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Abstract: Surgical intervention is a primary treatment option for early-stage cancers. 
However, the difficulty of intraoperative tumor margin assessment contributes to a high rate 
of incomplete tumor resection, necessitating revision surgery. This work aims to develop and 
evaluate a prototype of a tracked tissue sensing research testbed for navigated tumor margin 
assessment. Our testbed employs diffuse reflection broadband optical spectroscopy for tissue 
characterization and electromagnetic tracking for navigation. Spectroscopy data and a 
trained classifier are used to predict tissue types. Navigation allows these predictions to be 
superimposed on the scanned tissue, creating a spatial classification map. We evaluate the 
real-time operation of our testbed using an ex vivo tissue phantom. Furthermore, we use the 
testbed to interrogate ex vivo human kidney tissue and establish a modeling pipeline to 
classify cancerous and non-neoplastic tissue. The testbed recorded latencies of 125 ± 11 ms 
and 167 ± 26 ms for navigation and classification respectively. The testbed achieved a Dice 
similarity coefficient of 93%, and an accuracy of 94% for the spatial classification. These 
results demonstrated the capabilities of our testbed for the real-time interrogation of an 
arbitrary tissue volume. Our modeling pipeline attained a balanced accuracy of 91% ± 4% 
on the classification of cancerous and non-neoplastic human kidney tissue. Our tracked 
tissue sensing research testbed prototype shows potential for facilitating the development 
and evaluation of intraoperative tumor margin assessment technologies across tissue types. 
The capacity to assess tumor margin status intraoperatively has the potential to increase 
surgeon confidence in complete tumor resection, thereby reducing the rates of revision 
surgeries. 
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1 Introduction 

Surgical intervention is a common approach for treating early-stage cancers [1]. 
However, the visual distinction between healthy and cancerous tissue can be 
challenging, necessitating reliance on preoperative planning and imaging for 
interventional guidance. While various tissue detection technologies show promise, 
there is currently no effective, accurate, and real-time standard of care for 
intraoperative tumor margin assessment. 

There are several emerging technologies that differentiate tissues by measuring 
properties such as chemical composition, acoustic interactions, and electromagnetic 
interactions. An example of a chemical tissue characterization technique is rapid 
evaporative ionization mass spectrometry which uses an electrocautery device to 
vaporize tissue and a mass spectrometer to measure the chemical composition of 
the vapor [2]. An example of an acoustic tissue characterization technique is 
temporally enhanced ultrasound which uses a multi-second series of raw 
radiofrequency ultrasound data to measure the acoustic properties of a tissue [3]. 

Spectroscopy-based technologies are among these emerging technologies. 
Spectroscopy is a non-invasive technology that electromagnetically characterizes 
tissue by observing its interactions with various wavelengths of light. Tissues with 
different chemical compositions and physical structures will reflect, absorb, and 
transmit light differently, resulting in a unique electromagnetic profile for each 
tissue type. Various spectroscopy technologies have shown promise for use in tumor 
margin assessment. P. Gao et al. (2017) reviewed the clinical applications of Raman 
spectroscopy for the detection of breast cancer [4]. D. Mojahed et al. (2020) used 
optical coherence tomography to assess breast margins post lumpectomy [5]. J. 
Wang et al. (2023) evaluated the impact of radiofrequency spectroscopy in breast-
conserving surgery and found a reduction in the rate of revision surgeries [6] [7]. L. 
De Boer et al. (2015) showed that diffuse reflection spectroscopy held promise in 
the detection of breast tumor boundaries [8]. 

Rapid acquisition times combined with the non-invasive, and repeatable nature of 
diffuse reflection broadband optical spectroscopy (DRS) makes it a promising 
candidate for both in vitro and ex vivo margin assessment. DRS relies on 3 main 
components: a broadband light source, an optical fiber reflection probe, and a 
spectrometer. A broadband light source is used to illuminate a tissue sample in a 
desired wavelength band. In optical spectroscopy, this is a subset of the optical 
spectrum, composed of the visible, near-ultraviolet, and near-infrared bands.  
The optical fiber reflection probe is used to transmit the radiated light to the tissue 
surface. When the light interacts with the tissue, the reflected intensity at each 
wavelength is dependent on the electromagnetic properties of the tissue. In the case 
of cancerous and benign tissues, each will reflect and absorb light in varying 
proportions, depending on the wavelength. The light is collected by the optical fiber 
probe and transmitted to the spectrometer. Frequency-specific diffraction gratings 
are used to separate the light into component wavelengths [9]. The result is a 
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broadband spectrum that electromagnetically characterizes the tissue. The non-
invasive, repeatable, and rapid nature of spectroscopy makes it a promising 
technology for use in intraoperative tumor margin assessment. 

