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Abstract: In this paper we present a workflow, how a set of metadata can be calculated for a
raw aerial image, that enables end-users to simply orthorectify the aerial image, using end-
user’s own digital elevation model. The set of metadata mentioned here are the coefficients of
the Rational Polynomial Camera (RPC) model. The Rational Polynomial Camera model is an
extension of the rigorous collinearity equations (used for frame camera orthocorrection) with
higher power terms of the object space coordinates. We used the fiducial points of the image
to estimate the interior orientation parameters and we used Ground Control Points (GCPs)
to estimate exterior orientation parameters of the photo. As the GCPs were measured in map
projection system, and the RPC standard requires ellipsoidal coordinates as object space
coordinates, we also present the methodology, how we calculated the local transformation
coefficients between these two systems. All these efforts resulted in the calculation of the
RPC coefficients with closed form equations. We generated the orthophoto using the RPC
model, and the accuracy of the orthophoto equals to the accuracy obtained using collinearity
equations. Besides the collinearity model representing an ideal camera, we also calculated
RPC coefficients additionally considering the radial lens distortion. From this set of RPC
coefficients we also generated the orthophoto. Comparing these two results, we found, that
considering radial distortions did not significantly improve the accuracy of the generated
orthophoto. To make our results repeatable we also present the calculated RPC coefficients
in the standard form, enabling the reader to generate the orthophoto.

Keywords: Rational Polynomial Camera; archive aerial photography; orthophoto; camera
model; open source software

1 Introduction

In Hungary, a significant amount of archive aerial photographs of the various aerial
survey campaigns of the past decades were stored in Lechner Knowledge Center
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(formerly Institute of Geodesy, Cartography and Remote Sensing) and these photos
were declassified after 1989. Fortunately, a great number of these have been digi-
tized, and published online, providing great help for researchers [1]. Images can be
downloaded from the site for free after registration.
The archived images are not georeferenced, only the approximate image center co-
ordinates (calculated from the flight plan) are aligned to the images.
Rudimentary georeferencing of images can be done by users, simply by selecting
three GCPs on the photo and on the adjacent map. After confirmation by the op-
erators of the website, a world file (*.twf) representing an affine transformation is
attached to the image.
The above mentioned method is not suitable for precise orthorectification of the
images. This means that distortion due to topography cannot be eliminated and
consequently, the images can be fit to a ground coordinate system with quite low
accuracy.

2 Materials

2.1 The Aerial Photo

The aerial survey from which the image was chosen to be processed, was carried
out on 11th of April, 1976, and covered the administrative area of Gyöngyös town
(Northern Hungary). It was covered by east-west rows and the altitude of flight
was about 850 m above the terrain. Each image covers about 1km2. The black
and white panchromatic photos were taken with a calibrated aerial camera (Wild
RC-8) for which the exterior and interior orientation parameters can be determined
accurately.
Images were recorded to a 230×230 mm film and the contact prints were digitised
with a pixel size of 14 µm (i.e. 1814 dpi resolution). It must be noted that it is not
identical to the resolution of the original image. The digitized image was oversam-
pled as the mean resolving power of the analogue image is only 44 line pairs per
millimeter.
The approximate scale of the image can be computed from the relative flight altitude
(h) and the focal length of the camera (ck) as:

S =
ck
h

≈ 1 : 5395 (1)

The scenes in the archive are available in *.tif format. A *.tfw world file is at-
tached to each image, which describes the position of the georeferenced image in
the EOV, the Uniform National Projection system (of Hungary) [2], [3]. It must be
emphasised that it represents only the approximate position of the image and it can
be used only for preliminary value for the further steps [1].
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The image presented in this paper has a unique identifier 1976_0029_9095 in the
archive, and it covers the urban area of the southern part of Gyöngyös town. The size
of the scanned image is 17698 × 16880 pixels, and the uncompressed file requires
59.53 MB memory size.

2.2 The Digital Elevation Model

As only one image was used for the orthophoto, a digital surface model was needed
for the process [4]. We used theDDM-10 dataset, whichwas generated fromWarsaw
Pact Gauss-Krueger military topographic maps of scale 1:50 000, and the elevation
values were obtained by digitising the contour lines and interpolating between them
[5]. As a result, it represents the topographic terrain surface and can therefore be
considered a terrain model.
The elevation data are arranged in a regular grid of 10×10m. The projection of the
model is EOV, elevation data is above the Baltic sea level, using the EOMA vertical
datum, and elevation values are rounded to the nearest metre. There are several
margins of error for describing the accuracy of the model depending on the type of
the relief, but for our purpose, the values for hilly terrain were relevant [6]. The
mean error is less than 2.5m, the maximum error for 90% of the points is less than
5.0m, and the maximum error is less than 7.5m.

