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resilient transport systems. 
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1 Introduction 

The global transportation sector is undergoing a profound transformation, driven by 
the urgent need to mitigate climate change, reduce greenhouse gas emissions and 
comply with increasingly stringent environmental regulations. Across the world, 
policymakers, industries, and consumers are steering away from Internal 
Combustion Engines (ICEs) and embracing electrically powered mobility solutions, 
predominantly Electric Vehicles (EVs). This transition is not occurring in a vacuum; 
it is influenced by evolving international and regional environmental goals, 
economic incentives, technological advancements, and shifting public perceptions 
of sustainable transport. In line with this, the European Union (EU) has placed 
decarbonization and the development of sustainable transport systems at the 
forefront of its policy agenda [1]. Strategic initiatives, such as the European Green 
Deal and the Sustainable and Smart Mobility Strategy, emphasize not only the 
adoption of EVs but also the development of infrastructure that can accommodate 
the rising number of vehicles while ensuring grid stability, economic viability, and 
accessibility [2]. 

 
Figure 1 

Electric Vehicle registrations in the EU27 have steadily increased between 2010 and 2022 [3] 

This large-scale shift to EVs necessitates a parallel expansion of charging 
infrastructure. As registrations soar across Europe—growing by orders of 
magnitude in many EU states (see Fig. 1)—the geographic distribution, capacity, 
and sophistication of charging networks have become critical for energy planners 
and transportation agencies. The electrified mobility ecosystem’s success hinges on 
strategically siting, sizing, and scaling public chargers in urban cores, residential 
areas, industrial hubs, and recreational sites. Such targeted deployment ensures 
efficient, reliable charging while enabling the grid to leverage flexible loads for 
improved balancing and resilience [4] [5]. 

However, despite these recognized needs, current approaches to deploying public 
charging infrastructure are often reactionary and may lack strategic foresight [6]. 
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The emphasis has frequently been on the “low-hanging fruit”—installing chargers 
where it is administratively simpler or where preliminary interest exists—rather 
than relying on detailed data-driven methodologies that consider present and future 
demand profiles [7]. This gap reflects both a shortage of nuanced datasets capturing 
the spatio-temporal charging behavior of EV users and the complexity of deriving 
actionable insights from such information. For instance, while some datasets might 
document the increasing popularity of EV usage through the gradual temporal 
increase in observed charging sessions, few provide context-sensitive patterns that 
distinguish between charging activities in dense inner-city neighborhoods, suburban 
mixed-use areas, industrial hubs, or tourist-frequented recreational zones [8] [9], or 
lack specific localization and geographic diversity [10]. Without these 
differentiated insights, policymakers and grid operators risk suboptimal 
infrastructure investments, that could lead to underutilized chargers in some 
locations and excessive grid strain in others. From a system-wide perspective, 
efforts to expand EV charging must also account for broader market, policy, and 
socioeconomic forces that shape driver behavior—ranging from national incentives 
and electricity market structures to urban planning policies and regional travel 
habits [11] [12]. In doing so, researchers and practitioners can better anticipate 
barriers to widespread EV use, such as grid upgrade costs or inequitable charger 
distribution, and align infrastructure investments with evolving mobility demands. 

2 Motivation 

Our research addresses these challenges by analyzing a unique, detailed dataset of 
public EV charging sessions in Prague, Czechia. Prague represents a compelling 
case study as a medium-sized European city, blending historical urban centers, 
high-density residential neighborhoods, evolving suburban communities, and 
industrial areas. Consequently, insights derived from Prague’s charging landscape 
may generalize to other cities that share similar typologies and face analogous 
challenges in navigating the EV transition. Specifically, our work integrates 
charging session data with geospatial and demographic information, allowing us to 
characterize load curves and charging demand patterns at a granular, location-based 
level. By employing advanced data processing and normalization techniques, we 
reveal how local area types influence charging behavior, how temporal patterns 
emerge within specific urban morphologies, and how evolving EV charging 
demand aligns ‒ or diverges ‒ from the existing distribution of charging stations. 

Such detailed insights are vital for guiding the next generation of infrastructure 
planning and grid management. Local utilities and distribution system operators can 
leverage these findings to anticipate when and where peak demands might occur, 
aligning resource allocation, load shaping, and potentially even dynamic pricing 
schemes to optimize the local and regional energy mix. For example, understanding 
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that certain residential districts might see sharp charging demand in the early 
evening, or that industrial areas may experience dual peaks aligned with shift 
changes, can inform both operational strategies and investment decisions [13] [14]. 
By correlating charging behavior with urban typologies, city planners can promote 
more equitable and efficient infrastructure deployment, reducing range anxiety for 
EV owners while minimizing resources needed for grid expansion with similar 
utility levels [15]. 

