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Abstract: In this paper, we explore the utility of classical neural network-based approaches,
originally designed for processing 2D images, in semantic segmentation and object recog-
nition tasks within the context of 3D point cloud images generated from handheld video
recordings. Our investigation centers around the use of a custom-created, small-sized training
dataset, consisting of 108 RGB images of humans and cobots in diverse industrial settings.
This dataset allows us to demonstrate that flexible segmentation and recognition applications
can be built even with a restricted dataset developed using widely available low-cost tools and
modern convolutional neural net architectures. Downstream benefits of the approach include
the ability to detect humans and human gestures, as well as to rapidly prototype digital twins
in Industry 5.0 environments.
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1 Introduction

Industry 5.0 (I5.0) builds on the foundations of Industry 4.0 in a way that tran-
scends mere technological advancements and instead emphasizes a collaborative
approach where technology serves humanity. In particular, a key focus in I5.0 is
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on “Human- Centric Integration”, i.e. on human needs throughout the manufactur-
ing process, in accordance with the principles outlined by the United Nations in
its Sutstainable Development Goal 9 [1][2]. Collaboration with cobots (collabora-
tive robots) is one key feature of this integration, and the ability to recognize and
understand both human and cobot behaviour in this context is essential both from
a functionality and a safety perspective [3][4].

Approaches within artificial Intelligence (AI) and machine learning (ML) are nat-
ural candidates for implementing such capabilities [5]. In an industrial context,
artificial vision tasks involve both the acquisition of suitable images, and the in-
terpretation of their content, with the primary objective of controlling, inspecting,
measuring and analyzing processes, thereby making more informed decisions. The
main benefits of artificial vision systems in industry can be summarized as follows
[6]:

• Quality Improvement: By precisely analyzing images, these systems enhance
product quality.

• Defect Prevention: Early detection of defects minimizes production issues.

• Traceability Compliance: Systems ensure adherence to traceability require-
ments.

• Waste Reduction: Efficient processes lead to less material waste.

• Increased Yield and Productivity: Optimized operations result in higher out-
put.

• Reduced Human Error: Automation reduces the risk of human mistakes.

• Cost and Time Savings: Compared to manual methods, processing times and
costs decrease significantly.

Training AI for computer vision, however, presents challenges. Achieving an ac-
ceptable level of accuracy demands a substantial volume of labelled data to train
neural networks. This labelled data consists of images annotated by individuals
who have already identified and marked relevant elements. The effort involved in
curating such data often incurs disproportionate costs and therefore hinders the
creation of sufficiently large datasets [7] [8].

Another critical challenge arises during the transition from traditional to smart
manufacturing. Here, the goal is to digitize industrial machines and other objects
relevant to the environment —- a process that often requires the combination of
2D images and video to reconstruct 3D representations. Point Cloud technology
emerges as a valuable approach for generating 3D models suitable for instance
segmentation using Convolutional Neural Networks (CNNs). Such smart models
find applications in tasks like the development of Digital Twins [9, 10, 11, 12, 13].
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In this paper, we focus on artificial vision using a variety of input modalities
(e.g. RGB images, handheld videos, automatically generated point clouds) and
modern neural network architectures to leverage tradeoffs between these chal-
lenges. In particular, we address the challenge of data availability by proposing a
workflow that enables a smooth transition between these different input modali-
ties, for subsequent application in a transfer learning context. The ability to apply
a neural network trained on 2D images in the context of 3D point clouds suggests
that it should be possible to generate semantically interpretable 3D representa-
tions for use in virtual reality (VR) based digital twin scenarios. This feature is
crucial for industries where existing industrial equipment can be upgraded to en-
able smart manufacturing. This transformation offers dual benefits: cost reduction
and optimization of the production process. Furthermore, ensuring improved safety
conditions during human-robot interactions is another relevant aspect.

The structure of this paper is as follows. In Section 2, we provide an overview of
the technologies and approaches constituting the proposed workflow – including
data collection, 3D point cloud generation from videos, dataset augmentation and
instance segmentation. In Section 3, we describe an application scenario involving
collaborative robots in which we applied the workflow. Finally, in Section 4 we
provide a summary of the metrics we used to evaluate our approach, and in Section
5 we present our experimental results.