Figure 1
Detail of the DDM-10 elevation model shown as a grayscale image.

2.3 Ground Control Points

On the area covered by the aerial photograph, 12GroundControl Points (GCPs)were
selected taking into account the criterion of identifiability on the photo. The ground
coordinates were measured with RTK GNSS receiver, and their pixel coordinates on
the digital image were specified in QGIS software.
As the used GNSS receiver determined coordinates in ETRS89 system, the hori-
zontal coordinates had to be transformed into the EOV system, and heights above
ellipsoid had to be transformed into EOMA heights. For these transformations, hor-
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izontal and vertical grid shift type correction were used [7].

Figure 2
The orthophoto generated from the raw image. The 12 GCPs used for the computations are

marked with white circles.

3 Methods

3.1 Interior Orientation

Collinearity equations describe the transformation between object space and image
space coordinates. As we use a digitized image, we can measure only pixel coordi-
nates on them, but we need image space coordinates for the further computations.
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Table 1
Coordinates of GCPs

X (Eastings) Y (Northings) Z (height) u v
715800.552 269485.589 147.297 464.9 -10659.0
715158.090 269844.880 145.997 4611.9 -2056.9
715696.346 269859.321 150.967 5148.9 -9119.7
715832.619 269722.758 149.977 3490.7 -10954.6
715871.711 270342.277 155.387 11584.1 -11158.1
715274.340 270409.330 151.777 12165.3 -3161.3
715302.550 270693.090 155.417 16063.5 -3318.3
716245.202 270290.139 162.067 11112.6 -16095.8
715444.307 269891.193 148.737 5399.2 -5802.0
715846.318 269927.167 151.687 6122.9 -11032.2
715910.530 270335.100 155.727 11512.0 -11675.9
715578.256 270648.775 156.667 15579.7 -7081.7

Table 2
Image- and pixel coordinates of the fiducial marks

ξ η u v
1 -106.000 -106.000 910 -838
2 -105.995 106.002 16040 -904
3 105.994 105.996 15974 -16034
4 106.002 -105.998 845 -15969

Fiducial marks of the photogrammetric camera are used to determine the position
of the image space coordinate system on the image. Image space coordinates of the
fiducial marks were recorded in the calibration report and their pixel coordinates can
be measured directly from the digitized image (see Table 2).
The relationship between pixel coordinates and image space coordinates can be de-
scribed by a 2D affine transformation, as we must consider that film position in the
scanner varies at every single image [8]. Furthermore, the relation between the two
system is also affected by the deformation of the film and the errors of the scanner.
As the image space coordinates of the 4 fiducial marks were known, we could use
them to determine the 6 parameters of the affine transformation, using least-squares
adjustment.

ξ = a0 + a1u+ a2v

η = b0 + b1u+ b2v
(2)

where u and v are digital image column and line coordinates, ξ and η are camera
(image space) coordinates and a0...a2, b0...b2 are the coefficients of the affine trans-
formation, stored in Table 3.
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Figure 3
The image space coordinate system (ξ, η) and the pixel coordinate system (u, v) of the image.
The image was scanned rotated 90 degrees clockwise, to be oriented in N-S direction, however
camera calibration report uses refers to the image space coordinate system. Fiducial marks are

numbered.

Table 3
Affine transformation parameters used for interior orientation of the image

a0 -117.6877331557
a1 -0.0000604159
a2 -0.0140104304
b0 -118.8057265671
b1 0.0140116577
b2 -0.0000606816

3.2 DeterminingExteriorOrientation ParametersUsingCollinear-
ity Equations

In this section we shortly present the methodology used for the calculation of the
camera (projection centre) position (X0, Y0, Z0) and attitude angle (ω, φ, κ) deter-
mination by space resection (see figure 4). A least squares adjustment was used for
obtaining these exterior orientation parameters using GCPs.

