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Abstract: The optimal representation of a continuous signal is discussed. The underlying 
dynamics is presented by an operator acting on the domain, which makes the optimal frame 
to be wavelets. The wavelet-domain hidden Markov model has been constituted following 
statistics of the measurement process. Information contained in causal states is the global 
complexity, which is a measure of the representation optimality. 
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1 Introduction 

Processing continuous signals raises the issue of its representation. The porblem 
actually occurs due to an interpretation of the continuum in terms of an 
unenumerable set that should represent the domain of a signal space. In that regard, 
conversance of the signal implies an unenumarable values attributed to particular 
elements of the domain which is not only practically unfeasable but completely 
pointless considering functional analysis of the Lebesgue space such as 𝐿𝐿2. It is 
constituted by the finite energy requirement, which menas spanning by a discrete 
base whose choice becomes crucial for faithful representation. 

The issue therefore relates to recognition of a domain which is the signal defined 
upon. An interpretation by means of set theory termed extensional view is the least 
effective solution as it has stated above. On the other hand, such a domain is 
interpreted to be the time continuum which implies an intensional view in terms of 
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a procedure that has generated the signal. In that manner, a processual designation 
comes to the fore concerning its generation by a measurement process. 

A preconsideration of the problem, founded upon the microcannonical cascade 
formalism, was presented in [1] and [2]. The optimal representation is defined by 
maximization of mutual information transferred at successive scales of the wavelet 
decomposition. The method does not address denoising aspect. 

The current paper is also based upon wavelets that should implement the domain of 
a signal. The wavelet-domain hidden Markov model has captured statistics of a 
measurement process unfolding over time, which is regarded to be an operator on 
the signal space. The time operator, which is a definition of the complex system has 
generalized multiresolution analysis playing a fundamental role in the 
representation [3]. The global complexity that is the minimal information required 
for the optimal prediction indicates an increase of the local complexity, which is the 
definition of self-organization in complex systems [4]. Optimality aligns with 
maximal self-organization, reinforcing an intensional view rather than some 
extensional values. Denoising procedure, which is an inherent component of the 
model has proven advantageous over other methods. Using the optimal 
representation results in enhanced performances, due to separation of structural 
information from irreducible randomness [5]. 

2 Frames and Bases of the Signal Space 

The concept of the delta function plays a significant role in signal processing. In 
discrete settings, it was introduced by Leopold Kronecker and a generalization to 
the continuous domain was implemented by Paul Dirac [6]. The function captures 
a concept of the signal being evaluated at a point, and it is often used to designate 
the identity in convolution and operator theory. 

One should consider the two-variable matrix 𝛿𝛿𝑥𝑥(𝑦𝑦), which corresponds to a 
distribution encoding the propositional value 𝑥𝑥 = 𝑦𝑦 (Fig. 1). It underlies the 
decomposition of a signal 𝐹𝐹 through the action of an adjoint operator 

𝐹𝐹(𝑥𝑥) = 𝛿𝛿𝑥𝑥
†𝐹𝐹 (1) 

with reconstruction given by 

𝐹𝐹 = 𝛿𝛿𝛿𝛿†𝐹𝐹 (2) 

In the extensional view, the signal 𝐹𝐹 is characterized by the pointwise evaluation 
𝐹𝐹(𝑥𝑥) forming the graph of a function 

𝑥𝑥 ↦ 𝛿𝛿𝑥𝑥𝐹𝐹 (3) 

 



Acta Polytechnica Hungarica Vol. 22, No. 12, 2025 

‒ 173 ‒ 

 
Figure 1 

The two-variable matrix δx(y) corresponding to a distribution of the propositional value x = y 

Although the representation is trivially valid, it is suboptimal in terms of signal 
modeling and analysis. The trivial identification of a signal with its graph leads to 
the relation 