While there are many point-based optical technologies with adequate acquisition 
times and promising tumor margin assessment capabilities, they are currently 
limited in their intraoperative usability. Practical deployment of such technologies 
necessitates the development of software to process their signals and provide 
informative and actionable insights to a surgeon in real time. Additionally, many of 
these point-based methods do not leverage spatial location information, which is 
important for visualizing and navigating to detected cancerous tissue for resection. 
We see promise in the development of a tracked tissue sensing testbed for the rapid 
testing and deployment of intraoperative technologies. We address these gaps in 
this paper through the development and evaluation of a research testbed for real-
time navigated tumor margin assessment. The paper is organized accordingly. 
Section 2 outlines the design and implementation of our research testbed. Section 3 
outlines the evaluation of real-time testbed performance using a biological ex vivo 
tissue phantom. Section 4 outlines the application of the research testbed for the 
interrogation of human kidney tissue. Section 5 provides a summary of the key 
conclusions of this work. 

2 Design and Implementation of Research Testbed 

This section presents our prototype for a tracked tissue-sensing research testbed.  
It provides an overview of the system’s physical architecture and the software 
module we developed. Section 2.1 reviews the physical design detailing the system 
architecture and hardware components. Section 2.2 details the specifics of our 
developed software module that facilitates hardware interaction, data collection, 
and real-time operation. 

2.1 Testbed Architecture 

Our tracked tissue sensing testbed is designed for intraoperative tumor margin 
assessment. Enabling a surgeon to perform a freehand or assisted scan of the tissue 
surface post-resection. This includes the ex vivo inspection of tumor margins, as 
well as the in vitro inspection of the tumor bed. The latter is visualized in Figure 1. 

The testbed design consists of four main components: a tissue sensor for tissue 
characterization, a position tracker for recording sensor pose, a classifier for 
predicting tissue type, and a navigation computer for processing and presenting 
information in an intuitive graphical representation. Figure 1 provides an overview 
of the testbed design. 
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Figure 1 

A diagram of the tracked tissue sensing testbed 

The tissue sensor, represented in red in Figure 1, is a diffuse reflection optical 
spectroscopy probe. The probe consists of an SLS201L stabilized tungsten 
broadband light source (Thorlabs, USA), a CCS200 compact charge-couple-device 
spectrometer (Thorlabs, USA), and an FCR-7UVIR200-2 optical fiber reflection 
probe (Aventes, NL). Light is reflected off the tissue and measured using a 
spectrometer. The light is separated into individual wavelengths, characterizing the 
tissue. The tissue sensor operates in the range of 420 nm to 1000 nm. The position 
tracker, depicted in yellow in Figure 1, is an electromagnetic tracking system.  
The position tracker used is the Northern Digital Inc. (NDI) trakSTAR 3D Guidance 
system (NDI, USA), with the mid-range transmitter (NDI, USA), and Model 800 6-
degree of freedom (DoF) 8mm sensors (NDI, USA). An electromagnetic sensor is 
rigidly attached to the spectroscope, allowing for precise determination of the probe 
position and orientation in 3D space. A trained machine learning classifier is 
employed within the software to predict the tissue type based on the acquired 
spectrum. 

The navigation software, depicted in blue in Figure 1, is responsible for 
communicating sensor information to the user in an intuitive manner. It enables the 
collection, storage, processing, classification, and display of hardware information. 

2.2 Software 

We develop an open-source software module in 3D Slicer to facilitate real-time 
hardware communication, streamline data collection of novel tissue types, and 
enable real-time spatial classification with an intuitive data visualization system 
(Figure 2). 
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Figure 2 

An overview of the developed software module. (Left) The graphical user interface. (Centre) The 3D 
navigation display. Red and green points represent predicted classes, and a blue model displays the 

position and orientation of the optical probe. (Right) The spectrum viewer. Displays a real-time 
visualization of the optical spectra. 