In the firs step, preliminary parameters of exterior orientation (X(0)
0 , Y (0)

0 , Z(0)
0 ,

ω(0), φ(0), κ(0)) were estimated for the image. Preliminary horizontal coordinates
(X(0)

0 , Y
(0)
0 ) were the approximate image center coordinates, while Z(0)

0 was taken
from the flight plan. We used the approximate image orientation to estimate the κ(0)

0

(yaw) angle and as the image was near vertical, we choose ω(0)
0 and φ(0)

0 as zero.
Using these preliminary angles, we calculated the preliminaryR rotation matrix that
represent the rotation of the image space coordinate systemwith respect to the object
space. R can be obtained as:

R = Rω · Rφ · Rκ (3)

where we used the preliminary values of the exterior orientation angles.
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Knowing the rotation matrix and having preliminary coordinates for camera posi-
tion, the collinearity equations were used to calculate the camera coordinates of the
GCPs’.

ξcalci = −ck
r11(Xi −X

(0)
0 ) + r21(Yi − Y

(0)
0 ) + r31(Zi − Z

(0)
0 )

r13(Xi −X
(0)
0 ) + r23(Yi − Y

(0)
0 ) + r33(Zi − Z0)(0)

+ ξ0

ηcalci = −ck
r12(Xi −X

(0)
0 ) + r22(Yi − Y

(0)
0 ) + r32(Zi − Z0)

(0)

r13(Xi −X
(0)
0 ) + r23(Yi − Y

(0)
0 ) + r33(Zi − Z

(0)
0 )

+ η0

(4)

where ξcalci , ηcalci are the calculated image space coordinates of the i-th GCP’s,
Xi, Yi and Zi are the object space coordinates of the i-th GCP, rij-s are the elements
of theR rotation matrix, ξ0, η0 are the image coordinates of the principal point, taken
from the camera calibration report ξ0 = 0.000mm and η0 = −0.003mm. The fo-
cal length (ck) is 152.340mm. X(0)

0 , Y
(0)
0 andZ(0)

0 are the preliminary object space
coordinates of the focal point of the camera.
The condition to be fulfilled is the weighted sum of the squares of the differences
of the measured and calculated image space coordinates of the GCPs’ should be
minimal:

vTP v := min (5)

where v is the residual vector composed from differences of the measured and cal-
culated ξ and η coordinates of the GCPs’ and P is the weight matrix. In our case we
assumed equal weights, so we applied an identity matrix as weight matrix (P = I).
To fulfil this condition we applied the nonlinear least squares method.
For this we had to calculate the differences of the measured and the calculated image
space coordinates for the GCPs, and arrange them into one single vector l.
We also needed the Jacobians of the equation 4 with respect to the six exterior orien-
tation parameters: the three coordinates of the focal point (X0, Y0, Z0) and the three
angles (ω, φ, κ) that describe the attitude of the camera [8].
We can form A matrix as:

A =


...

∂ξi
∂X0

∂ξi
∂Y0

∂ξi
∂Z0

∂ξi
∂ω

∂ξi
∂φ

∂ξi
∂κ

∂ηi

∂X0

∂ηi

∂Y0

∂ηi

∂Z0

∂ηi

∂ω
∂ηi

∂φ
∂ηi

∂κ
...

 (6)

We obtained the A matrix by numeric derivation of equation 4.
With A matrix and l vector we could calculate the corrections for the preliminary
parameters:

x = (ATA)−1AT l (7)
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Figure 4
Explanation of the collinearity equations. The O⃗P vector is rotated and reduced to the O⃗P ′

vector, representing the ξ, η coordinates, so exterior orientation parameters provide a
relationship between and object space (ground) coordinates and image space (camera)

coordinates. Exterior orientation parameters were obtained using adjustment using GCPs [8]
.

Table 4
Exterior orientation parameters

X0 715636.701
Y0 270130.443
Z0 977.371
ω 1.08778
φ 1.34381
κ 2.80681

where x vector consists of the correction of the parameters:

x =
(
∆X0 ∆Y0 ∆Z0 ∆ω ∆φ ∆κ

)T (8)

Adding these corrections to the preliminary parameters, and repeating the calculation
starting with equation 3, the differences of the measured and calculated image space
coordinates of the GCPs decrease. After some iteration step, the corrections of the
parameter are almost zeros. We accepted the corrected parameters as estimates of
the exterior orientation of the image. Actual values of the exterior orientation are in
Table 4, where angles are in degrees.