𝛿𝛿 = 𝛿𝛿𝛿𝛿† (4) 

which makes 𝛿𝛿 an orthoprojector corresponding to the identity operator. Such an 
interpretation regards signal to be a pure concept, deprived of any processual 
designation [7]. 
The intensional view on the other hand aims to represent a signal not merely by its 
values, but through the process that has generated it. From such a perspective, the 
optimal representation should capture a procedure of its generation. Signal 
processing has often neglected such an underlying dynamics [8], resulting in the 
extensional model that is a set of mere points which cannot be the domain of a 
contonuous signal. Consequently, the formulation (1) is not any pointwise 
expression but an almost everywhere holding statement 

𝐹𝐹 = 𝛿𝛿†𝐹𝐹 (5) 

The representation of a signal 𝐹𝐹 is demanded in the form Ψ†𝐹𝐹 satisfying 

𝛿𝛿 = Ψ�Ψ† (6) 

wherein Ψ�  is a dual frame. In particular, if 

𝛿𝛿 = ΨΨ† (7) 

it is a Parseval frame which implies self-duality that is a straightforword 
generalization of (4). A more general requirement 
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𝑎𝑎𝑎𝑎 ≤ ΨΨ† ≤ 𝑏𝑏𝑏𝑏 (8) 

concerns the exact reconstruction implying positive constants 𝑎𝑎 amd 𝑏𝑏 which are 
termed frame bounds. In that instance, the canonical dual is given by 
Ψ� = (ΨΨ†)−1Ψ (9) 

and the operator in brackets is invertible because of its positivity. 

If in addition 

𝛿𝛿 = Ψ†Ψ�  (10) 

such a frame is biorthonormal base of the signal space. It is orthonormal if 

Ψ† = Ψ−1 (11) 

which means that the representation operator is unitary. 

Frames are geometrically interpreted to be sequences that dilate to bases of the 
extended space [9]. It means that there is the base which has restricted to a frame in 
the initial space, whereby the Parseval frame is restriction of an orthonoraml base. 
In that manner, the biorthonormal base has restricted to a frame by neglecting 
environment out of the scope [10]. The frame therefore relates to an open system 
that is partially described by the measurement process [11]. It is a reason to focus 
onto the base Ψ and its dual Ψ�  satisfying (6) and (10). A generalization to frame 
representations should be pointed in the discussion of multiresolution analysis. 

3 Wavelets and the Measurement Process 

A commensuration of magnitudes by the Euclidean algorithm gives rise to 
continued fraction 

1

𝑛𝑛1+
1

𝑛𝑛2+
1
⋱
 (12) 

which is an  intensional procedure taking place over time. Due to the question mark 
function by Minkowski 

? : 1

𝑛𝑛1+
1

𝑛𝑛2+
1
⋱

↦ 1
2𝑛𝑛1−1

− 1
2𝑛𝑛1+𝑛𝑛2−1

+ ⋯ (13) 

which is an automorphism of the time continuum, it corresponds to the binary code  

𝑥𝑥 = 0.0 … 0�����
𝑛𝑛1

1 … 1���
𝑛𝑛2

0 … 0���
…

… (14) 

producing a real number of the unit interval [5]. 
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Devices of the measurement process relate to a base Ψ𝑖𝑖 which is enumerated by 
dyadic fractions 

𝑖𝑖 = 2𝑘𝑘−1
2𝑗𝑗

 (15) 

between 0 and 1, forming nodes the binary tree. Measurement states correspond to 
a dual Ψ�𝑖𝑖, enumarated by dyadic fractions (15) as well. A step of the process is 
given by the operator 

𝑈𝑈: 𝛿𝛿𝑥𝑥 ↦ 𝛿𝛿2𝑥𝑥(−1) (16) 

which is a shift leftwards in terms of the binary code (14). It acts onto states in the 
manner of 

𝑈𝑈:Ψ�𝑖𝑖 ↦ Ψ�2𝑖𝑖(−1) (17) 

mapping each node of binary tree to its precursor (Fig. 2). Such an evolution (17) 
makes the frame Ψ�𝑖𝑖 to be wavelets [11]. 