2.2.1 Real-Time Hardware Communication 

To facilitate hardware communication, we leverage the open-source software Plus 
and OpenIGTLink protocol [10] [11]. The communication pipeline is visualized in 
Figure 3. Hardware information is collected in real time using the Plus device 
interface. The spectrometer data is formatted as a 2D matrix, where the first row 
represents the wavelengths, and the second row denotes the corresponding observed 
intensity at each wavelength. The navigation data is formatted as a homogeneous 
transformation matrix, providing information about the location and orientation 
relative to a reference sensor. Finally, OpenIGTLink is employed to allow our 3D 
Slicer module to access the data in real time. 

 
Figure 3 

An overview of the real-time hardware communication pipeline 
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2.2.2 Data Collection 

A software interface was created to facilitate novel tissue interrogation and the 
collection of labeled datasets for rapid training of machine learning classification 
models (Figure 2). The spectrum viewer, located on the right-hand side of Figure 2, 
has been developed to provide real-time visualization of the incoming spectra. This 
feature enables the assessment of signal quality and ensures the acquisition of a 
strong and clear signal, minimizing noise and artifacts. Additionally, the spectrum 
viewer offers a preliminary exploration of new tissue features, allowing for early 
insight for later analysis. If a machine learning model is uploaded and active, the 
title of the chart is dynamically set based on the predicted classification, offering 
immediate context and interpretation of the investigated tissue type. The user 
interface, located on the left-hand side of Figure 2 offers various labeling and data 
collection parameters. The class selector enables the user to specify the 
histopathology or tissue type being scanned. Patient ID allows the assignment of 
the scan to a specific patient, with anonymization according to a reference sheet. 
Sample ID differentiates between samples when multiple tissue segments are 
obtained from a single patient. Continuous sample collection mode allows 
continuous collection of spectra from a single class, useful for scanning large, 
homogenous tissue samples. Single sample collection mode in conjunction with 
sampling duration, enables scanning of a single location for a consistent duration, 
useful for heterogeneous samples. 

2.2.3 Navigation and Spatial Classification 

The final software objective is the development of a navigation display to facilitate 
an intuitive, real-time visual representation of classification predictions in 3D space. 
An example navigation display is shown in the center of Figure 2. A blue cylindrical 
model represents the probe location and orientation. A static image of the scanned 
area is registered to the scene. The location and classification data are combined to 
generate a point with color denoting class. For example, locations predicted as 
cancer are colored red, and locations predicted as benign are colored green.  
The user can toggle between scanning a single point or performing a continuous 
scan. The user can input the system path to import a custom-trained machine-
learning classifier. When classification is enabled, the module observes incoming 
spectra, applies relevant data processing, and inputs each spectrum into the model 
for prediction. The model prediction is passed to the navigation display for 
visualization. The navigation display requires calibration before operation to ensure 
accurate visualization. The electromagnetic sensor is fixed to the handle of the 
probe, rather than the tip of the probe directly. The location of the probe tip is 
calibrated using the Pivot Calibration module in 3D Slicer. An overhead image of 
the region of interest is then registered to the 3D Slicer scene. Four reference points 
are marked on the region of interest and visible in the overhead image.  
The calibrated probe is placed on each reference point and the position is recorded. 
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The Fiducial Registration Wizard module is used to align the points on the imported 
image with their physical position in the tracker space. 

3 Evaluation of Testbed Functionality 

The purpose of this section is to evaluate the real-time operation of our tracked 
tissue sensing testbed. We measure the latency of the navigation and classification 
portions of the testbed’s navigation display. We then perform a freehand scan of an 
ex vivo biological tissue phantom to observe the testbed’s spatial classification 
capabilities. The tissue phantom is composed of porcine and bovine tissue. 

3.1 Experimental Setup 

To operate the testbed, we required a trained tissue classifier. As the classification 
performance was not the primary focus of this experiment a simplified classifier 
was trained and deployed. The classifier used in this experiment was a k-Nearest-
Neighbor (kNN) model with a k value of 3. To train the kNN, bovine and porcine 
tissue were acquired and prepared for sampling. The surface of each tissue was 
scanned and labeled, which resulted in a dataset of 200 spectra, 100 bovine, and 100 
porcine. Each spectrum was cropped to 360-1000 nm and a min-max normalization 
was performed. A binary label of 0 and 1 was assigned to bovine and porcine tissue 
spectra respectively. The trained kNN classifier was imported into the testbed. 