3.3 The RPC Camera Model

The RPC model was developed for Very High Resolution (VHR) satellite imagery
at the end of 1990s. Image providers supplied raw images with a set of RPC coef-
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Figure 5
Residual errors between measured and calculated image space coordinates of the GCPs. Error
values in image space coordinates are multiplied by the approximate image scale (see equation

1) to get error values in object space coordinates. Coordinate axes are inmm. (ξ, η)

ficients, hiding the actual imaging geometry. With this set of parameters end-users
could orthorectify the image, with simple open-source software using end-user’s
own digital elevation model.
The Rational Polynomial Camera model is an extension of the rigorous collinearity
equations (used for frame camera orthocorrection) with terms of higher power of
object space coordinates.
The camera model uses rational polynomial functions, hence it also referenced as
RPFs, (Rational Polynomial Functions). It is a more generic camera model, that
allow for photogrammetric processing without requiring a physical camera model.
This model describes relation between ground ellipsoidal coordinates (latitude, lon-
gitude and height) and the image coordinates (line and sample) as ratios of cubic
polynomials.
The transformation is represented by the coefficients of the ground (object space)
coordinates (they are the RPCs – Rational Polynomial Coefficients). In order to
avoid rounding errors, each input data types are required to be re-scaled [9]. The
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normalized ground- and pixel coordinates can be obtained as:

l =
v − v0
vSCALE

s =
u− u0

uSCALE

P =
ϕ− ϕ0

ϕSCALE

L =
λ− λ0

λSCALE

H =
Z − Z0

ZSCALE

(9)

where l (line) and s (sample) are the normalized pixel coordinates; P,L and H are
the normalized ellipsoid latitude, longitude and height. Offset of the certain param-
eters are marked with 0 subscript, scale factors are marked with SCALE index.
Based on RPCs, normalized pixel coordinates can be obtained as:

l =
Nl(L,P,H)

Dl(L,P,H)
s =

Ns(L,P,H)

Ds(L,P,H)
(10)

where numerators (N) and denominators (D) are both cubic polynomials of nor-
malized ground coordinates. The order of the terms is the following [10]:

c1 c6LH c11PLH c16P
3

c2L c7PH c12L
3 c17PH2

c3P c8L
2 c13LP

2 c18L
2H

c4H c9P
2 c14LH

2 c19P
2H

c5LP c10H
2 c15L

2P c20H
3

(11)

Here, c1, ..., c20 are the coefficients related to the respective polynomials, so (nom-
inators and denominators for line and sample) are described by 4 · 20 = 80 coef-
ficients. With the offsets and scale factors (of latitude, longitude, height, line and
sample), the RPC model consists of 90 coefficients.

3.4 Coordinate Transformation Between EOV and WGS84 Sys-
tem

As RPC model can only handle ellipsoidal coordinates, we need to transform EOV
coordinates of GCPs to ETRS89 system (it is the European realization of theWGS84
system, and it is fixed to the European continental plate [11]).
Because of the relatively small area covered by the photograph, the use of accurate
projection equations is not necessary. Instead, we determined the local transforma-
tion parameters between the two system and substitute EOV coordinates to equation
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Figure 6
Relationship between the object space reference system and the ellipsoidal coordinates used in
RPC model. The local transformation parameters obtained from numeric derivation. For this,
coordinates were transformed by a cs2cs command utilizing correction grid to ensure high

accuracy.

4 as functions of ETRS89 coordinates.
The local transformation parameters can be obtained using numeric derivation. It
means that we determine the change of EOV coordinates of a point, while changing
the ETRS89 coordinates of this point with a small +∆ϕ and +∆λ value. We can
obtain more precious result when we change these coordinates with +∆ϕ, −∆ϕ,
+∆λ,−∆λ values too, and compute their mean, respectively (two-sided numerical
derivates). The meaning of these derivatives can be seen on figure 6.

∂X
∂ϕ = X(ϕ+∆ϕ,λ)−X(ϕ−∆ϕ,λ)

2·∆ϕ
∂X
∂λ = X(ϕ,λ+∆λ)−X(ϕ,λ+∆λ)

2·∆λ

∂Y
∂ϕ = Y (ϕ+∆ϕ,λ)−Y (ϕ−∆ϕ,λ)

2·∆ϕ
∂Y
∂λ = Y (ϕ,λ+∆λ)−Y (ϕ,λ+∆λ)

2·∆λ

(12)

We used the horizontal object space coordinates of the focal point of the camera for
this computation, because it is located in the middle of the assessed area that can
minimize errors of the method.
For these computations we needed to accurately transform coordinates between the
two system. Takács and Siki [7] have developed a precise solution for open-source
proj library using a 2×2 km resolution correction grid. This solution can be used in
various open-source softwares (cs2cs, ogr2ogr, QGIS, etc.). We used it in cs2cs
function in this form:
From EOV to ETRS89:

”C : \ Program F i l e s \ QGIS 3 . 2 8 . 4 \ b i n \ c s 2 c s ” − f ”%%.10 f ” + p r o j =
somerc + l a t _ 0 =47.14439372222222 + lon_0 =19.04857177777778
+k_0 =0.99993 +x_0=650000 +y_0=200000 + e l l p s =GRS67 +
n a d g r i d s = e t r s 2 eov_no t owgs . gsb + g e o i d g r i d s = geo i d_eh t 2014 .
g t x + t o + i n i t =epsg :4326 +no_de f s <eov . t x t > e t r s 8 9 . t x t
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From ETRS89 to EOV:

”C : \ Program F i l e s \ QGIS 3 . 2 8 . 4 \ b i n \ c s 2 c s ” − f ”%%.10 f ” + i n i t =
epsg :4326 + t o + p r o j =somerc + l a t _ 0 =47.14439372222222 +
lon_0 =19.04857177777778 +k_0 =0.99993 +x_0=650000 +y_0
=200000 + e l l p s =GRS67 + n a d g r i d s = e t r s 2 eov_no t owgs . gsb +
g e o i d g r i d s = geo id_eh t 2014 . g t x + u n i t s =m +no_de f s < e t r s 8 9 .
t x t >eov . t x t

The horizontal (etrs2eov_notowgs.gsb) and vertical (geoid_eht2014.gtx) grid shift
files can be downloaded from [7].

3.5 Computing RPC Parameters from Rigorous Sensor Model

It is possible to compute RPC parameters only with the use of GCPs (its advantage
that it does not require to know the physical camera model) [12]. In this case, equa-
tions 10 should be applied for the coordinates of the GCPs and RPC parameters can
be determined with least-squares adjustment. The disadvantage of this solution that
it totally disregards the camera intrinsics.
In our case, as we know the interior and exterior orientation parameters with high
precision, it is more practical to determine RPC parameters as functions of camera
intrinsics and extrinsics [13]. Pixel coordinates should be computed only from the
1st order terms, that appears in collinearity equations, coefficients and terms con-
taining the 2nd or 3rd power of ellipsoidal latitude, longitude and height should be
omitted.
In this case, the RPC equations (equation 10) for l (line) and s (sample) have only
first order terms:

l =
nl2L+ nl3P + nl4H

dl2L+ dl3P + dl4H

s =
ns2L+ ns3P + ns4H

ds2L+ ds3P + ds4H

(13)

In case of collinearity equations, the denominators are equivalent.
Substituting equation 4 (collinearity equation) and 2 (defining the affine transforma-
tion), into equation 10, we get:
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l = b0 + b1
(
ξ0 − ck

r11(X −X0) + r12(Y − Y0) + r13(Z − Z0)

r31(X −X0) + r32(Y − Y0) + r33(Z − Z0)

)
+

+b2
(
η0 − ck

r21(X −X0) + r22(Y − Y0) + r23(Z − Z0)

r31(X −X0) + r32(Y − Y0) + r33(Z − Z0)

)

s = a0 + a1
(
ξ0 − ck

r11(X −X0) + r12(Y − Y0) + r13(Z − Z0)

r31(X −X0) + r32(Y − Y0) + r33(Z − Z0)

)
+

+a2
(
η0 − ck

r21(X −X0) + r22(Y − Y0) + r23(Z − Z0)

r31(X −X0) + r32(Y − Y0) + r33(Z − Z0)

)

(14)

We might further substitute into equation 14 the expression of object space coordi-
nates as functions of ellipsoidal coordinates (equation 12):

X −X0 =
∂X

∂ϕ
(ϕ− ϕ0) +

∂X

∂λ
(λ− λ0)

Y − Y0 =
∂Y

∂ϕ
(ϕ− ϕ0) +

∂Y

∂λ
(λ− λ0)

(15)

Substituting these back into equation 14, and highlighting the polynomials to the
coefficients of (ϕ−ϕ0), (λ−λ0) and (Z−Z0) (i.e. P, L and H), we obtain the RPC
coefficients (since they are also coefficients of P, L and H). Due to RPCs computed
from collinearity equations, ground coordinates are interpreted relative to the focal
point (ϕ0, λ0) of the camera and pixel coordinates relative to the principal point
(ξ0, η0) of the image. Therefore, offset values of the ground coordinates must be the
latitude, longitude and height of the focal point, and offset of the pixel values are the
pixel coordinates of the principal point.
Sign of the line offset changes to its opposite because in QGIS software (where GCPs
were specified) line pixel values interpreted as negative values, but gdalwarp uses
the other convention. As we did not rescale values, all of the scale factors were set
to 1. The RPC parameters obtained with this method are in Table 5.