A more nuanced understanding of spatiotemporal charging patterns is also essential 
for the effective integration of advanced charging control technologies, such as 
vehicle-to-grid (V2G) strategies, which allow EVs to supply power back to the grid 
when needed. By accurately forecasting localized demand fluctuations, grid 
operators can dynamically schedule V2G transactions to help balance loads, prevent 
distribution bottlenecks, and facilitate renewable energy integration [16]. This not 
only increases the overall stability and resilience of the grid but also creates 
potential economic benefits for both EV owners and energy providers through 
optimized pricing and peak-shaving measures. At a broader scale, the insights 
gained from analyzing Prague’s public EV charging data represent an incremental 
but critical step towards a more holistic understanding of EV ecosystem dynamics. 
Pairing these localized insights with macro-level trends ‒ such as those documented 
by the International Energy Agency (IEA), the European Environment Agency, and 
other research institutions ‒ enables international comparisons and the development 
of standardized approaches to infrastructure planning [17]. State-of-the-art 
literature has also begun to highlight the interdependencies between EV adoption 
rates, battery technologies, charging station types, and power grid configurations 
[15] [18] [19]. Future studies can expand on this foundation by integrating policy 
signals, electricity market reforms, and consumer behavior models, yielding 
predictive tools for large-scale EV charging deployment. 

This research addresses a critical gap, by revealing how public charging demand 
varies with spatial typologies and evolves over time. Building on holistic 
approaches that link transportation, urban planning, and energy systems, our 
findings offer improved charger siting, optimized load management, and data-
informed policymaking. Ultimately, these insights pave the way for more resilient, 
user-friendly EV ecosystems, contributing to a cleaner, more efficient, and 
sustainable transportation landscape. 

3 Methodology 

Our research applies a multi-stage framework to analyze public electric vehicle 
(EV) charging demand. First, data preprocessing addresses potential inconsistencies 
and missing values, ensuring analyses rest on a robust foundation. Second, 
geospatial classification situates each charging station within a legislatively defined 
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administrative structure, limiting bias and reflecting diverse urban morphologies. 
Third, normalization (e.g., feature scaling) aligns data collected under varying 
conditions, enabling consistent comparisons across different locales and 
timeframes. And finally, temporal load profiling converts discrete session data into 
hourly or daily load curves to pinpoint periods of elevated charging activity. 
Collectively, these steps facilitate the identification of core charging behaviors 
under distinct urban contexts and over multiple time horizons. The analysis was 
done in Python with ordinary scientific libraries Pandas and scikit-learn on a 
standard workstation. 

3.1 Data Preprocessing 

Data preprocessing serves as the foundational step that ensures subsequent analyses 
rest on reliable, high-quality information. Initially, raw session data comprising start 
times, end times, and total energy delivered is gathered from public charging 
records. However, these datasets often contain errors, inconsistencies, or missing 
values. Sessions may exhibit unrealistic durations, extraordinarily high or low 
consumption values, or unaligned timestamps due to data logging irregularities. To 
address these challenges, a systematic data cleaning protocol is employed. This 
protocol involves automated and semi-automated checks that verify temporal 
consistency (e.g., ensuring the end time is always after the start time), plausible 
energy consumption ranges based on typical EV charging power rates, and the 
removal of sessions that deviate substantially from expected operational 
boundaries. 

Beyond merely removing problematic sessions, data preprocessing also includes 
strategic filtering. For instance, sessions with extremely short durations (e.g., less 
than one minute) may represent erroneous measurements and can distort aggregate 
load patterns. Similarly, sessions recorded during maintenance periods or pilot 
testing phases are excluded to focus on genuine user-driven charging behaviors. In 
all cases, the overarching philosophy is to preserve data integrity and 
representativeness. By applying these rigorous measures, the dataset that emerges 
is both cleaner and more reflective of typical charging conditions, enabling more 
trustworthy insights later in the analysis pipeline. The resultant curated dataset is 
thus, a refined, high-fidelity source of truth, prepared for normalized comparisons, 
load curve computations and spatial-temporal correlation analyses. 