3.2 Testbed Latencies 

Before evaluating the spatial classification performance of the testbed, the latency 
of the navigation and classification was experimentally measured. We determined 
its suitability for real-time use and ensured temporal consistency between the 
classification and location data. The classification and navigation latencies were 
determined using a 240-frame-per-second slow-motion camera to record the 
experimental workspace and navigation display. To determine the classification 
latency, the probe was then repeatedly transitioned between two solid colors for 20 
cycles. The slow-motion camera was analyzed frame by frame to approximate the 
delay between the probe reaching the color, and the display displaying the class.  
To determine the electromagnetic tracking latency the probe was repeatedly lifted 
from a rigid surface and returned for 20 cycles. The slow-motion video was 
analyzed, and the frames were counted between when the physical probe and virtual 
probe model stopped moving. 
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3.3 Spatial Classification Performance 

To evaluate the spatial classification 
performance of the testbed, an ex vivo tissue 
phantom was created using bovine and 
porcine tissue to simulate a tumor cavity. 
The phantom layout is visible in Figure 4. 
Porcine tissue is used as the main phantom 
body with bovine tissue inserted to represent 
a tumor. The phantom was prepared fresh 
and frozen immediately. The tissue phantom 
measured approximately 10 cm in diameter 
and 3 cm in depth. Before experimentation, 
the phantom was removed from the freezer 
and allowed to thaw completely. 

The thawed tissue phantom was placed in 
the workspace as shown in Figure 5.  
An overhead optical image of the tissue 
phantom was taken prior to data collection 
for use as the ground truth image.  
The optical probe was calibrated, and the 
ground truth image was registered to the 
coordinate system. The trained classifier 
was inputted into the testbed, and a 
continuous data collection mode was 
selected. The tissue phantom was scanned 
freehand in a rough grid pattern with 1 mm 
spacing between displayed points.  
The spatial classification was overlaid on 
the ground truth image of the tissue 
phantom. The number of correctly and incorrectly classified points was recorded 
for each class. The testbed visualization was evaluated using the Dice similarity 
coefficient and accuracy. 

3.4 Results 

This section details the results of our testbed evaluation process in terms of testbed 
latency and spatial classification performance. 

3.4.1 Testbed Latency Results 

The latency of the navigation and classification components of the navigation 
display were determined to be 125 ± 11 ms and 167 ± 26 ms respectively (Table 1). 

Figure 4 
An illustration of the biological tissue 
phantom design used in this experiment 

Figure 5 
Experimental workspace for the testbed 

evaluation using an ex vivo biological tissue 
phantom 
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Table 1 
The testbed latencies for the navigation and classifier portions of the display visualization. The mean 

and standard deviation is reported in ms and is calculated over 20 trials. 

 

A study by Xu et al. (2013) assessed the effects of latency on real-time tool 
manipulation in a dV-Trainer simulator environment [12]. System latencies were 
progressively increased in 100 ms increments from ∼ 0 to 1000 ms. They concluded 
that latencies of <200 ms facilitated easy tool manipulation, with latencies <300 ms 
deemed safe by all participants [12]. Our testbed achieved this threshold for both 
the classification network and the navigation latencies. This result also allows for 
improved temporal alignment of the position and classification data streams through 
an estimated offset, increasing the accuracy of the navigation display. The effect of 
this increased alignment will be particularly prevalent when either the probe 
location or tissue class is changing rapidly. Overall, the results indicate that our 
testbed architecture is capable of real-time classification, localization, and 
visualization. Facilitating quick and accurate assessment of tissue margins. 

3.4.2 Spatial Classification Results 

The output of our spatial classification experiment is displayed in Figure 7. The red 
points are classified as bovine tissue, and the green points are classified as porcine 
tissue. The spatial classification is overlaid on the ground truth image of the tissue 
phantom. Our testbed achieved a Dice similarity coefficient of 93%, and an 
accuracy of 94%. The confusion matrix can be seen in Figure 6. 