3.6 Orthorectification Using gdalwarp Program

In this section the procedure of orthophoto generation is discussed.
The user has to specify the input image, the elevation model, the properties of the
output file and the RPC parameters used for the orthocorrection.
The gdalwarp command can orthorectify raster data if its metadata is stored in headar
of the *.tif file. Unfortunately *.tif header manipulation is not properly works
in gdal_translate environment, so an alternative method was used. For the *.tif
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image, a virtual raster header file (*.vrt) was defined, and RPC metadata section
was added to this file. The *.vrt contains metadata of the image in XML format,
including statistical indicators, georeferencing information, interpretation of bands
of the image, grouped into so-called ”metadata domains”. We could also add new
types of metadata (in this case the RPC parameters, called Metadata domain="RPC"
(see figure 7). Names, meanings, and the values of the parameters are in Table 5
[14].
For further processing, it is important that the image file and its .vrt file must have
the same name.
The used DDM-10 elevation model was clipped and reprojected to WGS84 (practi-
cally ETRS89) system using GDAL-command:
gda lwarp − s _ s r s EPSG:23700 − t _ s r s EPSG:4326 DDM−10. t i f dem .

t i f

(because gdalwarp command can only handle elevation models with ellipsoidal co-
ordinates.) Alternatively, one can use SRTM global elevation model dateset [15].
The orthophoto was generated using the following GDAL command:
gda lwarp − rpc − t o ”RPC_DEM=dem . t i f ” − t _ s r s EPSG:23700 i n p u t .

v r t o u t p u t . t i f

The -rpc option means that the transformation is to be performed on the basis of
RPC coefficients. The RPC_DEM switch defines the elevation model to be used and
after the -t_srs switch the coordinate system (map projection) of the orthophoto
can be specified. Finally the input .vrt file of the raw image, and the name and
extension of the result file should be defined. In this case, the generated orthophoto
was a .tif file in EOV projection (EPSG:23700).

3.7 Determining RPC coefficients considering radial distortion
of the image

To take into account the physical camera model, that slightly differs from the math-
ematical model representet by the collinearity equations, we implemented a new
mathematical model that considers the effects of radial lens distortions.
The camera calibration report contains information about the image radial distortion:
there are distortion curves in principal directions and mean distortion curve, and
distortion values are also given in numerical form.
In the workflow, exterior orientation parameters determined as described in chap-
ter 3.2, but image space coordinates are corrected with the radial distortion values.
Based on these parameters, a grid of virtual GCPs was created and their image co-
ordinates were calculated. These image coordinates were modified according to the
radial distortion. As a final step a second order RPC model coefficients were calcu-
lated from these virtual GCPs, using a least-squares adjustment.
For the mathematical approach of the radial distortion, we determined the parame-
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Table 5
Parameters of RPC model acquired from rigorous sensor model

ERR_BIAS 0
ERR_RAND 0
LINE_OFF 8436.41431219385
SAMP_OFF 8442.52647010182
LAT_OFF 47.7716366637
LON_OFF 19.9231569233

HEIGHT_OFF 977.371008176101
LINE_SCALE 1
SAMP_SCALE 1
LAT_SCALE 1
LON_SCALE 1

HEIGHT_SCALE 1
LINE_NUM_COEFF 0

-813498905.019398
67515173.6469024
-254.103780291664

LINE_DEN_COEFF 0
-1668.69145923504
2263.81159488546
0.999544803422536

SAMP_NUM_COEFF 0
-45861299.107409
-1206708817.92528
207.447253599898

SAMP_DEN_COEFF 0
-1668.69145923504
2263.81159488546
0.999544803422536

ters of the polynomial that can be used for approximate the distortion curve. This
polynomial contains a constant, first, third and fifth power of distance (d) measured
from the principal point of symmetry.