3.2 Geospatial Analysis and Classification 

A key element of this research is the spatial classification of charging locations. 
Rather than relying on subjective or manual classification schemes, we employ 
granularity levels and definitions that are established by national legislative 
frameworks, ensuring standardization and reducing bias. By anchoring the 
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geospatial categorization to legally defined administrative units, the study attains 
an objective and reproducible means of classifying chargers into distinct location 
types. This approach aids in capturing the inherent urban complexity and 
heterogeneity in an unbiased manner. 

For example, areas may be grouped into categories reflecting predominant land use, 
density, or other socio-economic factors as defined by official legislation. This 
ensures that each charger’s surrounding environment is interpreted through a stable, 
nationally recognized lens, preempting the introduction of subjective criteria that 
could distort spatial comparisons. Although the details of the specific administrative 
units and their nomenclature are beyond the scope of this methodology, the 
principle remains that all classifications adhere to legally standardized spatial 
divisions. 

3.3 Normalization 

To address discrepancies arising from differing numbers of chargers or unequal 
observation periods, the data undergo normalization. Max-normalization feature 
scaling is employed, ensuring that all measured values that are always non-negative 
are placed in a [0,1] range relative to their maximum observed value, as: 

𝑥𝑥𝑖𝑖′ = 𝑥𝑥𝑖𝑖
max(𝑥𝑥)

                                                                                                                 (1) 

This scaling technique allows for valid comparisons across time (e.g., different 
seasons) and space (e.g., different administrative units), as it normalizes charging 
demand patterns to a common reference frame. This step is essential for 
disentangling inherent behavioral differences from mere differences in data quantity 
or infrastructure availability. 

3.4 Transforming Charging Sessions into Hourly Load Curves 

A critical step in our research is converting discrete EV charging sessions into 
hourly load curves, thereby revealing how charging demand unfolds during a typical 
24-hour period. This transformation is essential for identifying potential bottlenecks 
in the distribution grid, designing time-based pricing policies, and optimizing the 
allocation of charging infrastructure. To capture daily charging demand dynamics, 
individual charging sessions are aggregated into hourly load curves, using a process 
described below. 

3.4.1 Session-Level Distribution of Consumed Energy 

The process begins with the processed session data, with each charging session, 
indexed by 𝑗𝑗 , typically defined by the following parameters: 



Acta Polytechnica Hungarica Vol. 22, No. 11, 2025 

‒ 127 ‒ 

• 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑗𝑗- session 𝑗𝑗 start time 

• 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒, 𝑗𝑗- session 𝑗𝑗 end time 

• 𝐸𝐸𝑗𝑗 - total consumed energy in session 𝑗𝑗 

Using the above, we can also calculate the duration ∆𝑡𝑡𝑗𝑗 of session 𝑗𝑗  as: 

∆𝑡𝑡𝑗𝑗 = 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒, 𝑗𝑗 − 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑗𝑗                                                                                              (2) 

Following a commonly employed approximation in large-scale EV studies [10] [15] 
[20], we assume the charging power is evenly distributed over the session duration. 
Real-world charging profiles may exhibit ramps, tapers, or interruptions; however, 
in the absence of high-resolution power data, uniform distribution offers a practical 
first-order estimate of load contribution. 

For each hour in a day, 𝑖𝑖 = 0,  … ,  23, we compute the energy contributed by a 
single charging session 𝑗𝑗 during that hour by considering the width ∆𝑡𝑡𝑗𝑗,𝑖𝑖 of the 
overlap between the session time window �𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑗𝑗,  𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒, 𝑗𝑗�  and the time interval 
corresponding to hour 𝑖𝑖 . The relative energy amount 𝐸𝐸𝑗𝑗,𝑖𝑖  describing the share of the 
total energy from charging session 𝑗𝑗 allocated to hour 𝑖𝑖 is thus: 

𝐸𝐸𝑗𝑗,𝑖𝑖 = 𝐸𝐸𝑗𝑗 ∙
∆𝑡𝑡𝑗𝑗,𝑖𝑖

∆𝑡𝑡𝑗𝑗
                                                                                                            (3) 

If a session spans multiple hours, each hour 𝑖𝑖  that overlaps with the session receives 
a proportion of the total session energy based on the fraction of time the session 
occupies within that hour. 