Our spatial classification results 
demonstrate potential for the real-time classification and visualization of a 3D tissue 
surface. The visualization in Figure 7 met basic qualitative metrics, and the system’s 
modularity enables task-specific enhancements. The testbed effectively generated 

Navigation latency [ms] 125 ± 11 
Classification latency [ms] 167 ± 26 

Figure 7 
The resultant spatial classification visualization 

for our ex vivo tissue phantom [16] 

Figure 6  
Confusion matrix for the spatial classification 

of bovine and porcine tissue [16] 
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an intuitive visualization of the predicted classes, with the navigation display 
aligning well qualitatively. Red and green points were primarily located in their 
respective ground truth regions, although minor discrepancies were observed along 
tissue boundaries and throughout the navigation display. The presence of false 
negatives and positives within bulk tissue regions were most likely due to the 
simplified classifier and training regimen used. Discrepancies at the tissue 
boundaries were most likely a result of various tracking and registration errors 
within the testbed. The modularity of the testbed allows it to adapt to specific task 
requirements. The tissue sensor, tracking system, and classifier can be modified 
according to the procedure requirements. For instance, if a procedure requires 
higher navigation accuracy, the trakSTAR (NDI, USA) electromagnetic tracker 
could be replaced with a Plus-compatible optical tracker. 

The tissue classifier is interchangeable and can be tailored for a specific application, 
allowing for rapid experimentation. The system would greatly benefit from the 
exploration of more complex classification models to enable the robust analysis of 
diverse tissue representations with increased classification accuracy. Potential 
avenues of exploration include deep learning methods such as convolutional neural 
networks (CNNs), and transformer-based networks. Additionally, the system could 
benefit from further methods to minimize classification errors. A robust data 
preprocessing pipeline where extraneous information is filtered out has the potential 
to improve performance. The exploitation of domain-specific knowledge would 
also be beneficial. For example, it is unlikely that a single cancerous detection will 
be completely isolated and surrounded by healthy tissue as seen in the bulk scan in 
Figure 7. Isolated cancerous detections a distance from the main tumor body may 
be filtered out as false positives, culminating in a much cleaner display. 

Overall, the results show that our tracked tissue sensing testbed is able to accurately 
interrogate tissue samples with real-time navigation and classification. Further work 
focuses on the adoption of more comprehensive classification pipelines for the 
application of the testbed to clinically relevant tissue types. 

4 Application of Testbed for Interrogation of Human 
Kidney Tissue 

This section focuses on the application of our testbed to interrogate cancerous and 
non-neoplastic human kidney tissue. Section 4.1 details the procedures used for the 
collection and analysis of ex vivo human kidney data. Section 4.2 presents a 
modeling pipeline designed for the classification of cancerous and non-neoplastic 
tissue. It details the model used, the preprocessing methods experimented with, and 
the evaluation methods used. Section 4.3 details the results of our experimentation 
and analysis. 
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4.1 Data Collection 

Three fresh human kidney tissue samples were collected from a single patient, 
denoted Patient A. The tissue samples remained unfixed and were stored at -80◦C. 
The samples were heterogeneous and were composed of cancerous and non-
neoplastic regions of an excised kidney. The front and back of the tissue samples 
are shown in Figure 8. Each tissue sample was approximately 25 mm by 25 mm by 
5 mm in size. The experiment was performed in a biosafety cabinet to minimize 
contamination. 

 
Figure 8 

(Left) Images of the resected ex vivo human kidney tissue specimens (Right) The experimental setup 
for the interrogation of tissue specimens 

The experimental setup can be seen in Figure 8. The setup consisted of the tissue 
sensor, a 2-DoF stage, and a 1-DoF stand. The data collection process is as follows. 
A sample was removed from the freezer and thawed completely for 20 minutes.  
The sample was placed in the center of the stage. An overhead image was taken of 
the specimen. The image was manually segmented by a clinician. The data 
collection module was used in single-point collection mode with an acquisition time 
of 1 second. Due to time constraints associated with drying tissue, the light source 
was not manually toggled before each reading. Reflected ambient light was instead 
recorded at multiple locations on each pathological region before the scan to 
estimate the ambient light at a later time. Each pathological region of the tissue 
sample was scanned in a grid pattern. The sample was allowed to rehydrate in saline 
before the second side was scanned. 