2 Constituent Technologies of the Proposed Workflow

Our approach, centered on the generation of 3D point clouds and subsequent
inference using pre-trained convolutional neural networks, is developed through 6
key steps, as described below. One of the main goals is to define a workflow –
called “DTnet” – to support the rapid prototyping of digital twins in virtual reality
environments, as shown on Figure 3.

2.1 Key steps of the workflow

1. Creation of a custom dataset: To train our models, in our previous work
we created a custom dataset specifically tailored to industrial cobot sce-
narios. The original dataset contained 108 images, which were augmented
to 244 (referred to as Dataset244). Pre-processing techniques, including
auto-orientation and resizing to 640-by-640 pixels, were applied. Addition-
ally, standard data augmentation methods such as 90-degree clockwise and
counter-clockwise rotation and up to 2.2 px blur were used. Besides object
detection, we also applied instance segmentation to the images in this dataset
[13].

2. Training of a YOLO (You Only Look Once [14]) based model on the previ-
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ous dataset.[13]

3. Recording videos of humans and cobots in industrial scenes. We recorded
a total of 700 frames, which were never shown to the YOLO model during
the initial training process. Our videos were recorded with the following
parameters:

• Frame size: 1920 x 1080

• Codec: AAC H-264

• Color: HD (1-1-1)

• Total time: 62 seconds

We refer to this dataset as the Cobot700 dataset. However, we also sub-
sampled this dataset to keep only 150 images, so as to facilitate speed and
accuracy of the automatic generation of point clouds in the next step (this
subsampling led to the Cobot150 dataset)

4. Automatic generation of point clouds based on those frames, making use of
the continuity of the video recordings and cutting-edge point cloud genera-
tion solutions. To create 3D point cloud images, we evaluated several soft-
ware options. Notable applications for this task include Autodesk ReCap,
Leica Cyclone, PointCab, Pix4D, RhinoPointCloud, and Agisoft Metashape4
[15] [16]. Among these, we opted for Agisoft Metashape1 due to its support
for various input data sources, including videos from ground-based cameras.

5. Definition of YOLOv8 Properties for inference and segmentation: We con-
figured the properties of the YOLOv8 model in PyTorch to suit our specific
task of 3D point cloud image recognition. YOLOv8 has proven effective
in 2D object detection, and we adapt it for our novel context using our
inference [13][17] [18].

6. Rapid prototyping of digital twins based on localized and segmented cobots,
matched up with the pointcloud data.

2.2 Creation and training of custom dataset

As mentioned in the previous section, in our previous work we created a custom
industrial dataset based on Cobot images, demonstrating how specific settings and
labelling parameters are suitable to obtain satisfactory training metrics leveraging
convolutional neural networks (CNNs) with a limited number of images [13]. In
our current work, this Dataset244 is used to validate the proposed workflow.

1 https://www.agisoft.com/features/professional-edition/
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2.3 Video pre-processing and image fragmentation for 3D point
cloud generation

To be able to generate and work with models in 3D, we processed the frames in
our video recordings so as to obtain 3D point cloud models. In this section, we
detail the steps we took to achieve this.

2.3.1 Multi-spectral video image processing

To prepare our videos for Metashape, we converted the .mp4 files into .mov files
with identical characteristics but a smaller file size. Subsequently, we fragmented
the .mov files into Multichannel TIFF images (Metashape natively supports the
handling of multispectral data saved as multichannel single-page TIFF files). This
workflow remains consistent with the standard approach used for RGB photos,
with the exception of an additional primary channel selection step performed after
image addition to the project.

The key steps involved in processing multispectral images using Metashape, then,
are as follows:

1. Loading Images into Metashape: We imported the multispectral images into
the Metashape software environment.

2. Image Inspection and Camera Alignment: After loading, we carefully in-
spected the images, removing manually any unnecessary sections of model
geometry. Subsequently, we had Metashape align the camera poses on the
different images to ensure accurate geometric correspondence. Metashape
also aligns the cameras into calibration groups automatically based on the
image resolution and/or EXIF metadata like camera type and focal length.