3.4.2 Aggregation Across Chargers and Sessions 

To construct system-level (or network-level) hourly load curves, we extend the 
summation across all chargers, indexed by 𝑘𝑘 , and all their respective sessions, 
indexed by 𝑗𝑗 . Let 𝑁𝑁𝑘𝑘 be the total number of charging sessions recorded at charger 
𝑘𝑘 . We denote the total number of chargers in the dataset as 𝑀𝑀 . The aggregated load 
𝑋𝑋𝑖𝑖 at hour 𝑖𝑖  is: 

𝑋𝑋𝑖𝑖 = ∑ ∑ �𝐸𝐸𝑘𝑘,𝑗𝑗 ∙
∆𝑡𝑡𝑘𝑘,𝑗𝑗,𝑖𝑖

∆𝑡𝑡𝑘𝑘,𝑗𝑗
�𝑁𝑁𝑘𝑘

𝑗𝑗=1
𝑀𝑀
𝑘𝑘=1 ,  ∀𝑖𝑖 = 0,  … ,  23                                                     (4) 

where: 

• 𝐸𝐸𝑘𝑘,𝑗𝑗 is the total energy consumed in session 𝑗𝑗  at charger 𝑘𝑘 

• ∆𝑡𝑡𝑘𝑘,𝑗𝑗 = 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒,𝑘𝑘,𝑗𝑗 − 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑘𝑘,𝑗𝑗 and is the total absolute duration of the 𝑗𝑗 th session 
at charger 𝑘𝑘 

• ∆𝑡𝑡𝑘𝑘,𝑗𝑗,𝑖𝑖 denotes the relative portion of the 𝑗𝑗 -th session at charger 𝑘𝑘  that 
overlaps with hour 𝑖𝑖  
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This formulation ensures that every session from every charger that intersects hour 
𝑖𝑖 contributes proportionally to the load at that hour. The result is a load profile 
{𝑋𝑋0,  𝑋𝑋1,  … ,  𝑋𝑋23} that captures how total charging demand evolves over a 24-hour 
cycle. Aggregating load curves in this manner offers multiple advantages for both 
researchers and practitioners. First, grid operators can use these system-level 
profiles to assess total load impacts on local feeders and substations, informing 
decisions about transformer capacity, distribution upgrades, or congestion 
management strategies. Second, city planners and policy-makers gain insights into 
the collective intensity and timing of demand, helping them anticipate potential 
hotspots where additional charging sites may be required to accommodate surges in 
EV usage. Third, analysts can easily scale this approach to larger geographical 
regions or specific subsets of chargers (for example, by area type), enabling flexible 
inquiries into how drivers’ charging behaviors might shift across different land-use 
contexts or varying penetration levels of EV adoption. Finally, the aggregator can 
be iterated over multiple days, weeks, or months to capture seasonal trends or 
emerging usage patterns, thus providing an evolving picture of how charging 
demand develops over time. Used in conjunction with geospatial and demographic 
overlays, this aggregated viewpoint becomes a powerful tool for conducting 
scenario analyses, designing fair pricing policies, and ensuring that infrastructure 
expansions remain responsive to real-world driver behavior. 

3.4.3 Practical Implementation and Computational Workflow 

Below is an example of pseudocode illustrating the above-described construction 
of a daily load curve for all chargers: 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

 

# Let M = number of chargers in the dataset. 
# Let sessions[k] = list of sessions for charger k. 
 
initialize total_load[0..23] = 0 
 
for k in range(1 to M):                      # loop over all chargers 
for each session s in sessions[k]:           # loop over all sessions for charger k 
E_total = s.E                                # total energy consumed in this session 
session_duration = s.end - s.start 
start_hour = extract_hour(s.start) 
end_hour   = extract_hour(s.end) 
 
for i in range(start_hour to end_hour): 
hour_start = datetime_of(i) 
hour_end   = datetime_of(i + 1) 
 
# Compute overlap (in hours) between session s and hour i 
overlap_duration = intersection([s.start, s.end], [hour_start, hour_end]) 
if session_duration > 0: 
# Distribute energy proportionally 
total_load[i] += E_total * (overlap_duration / session_duration) 
 
# At this point, total_load[i] contains the load (in kWh or Wh) for hour I across 
all chargers in the dataset. 
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The calculated total_load[i] represents the accumulated energy consumption 
during hour from all chargers under consideration. In practice, these calculations 
are batch-processed over extended periods ‒ days, months, or years ‒ enabling 
advanced time-series analyses. For tailored metrics, such as average daily or peak 
loads, aggregated profiles can be further refined. 

