo system transient processes time durations 

fvIs  
_tp sst (s) 

_tp ss nnt 
(s) 

it (s) (%)tI  

25 2   4.45 5.59 1.14 25.6 

15 2   3.35 4.90 1.55 46.2 

5 2   2.55 3.55 1.00 39.2 

5 2  2.60 3.71 1.11 42.7 

15 2  3.40 4.91 1.51 44.4 

25 2  4.01 5.56 1.55 38.6 

It can be concluded, from Table 6 (column (%)OEI ), that the precision of the 

estimation is improved in 5 experiments. A neural network improves observer 

performances for all negative input signal values. For positive selection of input 

signals, a deficiency occurs when the final value of referent input signal is 15 2 . 

For all the other experiments from Table 5, the observer improvement is in the 

range between 2.2% and 28.2% after implementation of the neural network. The 

disadvantage of the modified servo system is increased duration of the time 

responses, which is a regular occurrence after artificial network induction. The 

overall conclusion is that implementation of the standard feedforward neural 

network can be a satisfactory solution to improve velocity estimations of the state 

observer. The network can compensate an error that occurs as a result of variable 

structure control logic and effects of large load moments of inertia.  

Table 6 

Observation quality comparisons before and after neural network implementation 

fvIs  
ssErr  

ss nnErr 
 

ssErpr  
ss nnErpr 

 EQI (%)OEI  

25 2   23.666103 28.655103 5.318103 5.126103 yes 3.6 

15 2   13.826103 16.990103 4.127103 3.467103 yes 16.0 

5 2   4.937103 4.935103 1.936103 1.390103 yes 28.2 

5 2  5.128103 7.151103 1.972103 1.927103 yes 2.2 

15 2  13.566103 22.459103 3.990103 4.574103 no -12.8 

25 2  19.982103 26.938103 4.983103 4.844103 yes 2.8 
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Conclusions 

This paper presents a method of neural network use, in the servo system control 

logic, for the purpose of obtaining better estimation performance. The servo 

system that is used is based on a separately excited DC motor. System control 

includes Variable Structure Control (VSC) logic. Position and velocity are 

estimated by the Luenberger state observer. Poor observer velocity estimations are 

noted and it is experimentally shown what causes poor performance. The 

feedforward neural network is designed to properly compensate the control signal 

and solve those problems. The training type and number of neurons in the hidden 

layer are empirically determined by comprehensive simulation procedures. 

Modified control logic is tested by a series of experiments. 

Velocity offsets in steady states are eliminated for each experiment. Further, 

modified control logic significantly reduced overall velocity estimation errors. 

The main disadvantage of the neural network implementation is the increased time 

duration of the servo system processes, in comparison to default control logic 

performance. In general, control logic should be modified in the way 

demonstrated in this work, if there is need for more reliable and accurate observer 

velocity estimations. On the other hand, it is better to avoid feedforward neural 

network implementation if the speed of a system time responses is of greater 

importance. 
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