3. Dense Point Cloud and Mesh Generation: Metashape was employed to create
a dense point cloud and a 3D polygonal mesh model from the aligned
images.

4. Texture Generation: The software’s texture generation feature allowed us to
create various types of textures for the model.

5. Tiled Model and Digital Elevation Model (DEM) Construction: We built a
tiled model and derived a digital elevation model (DEM) from the processed
data.

6. Exporting Results: Finally, the results were exported for further analysis and
visualization.

In the following, we provide more information on the key concepts that arise
during the above steps.
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2.3.2 Sparse and dense point cloud generation

It is important to highlight the difference between the concepts of “sparse point
clouds” and "dense point clouds".

A sparse point cloud is generated during the initial alignment step in the photo-
grammetric workflow. It relies on tie points (common features detected across
multiple images) to establish geometric correspondence between images and its
primary purpose is to determine which image pairs overlap sufficiently. These
overlapping pairs then serve as a basis for subsequent depth map generation. Thus,
the goal of the sparse point cloud is to provide a rough representation of the
scene’s 3D structure. Distortion parameters and camera positions are still unknown
at this stage.

In contrast, a dense point cloud is created after the alignment step: depth maps
are computed for overlapping image pairs, and these depth maps are then merged
to form the dense point cloud. The dense point cloud aims for high fidelity and
accuracy. It captures detailed 3D information about the scene. In particular, it
contains a significantly larger number of points, represents the fine details of the
object or environment, it is used for creating 3D models, orthomosaics, and digital
elevation models (DEMs). It requires accurate camera positions and distortion
parameters.

In our case, these processes, including the camera alignment, are automatically
performed based on EXIF metadata[19, 20]. Thus, photo alignment is determined
by the camera’s position at the time of image capture. This latter is defined by
both interior and exterior orientation parameters, which depend on the original
camera’s point of view.

The outcome of this processing step includes estimated exterior (translation and
rotation) and interior camera orientation parameters, along with a tie point cloud
containing triangulated positions of matched image points.

2.3.3 Accuracy of point cloud image through tie points

A tie point in a digital image corresponds to the same location in an adjacent
image. Typically expressed as a pair, tie points serve to connect images and facil-
itate the creation of mosaics. This value plays a crucial role in defining the image
cloud; specifically, the sparse point cloud consists of tie points. Each tie point cor-
responds to a feature that has been identified in multiple photos and is deemed a
valid match. When operating at the High accuracy setting, the software processes
photos at their original size. However, we should note that the Medium setting
results in image downscaling by a factor of 4 (reducing each side by 2 times). To
construct a dense point cloud image from our video, Metashape calculates both
exterior and interior image orientation parameters.
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Figure 1
Typical example of a sparse 3D point cloud image from the Cobot150 dataset.

For our video, we used Metashape to align a total of 150 frames from the
Cobot150 dataset. In the process, a total of 57,543 tie points were detected; the
software generated 396,926 projections based on the camera positions and orienta-
tions, and computed 150 depth maps. The resulting point clouds contained 176,651
points, which represents a medium quality level.

2.3.4 Resulting 3D point cloud images

At the end of the workflow described in the previous sections, we obtained 3D
point cloud images from a video of a cobot working in real-time. In particular,

a typical sparse point cloud image obtained for our cobot video can be seen on
Figure 1. The same images have also been generated as dense point clouds, as
shown on Figure 2. We also generated virtual-reality-ready Potree files of resulting
3D point clouds.

It is important to highlight that point clouds can be extremely useful in applica-
tions such as robotics, augmented reality, and self-driving [21]. For our research,
deep learning models represent an effective data-driven approach for acquiring in-
formation from 3D point cloud data, leveraging Convolutional Neural Networks
(CNNs) [21][22][23]. Through these 3D point cloud images and our trained cus-
tom dataset, Dataset244, we were able to validate our workflow as demonstrated
in the next section.