3.4.4 Advantages and Limitations 

While the uniform distribution model simplifies calculations and is widely used [10] 
[15] [20], it can obscure details such as power tapering toward the end of a session 
or variable charging power levels. Future work could incorporate more detailed 
power-curve data for each session to enhance fidelity. Nevertheless, this approach 
robustly captures the overall shape and magnitude of load, providing a valuable 
first-order assessment of temporal charging demands. By aggregating data in this 
manner, one gains practical insights into how infrastructure usage accumulates over 
the course of a day, which hours may experience peak draw on the distribution grid, 
and how these trends evolve seasonally or in response to changes in EV adoption. 
Ultimately, this foundation supports deeper analyses, such as identifying load-
shifting opportunities, thus serving both academic research and real-world 
applications in energy systems planning. 

3.5 Analytical Tools and Visualizations 

Once refined load data is assembled, various analytical and visualization techniques 
extract actionable insights. Beyond basic descriptive statistics, methods like 
clustering, time series decomposition, and correlation analysis uncover subtle 
charging patterns and group chargers by similar load profiles. These techniques 
reveal socioeconomic, traffic, and accessibility factors influencing demand. 
Visualization enhances interpretation of temporal variations. Line charts, heatmaps, 
and violin plots highlight daily peaks, weekday versus weekend variations, and 
seasonal trends. Overlaying contextual data, such as electricity prices or weather, 
enriches this analysis, clarifying how diverse factors shape charging behaviors. 
These tools allow grid operators and city planners to allocate resources more 
strategically, ensuring efficient and sustainable infrastructure deployment. 

4 Dataset Description 

This study is underpinned by three major categories of data, each contributing a 
complementary perspective on the public electric vehicle (EV) charging landscape 
in Prague, Czechia. These categories include two datasets cataloging individual 
charging sessions, a comprehensive body of geospatial information, and a set of 
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demographic indicators that, taken together, delineate the complex spatial and 
temporal dynamics of charging demand. In this study, the data has been processed 
to establish direct linkages based on geographic information, specifically utilizing 
individual charger addresses, as illustrated in a data linkage overview in Fig. 2. 

 
Figure 2 

Overview of the analyzed datasets 

4.1 Charging Session Data 

A central feature of this work are two extensive datasets documenting public EV 
charging sessions, generously provided by PREdistribuce, a.s., the largest public 
charging point provider in Prague [21]. The first dataset spans December 2019 to 
November 2020, and the second covers January 2022 to October 2022. Each record 
specifies session start and end times along with total energy delivered, enabling 
precise hourly load curve calculations, as well as insights into consumption patterns, 
peak demand, and temporal trends. The datasets encompass AC and DC charging 
events, reflecting diverse real-world scenarios. AC stations typically handle 
moderate power levels, common in residential and commercial areas, while DC 
stations, offering higher power rates, are often located at major transport hubs. This 
composition supports comparative analysis of charging behavior, revealing 
variations in location-specific infrastructure usage and demand evolution over time. 

4.2 Geospatial and Demographic Data 

Complementing session-focused information, robust geospatial and demographic 
data are critical for elucidating the contextual factors that shape charging behavior. 
In this regard, the study draws upon Basic Administrative Units (Základní sídelní 
jednotka, ZSJ) curated by the Czech Statistical Office [22]. These units constitute 
Prague’s most granular form of local administrative division, with the city 
subdivided into 948 unique ZSJ areas. The ZSJ framework is legislatively 

ZSJ database
● Time granularity: yearly
● Area granularity: up to 

BAU / ZSJ
● Range: Up to 2022
● Contents

- Geospatial data
- Name
- Population
- Nr of apartments
- …

Charging data Demographic data

PREdi charging 19-20
● Time granularity: 

seconds
● Area granularity: 

address
● Range: Dec19-Nov20
● Contents

- ID of charger
- Charger plug type
- Address
- Timestamp start, end
- Energy Consumption

PREdi charging 22
● Time granularity: 

seconds
● Area granularity: 

address
● Range: Jan22-Oct22
● Contents

- ID of charger
- Charger plug type
- Address
- Timestamp start, end
- Energy Consumption

LinkedLinked
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established and segregates the municipality into twelve classifications based on 
primary usage. Table 1 illustrates the standardized naming conventions and color 
coding assigned to these categories. 