∆ = A0 +A1d+A2d
3 +A3d

5 (16)

where ∆ is the radial distortion at a certain point of the image; A0, A1, A2, A3 are
the parameters of the approximation curve.
The image space coordinates of the GCPs were determined using the rigorous sensor
model determined in equation 4. In this case, the effects of radial distortion were
added too:

ξ = −ck
r11(X −X0) + r12(Y − Y0) + r13(Z − Z0)

r31(X −X0) + r32(Y − Y0) + r33(Z − Z0)
+ ξ0 +∆ξ

η = −ck
r21(X −X0) + r22(Y − Y0) + r23(Z − Z0)

r31(X −X0) + r32(Y − Y0) + r33(Z − Z0)
+ η0 +∆η

(17)

∆ξ and ∆η can be obtained from ∆ determined at equation 16 and α, the direction
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angle of the distortion vector:

α = arctan
(
Pη − Sη

Pξ − Sξ

)
(18)

where Pξ, Pη and Sξ, Sη are the image coordinates of the certain point of the image
plane and the principal point of symmetry. The ξ and η component of the vector
(∆ξ,∆η) can be obtained as:

∆ξ = d · cosα
∆η = d · sinα

(19)

For virtual GCPs, we determined the area covered by the aerial photo, and a 20×20
m point grid was created to this area. In vertical direction, the distance of two hor-
izontal grid was 100 m. The image coordinates of these virtual GCPs computed
using equation 17.
Then pixel coordinates of these points were determined using the inverse transfor-
mation of interior orientation described in equation 2:

ξ = c0 + c1u+ c2v

η = d0 + d1u+ d2v
(20)

Projected object space (EOV) coordinates can be transformed into ellipsoidal coor-
dinates using the method discussed in 3.4 .
As a final step, these coordinates can be substituted into equations 10 and RPC pa-
rameters can be computed using least-squares adjustment. As the lens distortion was
taken into consideration, we need even the terms of higher degrees.
In this case, it was needed to rescale the ground coordinates as discussed in equation
9. Changing the sign of LINE_OFF parameter is also needed, similarly to Section 3.5.
The RPC coefficients of line and sample coordinates are adjusted separately, but in
the same way. The Jacobian (A) matrix of the adjustment is:

A =

0 L1 P1 H1 L1P1 L1H1 ... H3
1

...
0 Ln Pn Hn LnPn LnHn ... H3

n

 (21)

while the (column) vectors of unknowns are:

xline =
(
c1 c2 c3 ... c39

)T
xsample =

(
c40 c40 c41 ... c78

)T (22)

Adjustment has only 78 parameter instead of 80 (the total number of RPC coeffi-
cients) because the first coefficient of the denominators were set to 1 to avoid the
instability of the adjustment.
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Using all of these coefficients can cause artifacts on the orthorectified image, there-
fore it is advised to use only coefficients up to the first and second power of L, P
and H , and third power coefficients should be zeros.

4 Results

Table 6 shows the residual errors of the adjustment calculated with collinearity equa-
tions and the residual errors calculated with the RPC model. To express the errors
in object space coordinates, the obtained error of the adjustment in image space co-
ordinates had to be multiplied by the approximate scale of the image (described at
equation 1).
Table 6 also shows the Root Mean Square (RMS) error of GCPs’ derived from the
orthophoto. The object space coordinates of GCPs on the orthophoto were measured
in QGIS, and were compared with the RTK GPS measurements.
Table 6 proves that the accuracy of the transformation based on RPCs does not differ
significantly from that computed from collinearity equations.
Our results can be replicated by (1) downloading the raw image as shown in Chapter
2.1, (2) copying content of Table 5 into a Virtual raster header file attached to the
raw image, and (3) applying the command presented in Chapter 3.6. Following this
procedure, the reader can (4) reproduce the orthophoto shown in figure 2.
Figure 2 shows the orthocorrected image produced using the presented method.
Comparing with the results of the orthocorrection without radial lens distortion cor-
rections, the differences are mostly less than the size of one pixel, that makes it
difficult to precisely determine the error vectors.

Conclusions

The mathematical methods we used allow us to determine the relationship between
pixel and ground coordinates in the images with sufficient accuracy. As Table 6

Table 6
Accuracy of the collinearity equations, RPC camera model and the orthophoto

Root Mean Square (RMS) error of GCPs’
measured vs. calculated image coordinates
using collinearity equations and multiplied
by image scale

0.113 m

measured vs. calculated image coordinates
using RPC coefficients and multiplied by im-
age scale

0.173 m

measured by RTK GPS vs. measured on the
orthophoto

0.960 m
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Figure 7
Error vectors of the orthophoto. Vectors represent the difference in coordinates of GCPs

measured with RTK GNSS on the field and measured on the orthophoto. The mean error of
rectification is 0.96 m that make it suitable for utilizing in GIS applications. Map axes are

object space coordinates (EOV projection).