2.4 Segmentation with YOLOv8 in Pytorch

In AI vision applications, the task of object segmentation entails assigning each
pixel of an image to a category of object; whereas instance segmentation entails
assigning a separate bounding box or a separate mask to each instance of the same
object category.

Both object and instance segmentation are widely researched topics in the context
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Figure 2
Typical example of a dense 3D point cloud from the Cobot150 dataset. As shown on the figure, dense

point clouds contain more details, including textures besides the tie point locations.

of 3D point clouds [24, 25, 26, 27], and deep learning models are particularly
well-suited to this application [28].

Taking this into consideration, we chose to use YOLOv8 (You Only Look Once
version 8) [17] to make inferences on our 3D point cloud images. Although the
model was initially intended for object detection tasks, it also proved to be useful
for our goal of segmenting 3D point clouds, especially with its new features (for
another recent summary of the model’s capabilities, see [29]):

• Mosaic Data Augmentation Mosaic data augmentation involves blending
four images into a new one to provide the model with richer contextual
information during training. Notably, this augmentation technique is applied
until the last ten training epochs, contributing to improved performance.

• Anchor-Free Detection The model directly predicts an object’s mid-point,
reducing the number of bounding box predictions. This approach accelerates
Non-max Suppression (NMS), a crucial pre-processing step that filters out
incorrect predictions.

• Built-In Support for 3D Point Clouds The model is capable of performing
inference on 3D point clouds without modification.

For this study, we utilized our Cobot videos, our customized Cobot Dataset244
and the results obtained from our previous research.

2.5 Possibilities for VR integration

By saving the resulting neural network model in a TFLite file, and exporting
the resulting segmented point clouds as potree files, it is possible to develop a
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Figure 3
Parameters for “DTNet” workflow for the rapid prototyping of digital twins in virtual reality

environments.

workflow for the rapid prototyping of digital twins. We refer to this workflow as
the “DTNet Workflow” (Digital Twin Net Workflow). It is important to highlight
that the integration of Digital Twins (DT) and Virtual Reality (VR) can create
not only a digital platform to boost the industrial process but can also serve as a
digital training platform for industrial operators. This platform allows operators to
experience a more lifelike environment for digital learning [30].

The parameters used for the entire workflow are shown on Figure 3.

3 Validation of Workflow Through a Sample Use-Case

3.1 Creation of a cobot dataset for instance segmentation of 3D
point cloud images

Training datasets are pivotal in machine learning, as they enable relevant features
to be extracted for future generalization. Further, a robust dataset not only solves
this original problem but also supports the development of new applications com-
bined with transfer learning [31, 6]. Unfortunately, publicly available datasets suit-
able for instance segmentation, not to mention instance segmentation in industrial
scenarios, remain scarce [32],[33] [34].

Expanding upon the results of our previous work, we employed our custom dataset
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of 108 images (Dataset108) to fine-tune the YOLO-v8 architecture [13]. Now,
unlike in our previous approach, the dataset augmentation was achieved directly
through the YOLOv8 model itself.

Our initial step was to use Roboflow Annotate [35], a tool designed for label-
ing and annotation for various tasks, including segmentation. In particular, we
applied to our dataset, Segment Anything Model (SAM) for Smart Polygon Anno-
tation and generated records in the COCO format (Common Objects in Context).
For computer vision applications, this format is frequently used as a dataset and
benchmark. Based on JSON, its annotation format offers structured data about
object instances, together with segmentation masks, bounding boxes, and other
pertinent information.

As opposed to our earlier labelling, which took into account terms like “Joint”,
“Link”, and “Cobot”, in this case we have used the terms “Display” and “Person”
besides “Cobot”.

The definition of these classes comes from the need to improve gesture recognition
and body tracking for interactive systems, like virtual reality and smart home de-
vices, as demanded by I5.0 in the field of human-machine interaction. In particular,
we highlight that cobots work alongside humans in shared workspaces. Ensuring
their safety and preventing collisions is paramount. By accurately detecting and
differentiating between humans and cobots, we can implement safety protocols:
for instance, if a human gets too close to a cobot, it can slow down or stop func-
tioning to avoid unintended contact. This collaboration enhances productivity and
efficiency while minimizing risks.