Table 1 
Basic Administrative Units (ZSJ) categories 

Original Czech Name English translation Color 
Obytná plocha v kompaktní zástavbě Compact residential area Purple 
Městská a příměstská smíšená plocha Urban and suburban mixed area Red 

Obytně rekreační plocha Residential and recreational area Teal 
Odloučená obytná plocha Separated residential area Violet 

Dopravní areál Transportation infrastructure area Orange 
Areál občanské vybavenosti Civic amenities area Blue 

Rekreační plocha Recreational area Coral 
Ostatní účelová plocha Urban and suburban mixed area Lime 

Průmyslový areál Industrial area Pink 
Rezervní plocha Reserve area Yellow 

Zemědělská plocha Agricultural area Brown 
Lesní plocha Forest area Gree 

Fig. 3 illustrates the spatial distribution of ZSJ types across Prague using consistent 
color coding. Linking chargers to their respective ZSJ ensures a standardized and 
objective classification, avoiding subjective delineations. The associated 
demographic and infrastructural profiles, such as population density and land use, 
provide deeper insights into how local environmental factors influence EV charging 
patterns. This multi-layer geospatial approach forms a robust basis for statistical 
and visual analyses of charging demand. 
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Figure 3 

Prague proper split into ZSJ units classified per area type 

4.3 Integration of Multiple Data Layers 

Combining the charging session records with geospatial and demographic variables 
yields a multifaceted dataset that illuminates the interplay between infrastructure, 
user behavior, and urban form. For instance, evaluating the relationships between 
session counts, total energy delivered, or peak usage hours and the classified ZSJ 
areas sheds light on localized disparities in demand. 

These analyses can also help detect how certain neighborhoods—especially dense 
urban centers or peripheral industrial zones—may exhibit unique utilization 
patterns. Fig. 4, for example, portrays the total recorded charging load across the 
spatial extent of Prague, thereby providing a macroscopic perspective on how 
charging demand is distributed among different localities. 
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Figure 4 

Total charging load per Prague ZSJ in W/h across the whole dataset. Note the logarithmic scale. 

Such integrative data processing not only allows for purely descriptive 
visualizations but also informs more advanced modeling techniques. Researchers 
can draw on this layered dataset to build predictive models of future charging 
demand or to identify potential stress points in the electric grid. As the share of EVs 
continues to grow, understanding how geographic, demographic, and infrastructural 
features converge in shaping driver charging preferences becomes increasingly vital 
for municipal planners, grid operators, and policy experts. By offering a richly 
contextualized depiction of Prague’s public charging ecosystem, these data thereby 
represent a significant step forward in comprehensively analyzing, forecasting, and 
optimally guiding EV infrastructure development. 

5 Results and Insights about Public Charging 

The data in this study provides a comprehensive analysis of the spatial and temporal 
patterns shaping public EV charging behavior in Prague. While overall charging 
volumes increase with rising EV adoption, this section highlights granular trends 
shaped by factors like time, location type, and infrastructure characteristics. 

5.1 Intra-week Charging Demand 

An analysis of charging frequency across the week reveals workweek-centric usage 
patterns. As shown in Fig. 5, charging demand during weekends (Saturday and 
Sunday) is approximately 21% lower than on weekdays, suggesting that public 
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chargers are primarily used for work-related commutes and associated errands. 
December 2019 is treated as an outlier due to its brief observation window and 
deviation from trends seen in 2020 and 2022. 

 
Figure 5 

Weekday normalized average charging demand 

5.2 Charging Demand Development Split per Area Type 

Temporal trends in charging demand differ significantly across geographic zones. 
Figure 6 shows monthly relative shares of charging instances and installed charging 
points between December 2019 and October 2022, categorized by ZSJ types. Data 
gaps between December 2020 and December 2021 are interpolated and marked. 
Compact residential areas show a growing share of charging sessions, reflecting 
increased EV adoption in densely populated zones. Agricultural and Industrial areas 
also display modest growth. In contrast, Civic amenities, Urban and suburban 
mixed, and Recreational areas experience a decline in usage, possibly due to 
changing travel patterns or evolving local infrastructure. These shifts suggest that 
demand is influenced by more than the availability of chargers, pointing to evolving 
user behavior and broader urban trends. 