 

The binary tree that implies a step mapping each node except the root to its precursor 

The evolutionary opeartor 𝑈𝑈 extends to an invertible one whcih is denoted by the 
same symbol. The extension depends upon the base and its dual in order to retain 
the property (17). The time operator of wavelets  

𝑇𝑇:Ψ�𝑖𝑖 ↦ 𝑗𝑗Ψ�𝑖𝑖  (18) 

is extended as well, in regard that the commutator relation 

[𝑈𝑈, 𝑇𝑇] = 𝑈𝑈 (19) 

remains satisfied [5]. 
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Projectors 

𝑃𝑃𝑖𝑖 = Ψ�𝑖𝑖Ψ𝑖𝑖
† (20) 

generate a Boolean algebra in respect to addition and multiplication. Due to the 
Stone representation theorem, it is isomorphic to a measurable space which is 
regarded to be the domain of a signal [7]. The evolution of the domain which maps 
𝑃𝑃𝑖𝑖  into 𝑃𝑃2𝑖𝑖(−1) is governed by the superoperator 𝑉𝑉:𝐹𝐹 ↦ 𝑈𝑈𝑈𝑈𝑈𝑈† that preserves 
positivity since 

𝜌𝜌 = 𝐹𝐹𝐹𝐹† ≥ 0 ⇒ 𝑉𝑉𝑉𝑉 = (𝑈𝑈𝑈𝑈)(𝑈𝑈𝑈𝑈)† ≥ 0 (21) 

The commutator relation (19) holds for 𝑉𝑉 as well, involving the time operator of 
wavelets (18). 

4 Wavelet-Domain Hidden Markov Model 

A defining feature of complex systems is the time operator 𝑇𝑇 satisfying the 
commutator relation in respect to the operator 𝑉𝑉 that is positivity preserving. 
Preservation of positivity (21) implies that it governs the evolution of a density, 
which is reversible since the inverse operator has also preserved positivity. Random 
variables over the same domain evolve by an adjoint operator 𝑉𝑉†. 

Existence of the time operator provides a change in representation 

Λ = 𝜆𝜆(𝑇𝑇) (22) 

which is an operator function of time [12]. The inverse operator 𝑊𝑊−1 does not 
preserve positivity and therefore the adjoint 

𝑊𝑊† = Λ−1†𝑉𝑉†Λ† (23) 

should govern the Markov process applied to the transfigured base Ω𝑖𝑖 = Λ−1†Ψ𝑖𝑖 , 
whose dual ΛΨ�𝑖𝑖 evolves by 𝑊𝑊. In such a base, the signal 𝐹𝐹 corresponds to hidden 
variables 

Ω𝑖𝑖
†𝐹𝐹 = Ψ𝑖𝑖

†Λ−1𝐹𝐹 (24) 

which are attributed one per each node of the binary tree (Fig. 3). The wavelet-
domain hidden Markov model has been constituted in that manner, following 
statistics of the measurement process [13]. 
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The wavelet-domain hidden Markov model wherein black nodes correspond to a signal and blue ones 
to hidden states 

Information of the signal 

𝐻𝐻(𝐹𝐹) = 𝐻𝐻(Λ−1𝐹𝐹) + 𝐻𝐻(𝐹𝐹|Λ−1𝐹𝐹) (25) 

separates into a sum of two terms wherein the second one 𝐻𝐻(𝐹𝐹|Λ−1𝐹𝐹) is an 
irreducible randomness persisting even after none correlation has remained. 
Maximizing such a term achieves 𝐻𝐻(Λ−1𝐹𝐹) to be the minimal information required 
for the optimal prediction, which is the global complexity. It makes hidden variables 
Ω𝑖𝑖
†𝐹𝐹 to be causal states containing information, which is the local complexity.  

The global complexity is an indicator of increasing the local complexity over time 
[4]. Such a complexity increase is the definition of self-organization in complex 
systems [14]. 

In order to determine local and global complexities, one should estimate parameters 
of the statistical model. For that purpose, an iterative expectation maximization is 
performed [15]. Applied to the hidden Markov model, the procedure is known to be 
the Baum-Welch algorithm. Starting from initial parameters 𝜗𝜗0, it estimates in each 
successive step 𝑙𝑙 a repaired value 𝜗𝜗𝑙𝑙. The algorithm converges to a value 𝜗𝜗 
maximizing the likelihood function 𝑝𝑝(𝐹𝐹|𝜗𝜗), due to the fact that the graph is cordal 
since there are no cycles in the binary tree. Having an intelligent initialization 𝜗𝜗0, 
the convergence should occur in as few as ten iteration for a simple model that 
implies a locally two-state causal structure [13]. 