Additionally, we have transitioned from object labeling to semantic labeling. This
segmentation aims to recognize a 3D point cloud image generated from real-time
video captured by an Industrial Cobot, through YOLOv8. Instance segmentation
extends beyond simple object detection by providing not only bounding boxes but
also detailed shapes for each prediction. Instead of merely defining a bounding box
using a center point, width, and height, instance segmentation involves complex
image annotation. Specifically, we use polygons to delineate each object individu-
ally, along with its precise bounding box coordinates and pixel-wise segmentation
mask [36].

Figure 4 shows an example of a segmented image from Dataset244. Altogether,
within the original 108 images, we segmented 53 instances of “Person”, 125 in-
stances of “Cobot”, and 27 instances of “Display”.

3.2 Data augmentation techniques adopted for our model

As mentioned in the section 3.1, we used YOLOv8 to apply augmentation to
the dataset, using the two different approachesof mosaic and albumentation based
augmentation.
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Figure 4
Example segmentation of Dataset108

To use the “Mosaic” approach, we defined in the config.yaml file the mosaic
parameter to 0.3, which means that this method was used only 30% of the time.

In addition, “Albumentation” settings included:

• Blur (with a probability of 0.01 and blur limits ranging from 3 to 7)

• MedianBlur (with a probability of 0.01 and blur limits ranging from 3 to 7)

• To Gray (with a probability of 0.01)

• CLAHE (with a probability of 0.01, clip limit between 1 and 4.0, and a tile
grid size of 8x8)

Both augmentation methods were used in the case of the input images and their
corresponding label mask.

3.3 Setting of parameters to train Dataset108

After creating our unique dataset and our 3D point cloud images based on the
video recordings (as discussed in Section 2), we used the Ultralytics version of
YOLOv8.0.28, which is based on the most recent developments in deep learning
and computer vision, to train our model on just the Dataset244 dataset. We trained
the model using version 12 torch-2.0.1+cu118 (Tesla T4, 15102MiB).
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In the initial training phase, we focused on studying the impact of Mask R-
CNN hyperparameters on the final model. Each model obtained during this phase
resulted from 10 training epochs, with parameters set to patience = 5 and the
capabilities of the GPU allowed us to extend the batch size to 16 .Additionally, to
expedite the training process, we adjusted the image shape by using a 3-channel
image of 640x640 pixels for both training and validation. Each epoch consisted of
500 steps. Based on this, we trained 261 layers containing 11, 791, 257 parameters.

4 Metrics considered to evaluate performance of our
training model

To validate our assumptions and for further evaluations, we considered the follow-
ing metrics:

• Precision Box / Mask measures the proportion of true positive bounding
boxes (correctly predicted objects) out of the total predicted bounding boxes
(true positives + false positives) providing metrics on how many boxes are
correct. The mask, similar to precision box, measures the correctness of
predicted masks for segmentation. Thus, precision has to do with the ability
of the model to report only bounding boxes or masks that really do exist.

Precision(Box/Mask) =
TP (B/M)

TP (B/M) + FP (B/M)
(1)

where

– TP(B/M): True positive bounding boxes in box or mask case

– FP(B/M): False positive bounding boxes in box or mask case

• Recall, also called sensitivity, measures the proportion of true positive bound-
ing boxes out of the total ground truth bounding boxes and/or true positive
masks out of the total ground truth masks (true positives + false negatives)
providing metrics on how many objects we correctly detected. Thus, recall
has to do with the ability to identify bounding boxes / masks among all of
the bounding boxes / masks.

Recall(Box/Mask) =
TP (B/M)

TP (B/M) + FN(B/M)
(2)

• The F1 score combines precision and recall into a single metric using their
harmonic mean. This can be an especially useful metric when class distribu-
tion is imbalanced.
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Figure 5
Training set and validation set loss values during the training epochs.