Acta Polytechnica Hungarica Vol. 22, No. 11, 2025 

‒ 135 ‒ 

 

 
Figure 6 

Temporal relative share development analysis for charging instances and installed chargers in Prague, 
classified per ZSJ type. Note that the red-bordered, gray fill area in the upper chart of charging 

instances corresponds to the interpolated region of unavailable data. The lower chart is the number of 
installed chargers distribution including chargers put into operation before the span of the timeline. 

5.3 Location Based Parameters of Demand Curves 

Extending the geographic inquiry, the study explored heterogeneity in charging 
demand curves by area classification. Fig. 7 plots the normalized average load curve 
profile for each type of administrative unit, revealing four overarching profiles: 

1. Sustained single peak: Areas such as Compact residential, Urban and 
suburban mixed, and Civic amenities exhibit a steady increase in demand, 
culminating in a single, protracted peak. These high-density or 
multifunctional zones appear to maintain a relatively stable baseline of 
charging activity throughout the day. 

2. Morning single peak: Transportation and Recreational areas show a surge in 
demand in the morning, driven by early-day visitors. 

3. Evening single peak: Separated residential and Agricultural areas reach peak 
usage around 17:00, suggesting that drivers who lack immediate home-
charging options may rely on these chargers when returning from work or 
other daytime activities. 

4. Double peak: Reserve and Industrial areas display both a morning and 
evening peak, albeit sometimes offset by an hour. This phenomenon could 
reflect commuting patterns (morning arrivals and evening departures) in 
industrial job sites and larger logistical facilities. 
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While the causes of these distinctive load curves remain only partially explained, 
certain patterns are evident. Group 1 (sustained single peak) aligns with commuting 
trends, complementing residential charging profiles that peak later in the evening. 
Morning spikes in Group 2 reflect leisure commutes, while Group 3's late-afternoon 
peaks coincide with post-work arrivals in less urbanized areas. Group 4's dual peaks 
indicate shift-based schedules in industrial zones. This heterogeneity has practical 
implications for grid balancing, which has long been a potential in EV adoption 
[13]. For example, mid-day or morning demand in urban neighborhoods can offset 
heavier evening residential loads [14] [15]. Distributing chargers across multiple 
location types may therefore help moderate overall consumption peaks. 

 
Figure 7 

Normalized demand curves for ZSJ types with chargers present in the dataset 

Considering these findings, strategic initiatives ‒ such as dynamic capacity 
allocation ‒ appear merited [23]. Time-of-use pricing might incentivize off-peak 
charging, and combined with deploying chargers strategically, stakeholders can 
enhance grid stability while addressing localized demand effectively. 
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6 Limitations 

This study’s reliance on data from a single public charging provider limits the 
representativeness of findings. Expanding datasets to include private and multi-
provider sessions could offer a more comprehensive view of EV behavior [24] [25]. 
Translating site-level load profiles to substation or feeder-level impacts is another 
challenge, as grid operators prioritize nodal or feeder-based metrics for capacity 
planning [26]. Integrating granular session data with network-level structures will 
improve overload risk identification and enable proactive asset management. 
Disparate charging intensities across Prague’s spatial clusters highlight the 
influence of factors such as alternative station availability, private chargers, traffic 
flows, and socio-economic conditions [14] [27]. Extending analyses to different 
regions would clarify broader patterns and refine predictive models that address 
diverse regulatory, climatic, and infrastructural conditions [28] [29]. Future 
research should employ machine learning models trained on high-resolution 
charging data to forecast usage in unobserved areas. These models could combine 
time series analytics, spatial factors, and user behavior to optimize siting, capacity 
planning, and load balancing [30]. Refining these algorithms is essential for 
anticipating system-level stresses and guiding effective infrastructure deployment. 

Conclusions 

This study enhances our understanding of urban public EV charging by illustrating 
how charger location, reshapes intra-week load patterns. Prague’s data reveals 
significant public charging growth with distinct temporal and spatial variations. 
Compact residential areas see gradual day usage, recreational areas experience 
morning peaks, peripheral zones peak in the afternoon and industrial areas 
demonstrate multi-peak behavior. 

These insights stress the need for aligning infrastructure with localized demand 
trends. Leveraging midday activity in some locations can offset evening residential 
ramps, while dynamic pricing and capacity allocation may ease congestion and 
encourage off-peak charging [23] [31]. 

Future directions of this research include considering grid capacity in the context of 
growing EV adoption and using modelling techniques to process available datasets 
to model locations and situations not present in source data. 
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