Figure 8
Differences between the orthophotos obtained without and with radial lens distorsion. The
direction of the difference vectors are in good accordance with the real direction of radial

distortion
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shows, the accuracy of the transformation based on RPCs does not differ signifi-
cantly from that computed from collinearity equations.
The precision of the orthophoto is much lower, but it is also in the sub-meter domain.
The main reason is the low resolution and high errors of the applied digital eleva-

Table 7
The 1976_0029_9095.vrt file. The file contains the Metadata_domain="RPC" tag, and the

set of coefficients for the orthocorrection of the image.

<VRTDataset rasterXSize="17698" rasterYSize="16880">
<Metadata>

<MDI key="TIFFTAG_DOCUMENTNAME">{1C6E48BE-1F08-4CD8-BFD2-6EA3C4C8BE4D}</MDI>
<MDI key="TIFFTAG_MAXSAMPLEVALUE">255</MDI>
<MDI key="TIFFTAG_MINSAMPLEVALUE">0</MDI>
<MDI key="TIFFTAG_RESOLUTIONUNIT">3 (pixels/cm)</MDI>
<MDI key="TIFFTAG_XRESOLUTION">713.91351</MDI>
<MDI key="TIFFTAG_YRESOLUTION">713.96979</MDI>

</Metadata>
<Metadata domain="RPC">
<MDI key="ERR_BIAS">0.000000</MDI>
<MDI key="ERR_RAND">0.000000</MDI>
<MDI key="LINE_OFF">8515.0266247209765424</MDI>
<MDI key="SAMP_OFF">8369.5809091688770422</MDI>
<MDI key="LAT_OFF">47.7714271548151714</MDI>
<MDI key="LONG_OFF">19.9235105776815509</MDI>
<MDI key="HEIGHT_OFF">155.3782095766828490</MDI>
<MDI key="LINE_SCALE">7565.2938644475707406</MDI>
<MDI key="SAMP_SCALE">7558.1298023673216449</MDI>
<MDI key="LAT_SCALE">0.0054564478500012</MDI>
<MDI key="LONG_SCALE">0.0080940103499998</MDI>
<MDI key="HEIGHT_SCALE">200.0000000000000000</MDI>
<MDI key="LINE_NUM_COEFF">0.0045283096301385 1.0579858145327732 -0.0599550689146902
0.0113874192019469 -0.2189647341673704 0.1632511150451613 -0.0112486099496269
0.0673072441759231 0.0120116016535110 0.0016429795902539 0 0 0 0 0 0 0 0 0 0</MDI>
<MDI key="LINE_DEN_COEFF">1.0000000000000000 0.0800381719663870 -0.2183302928775431
-0.0893428120224111 -0.0042771585552811 -0.0129383791664858 0.0471198767165540
0.0008490499043254 0.0029198666931829 -0.0373466367198778 0 0 0 0 0 0 0 0 0 0</MDI>
<MDI key="SAMP_NUM_COEFF">-0.0009784500033390 0.0597926099817746 1.0588908126748307
-0.0091367321685560 0.0595410916984312 0.0072842863675571 0.1412244087940583
0.0040512507558638 -0.2019676081091925 -0.0011862196128534 0 0 0 0 0 0 0 0 0 0</MDI>
<MDI key="SAMP_DEN_COEFF">1.0000000000000000 0.0834315148282613 -0.2057272425610065
-0.1112738769064664 -0.0041479735297961 -0.0141239758845238 0.0443738986533749
0.0009993027245646 0.0026669535991317 -0.0320168844078930 0 0 0 0 0 0 0 0 0 0</MDI>
</Metadata>

<Metadata domain="IMAGE_STRUCTURE">
<MDI key="COMPRESSION">JPEG</MDI>
<MDI key="INTERLEAVE">BAND</MDI>

</Metadata>
<VRTRasterBand dataType="Byte" band="1" blockYSize="16">

<ColorInterp>Gray</ColorInterp>
<SimpleSource>

<SourceFilename relativeToVRT="1">1976_0029_9095.tif</SourceFilename>
<SourceBand>1</SourceBand>
<SourceProperties RasterXSize="17698" RasterYSize="16880" DataType="Byte"
BlockXSize="17698" BlockYSize="16" />
<SrcRect xOff="0" yOff="0" xSize="17698" ySize="16880" />
<DstRect xOff="0" yOff="0" xSize="17698" ySize="16880" />

</SimpleSource>
</VRTRasterBand>

</VRTDataset>
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tion model, discussed in chapter 2.2. The spatial distribution of errors (the control
points near the edge of the image mostly have larger displacement) also proves this
assumption. Nevertheless, the error of the method is not negligible; it fulfills the
requirements of most GIS applications.
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