F1 =
2× Precision × Recall

Precision + Recall
(3)

• The Intersection over Union (IoU) quantifies the overlap between a pre-
dicted bounding box or mask and the corresponding ground truth (actual)
bounding box or mask in terms of number of pixels or some other metric
of spatial extent (however, since this is a ratio, it is dimensionless). The
IoU value ranges from 0 to 1, specifically if IoU = 0: No overlap (com-
pletely disjoint regions), if IoU = 1: Perfect overlap (predicted and ground
truth regions are identical). A higher IoU indicates better alignment between
the predicted and actual regions. It helps evaluate the accuracy of local-
ization and segmentation models. In this work, if the IoU between a predicted
bounding box and the ground truth bounding box is greater than our predefined
threshold (0.5), we consider it a correct detection.

• Average precision, or AP is the area under the precision-recall curve ob-
tained by plotting the precision and recall for different threshold values of
IoU. The point of this metric is that if a low IoU is tolerated, even small
overlaps will be categorized as correct, meaning that recall can be higher
(in general), however, in general this is also at the expense of precision.
Hence, it is possible to plot the precision values corresponding to different
recall values for different threshold values. The area under this curve is the
average precision.
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• mAP, or Mean Average Precision, is used for evaluating object detection
models. This is the mean of all average class precisions across all classes:

mAP =
1

Nc

Nc∑
nc=1

1

Nnc
gt

∑
r

APnc
(r) (4)

where

– NC : Number of object classes

– Nnc
gt : Number of ground truth instances for class (nc)

– APnc(r): Average precision for class (nc) at IoU threshold (r)

In the remainder of this paper, when the value of r is restricted to a single value, 0.5,
we will write mAP as mAP50. When r ranges between e.g. 0.5 and 0.95, we will write
mAP50-95.

All these metrics play a crucial role in quantifying a model’s scalability, affecting
storage capacity and computational complexity during the learning process. In
particular, they help to assess the performance of object detection and segmentation
models, considering both precision and recall. Our goals are to achieve through
the proposed model higher values with regular handling for precision, recall, F1
score, IoU and mAP.

5 Experimental results

5.1 Training losses

Figure 5 shows the values of location (box), segmentation (seg), classification
(cls) and distribution focal loss (dfl) in different training epochs. The top row of
graphs represents results for the training set, while the bottom row represents the
validation set. As we can see, these losses show a steady decline on both the
training and validation set, although there are more fluctuations in the case of the
validation set, given that these examples were not used to update the model.

5.2 Precision, Recall and Mean Average Precision

The performance of our object detection model, fine-tuned on the original Dataset108
(with augmentations by YOLOv8), and assessed on the point cloud images can be
summarized as follows:

• Precision(Box): 0.777 for all instances, 0.647 for cobots and 0.907 for per-
sons.
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• Recall(Box) : 0.852 for all instances, 0.815 for cobots and 0.889 for persons.

• mAP50: 0.869 for all instances, 0.755 for cobots and 0.984 for persons.

• mAP50–95: 0.467 for all instances, 0.35 for cobots and 0.584 for persons.

• Precision(Mask): 0.708 for all instances, 0.619 for cobots and 0.796 for
persons.

This demonstrates that our model performs reasonably well across all classes, with
high precision and recall.

The mAP50 score indicates good accuracy at a moderate IoU threshold. However,
the mAP50–95 score suggests that performance drops significantly at higher IoU
thresholds. Cobots have slightly lower performance compared to all instances, but
considering that we trained a small datset, this is to be expected.

5.3 True positives and false negatives

We generated a confusion matrix to show the number of correct and incorrect
predictions made by our classifier per category type.

For our model, we obtained:

• Cobot: True Positive (TP): 0.74 (correctly identified as Cobot). False Nega-
tive (FN): 0 (actually a Cobot but predicted as Person or Background).

• Person: TP: 0.78 (correctly identified as Person). FN: 0.22 (actually a Person
but predicted as a Cobot or Background).

5.4 F1-confidence curves

As mentioned in section 4, in the context of instance segmentation tasks, we must
consider an critical threshold of overlap: Intersection over Union (IoU). IoU quan-
tifies the overlap between predicted object regions and ground truth annotations.
For the graphs presented here, an IoU threshold of 0.5 was employed.