An intrinsic component of the model is a denoising procedure that has been proven 
advantageous over other methods. Adding white noise to a signal convolves the 
distribution density and denoising concerns a deconvolution, using the optimal 
representation which results in enhanced performances [4]. The denoising 



M. Milovanović et al. On the Optimal Representation of a Continuous Signal 

‒ 178 ‒ 

procedure does not affect complexity 𝐻𝐻(Λ−1𝐹𝐹) but only an irreducible randomness 
𝐻𝐻(𝐹𝐹|Λ−1𝐹𝐹) and in that regard the equality (25) has separated structural information 
from noise.  

5 Multiresolution Analysis 

In the light of the above, maximization of global complexity corresponds to a 
measure of the representation optimality. It aims to distinguish the time operator 
corresponding to an  intensional procedure that has generated the signal. Such an 
underlying dynamics is presented by multiresolution analysis, which is a term that 
has originated from optics and computer vision [16]. An instance of multiresolution 
analysis is presented by the approximation of an image at successive scales (Fig. 4). 

It concerns a sequence of wandering subspaces 𝐷𝐷𝑗𝑗  which are eigenspaces of the time 
operator. One should satisfy axioms: 

(i) 𝑈𝑈𝑈𝑈 ∈ 𝐷𝐷𝑗𝑗 ⇔ 𝐹𝐹 ∈ 𝐷𝐷𝑗𝑗+1; 

(ii) 𝐷𝐷0 consists of constants only; 

(iii) ⨁𝐷𝐷𝑗𝑗  involves any signal; 

(iv) there is Ψ�1
2
 which is the base of 𝐷𝐷1. 

 
Figure 4 

An instance of multiresolution analysis that is presented by the approximation of an image at 
successive scales which are obtained due to adding detail subspaces 
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A subspace 𝐷𝐷𝑗𝑗  corresponds to the projector ∑Ψ�𝑖𝑖Ψ𝑖𝑖
† implying a summation over 

dyadic fractions (15) related to the time instance 𝑗𝑗. In that manner, the domain (20) 
is temporally arranged to be the time contonuum offering an intensional view of the 
signal space. 

A generalization to frames is somewhat demanding, due to the general measurement 
which relates to an open system that is partially described by the process [11]. In 
that regard, the base has restricted to a frame of the signal space by neglecting an 
environment that has remained out of the scope [9]. The Naimark dilatation theorem 
implies a method analogous to heterodyne detection in communication engineering: 
the signal to be observed combines with another one, which is termed ancilla [17]. 
Thereafter, a measurement process is performed on the space which has dilated by 
the environment. The amount of information gained in that manner might be greater 
than if the observation were limited to the measurement without ancilla [10]. One 
concludes that the optimal representation does not restrict to bases only, involving 
as well a general measurement ,which are related to frames [11]. 

Conclusion 

Addressing the optimality issue in the representation of continuous signals has 
demonstrated that the extensional view which concerns the delta function is the least 
effective solution. On the contrary, it is proposed the optimal representation 
emerging from an underlying  dynamics which is the  intensional procedure that 
generates a signal. 

The paper offers a novel perspective which has presented the measurement process 
generating the domain of a continuous signal. The underlying dynamics is an 
operator acting on the domain, which makes optimal frames to be wavelets. Frames 
are sequences that dilate into bases of an extended space, relating therefore to an 
open system partially described by the process. 

The underlying dynamics is implemented by means of multiresolution analysis. 
Such a concept derived from optics and computer vision refers to wandering 
subspaces which are eigenspaces of the time operator. Its existence provides a 
change in representation, transfiguring reversible to irreversible evolution, which is 
Markovian. The wavelet-domain hidden Markov model is constituted in that 
manner, following statistics of the measurement process. The optimality 
corresponds to maximization of global complexity concerning information 
contained in causal states. 
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