Figure 6 shows F1 values for different confidence levels of box and mask predic-
tion. The blue line represents the cobot class, the orange line represents the person
class and the grey line represents all classes combined.

We obtained:

• The average F1 score for all classes is 0.82, with a standard deviation of
0.238 in the case of box predictions.
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Figure 6
F1-confidence curves for box and mask predictions.

Figure 7
Precision-confidence curves for box and mask predictions.

• The average F1 score for all classes is 0.76, with a standard deviation of
0.165 in the case of mask predictions.

These curves help evaluate the trade-off between confidence (how certain the
model is about its predictions) and F1 score (a measure that balances precision
and recall). The higher the F1 score, the better the model’s performance.

5.5 Precision and recall related curves

Figure 7 shows precision values for different confidence levels of box and mask
prediction. The blue line represents the cobot class, the orange line represents the
person class and the grey line represents all classes combined.
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Figure 8
Recall-confidence curves for box and mask predictions.

Figure 9
Precision-recall curves for box and mask predictions.

As we can see, the model achieves higher precision for higher confidence levels.
This is to be expected, as the model becomes more selective, and so is less likely
to report false positives.

In contrast, as shown on Figure 8, the higher the confidence level, the lower the
recall, as the more restrictive model is more apt to classify real positive examples
as negative, thereby increasing the number of false negatives.

This inverse relationship is also demonstrated on Figure 9, which shows that as
the recall increases, the precision also increases for the different categories.

Considering that a good classifier will maintain both a high precision and high
recall, our conclusions are:

• For the box method:
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– Cobot: Mean Average Precision (mAP) score: 0.753. As recall in-
creases, the precision decreases gradually.

– Person: mAP score: 0.984. Precision remains high even at higher recall
levels.

– All Classes (combined): mAP score: 0.868. Precision declines as recall
increases

• For the mask method:

– Cobot: mAP score: 0.724. A similar trend as in the “Box” method –
precision decreases with increasing recall.

– Person: mAP score: 0.867. Precision remains relatively stable across
recall levels.

– All Classes (combined): mAP score: 0.796. Precision decreases as re-
call increases, but not as sharply as in the “box” case.

These results demonstrate that both methods show trade-offs between precision
and recall.

The “mask” method generally achieves slightly lower precision but maintains bet-
ter overall performance across classes.

5.6 Overall conclusions

In summary, we have shown that:

• The bounding box method for object localization achieves high precision for
person detection (mAP score: 0.984) and a slightly lower precision for cobot
detection (mAP score: 0.753).

• The mask method for object localization, which incorporates pixel-level seg-
mentation masks, balances precision and recall more evenly; hence, we have
seen better overall performance for all classes combined (mAP score: 0.796)

Typical examples of segmentation results are shown on Figure 10.

Conclusions

In our study, we evaluated the classification of 3D point clouds from handheld
videos using a model combining instance segmentation, data augmentation, and
transfer learning. The model showed promising results in real-time labeling, partic-
ularly for Cobot images, in line with Industry 5.0 instance segmentation concerns.
Despite a small dataset, our model maintained stable performance and demon-
strated potential in bridging 2D and 3D image processing for object recognition.
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Figure 10
Example of a successful segmentation of a cobot from a 3D point cloud.

A key finding is the precision-recall trade-off, influenced by the dataset size and
model architecture, highlighting the importance of IoU and appropriate confidence
levels in model evaluation. Moving forward, expanding the dataset and refining the
model could improve accuracy, especially in video applications where precision is
critical. Our research contributes to advancing deep learning techniques for 3D
point cloud processing.

Of course, estimating uncertainties in a custom model’s predictions is a difficult
task, which is nevertheless crucial for safety-critical applications and decision-
making. For these reasons, in our future research we intend to focus on enhanced
CNN model architectures such as graph convolutional neural networks (GCNNs),
which could perhaps be more specifically tailored to 3D point cloud data.
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