Figure 9 displays the resulting ground truth segmentations of the cancerous and 
non-neoplastic tissue, as visually determined by a trained pathologist. The green 
and red overlays represent non-neoplastic and cancerous tissue respectively.  
The white overlay denotes regions that were not scanned due to ambiguity.  
The resulting dataset contained 315 cancerous and 84 non-neoplastic unique 
spectra. The associated patient ID, sample ID, scan side, and histopathological 
metadata were recorded. 
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Figure 9 

Approximate regions of cancerous (red) non-neoplastic (green) and ambiguous (white) tissue 
determined visually by a trained pathologist 

4.2 Tissue Classification Pipeline 

We present a modeling pipeline designed to train a classifier to accurately 
differentiate between cancerous and non-neoplastic spectra. We detail the model 
used, the preprocessing methods implemented, and the methods used to evaluate 
the pipeline performance. 

4.2.1 Model 

We conducted an ablation study involving three distinct machine learning 
techniques: a Linear Discriminant Analysis (LDA) classifier, a k-Nearest-
Neighbors (kNN) classifier, and a Support Vector Machine (SVM). LDA aims to 
find a linear combination of features that maximizes the separation between 
different classes while minimizing the variance within each class. kNN classifies a 
data point based on the majority class among its k nearest neighbors in the feature 
space. SVM calculates a hyperplane in the feature space that best separates the 
classes. The classification performance of each model is evaluated with baseline 
data processing applied to determine the optimal model for use in the remainder of 
the experiment. Machine learning models were used exclusively in this study.  
The limited size of our dataset was a confounding factor in this selection. Machine 
learning can be used with less data compared to deep learning methods, which 
contain a large number of trainable parameters. 

4.2.2 Preprocessing 

We explored the effects of various preprocessing methods on classification 
performance. These methods include min-max normalization, spectroscope signal 
normalization, ambient light compensation, and dimensionality reduction. 
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Min-max normalization 

When conducting a scan of a tissue surface, the distance between the probe and the 
tissue is variable. Min-max normalization was introduced to normalize the intensity 
changes that result from this variability. 

Spectroscope signal normalization 

The light source and spectrometer chosen during data collection will have unique 
output intensity curves and receiver sensitivity curves across the interrogated 
wavelength range. This information is imposed on the dataset during data 
collection. Spectroscope signal normalization was introduced to ensure the dataset 
is invariable to the choice of spectroscope hardware. To normalize the dataset, each 
spectrum undergoes division by the receiving sensitivity curve and the output 
intensity curve. The spectrometer manual specifies an amplitude-corrected 
sensitivity curve for our operating band1. Thus, the theoretical receiving curve is 
assumed to be flat. The broadband light source manual specifies a theoretical output 
intensity curve2.  

Ambient light compensation 

The ambient light contains information specific to the data collection environment, 
as well as probe-to-surface distance information. The ambient light within a signal 
should be removed to improve the robustness of the dataset to these factors.  
We interrogated two methods of ambient light compensation: ambient light 
estimation (ALE) and ambient peak zeroing (APZ). The ALE technique uses spectra 
collected prior to a tissue scan, with the light source on and off, to estimate the 
ambient light reflection profile. The ambient light profile is scaled for each 
incoming spectrum using the ratio of the ambient light peak to the broadband signal 
peak in the spectrum. The scaled ambient light profile is then subtracted from the 
spectrum. To limit overprocessing, we calculated a general ambient light profile for 
the dataset rather than for each scan. This ensured no scan-specific or pathological 
information was embedded into the spectra. The APZ technique looked to estimate 
the location of the peak ambient light and to eliminate it from each spectrum.  
The prerecorded spectra were analyzed, and the ambient light spectra were 
extracted. The location of the peak ambient light was determined, and the associated 
wavelengths were zeroed with a buffer of ∼±3 nm around the peak. 

Dimensionality reduction 

Dimensionality reduction techniques, such as Principal Component Analysis (PCA) 
and Binning, were introduced to address the disparity between the size of the 
dataset, 399 spectra, and the dimensionality of the dataset, 2578 features.  
The dimensionality reduction was chosen using 0.9999 explained variance within 
the PCA as guidance. The number of components varied for each fold, with 80 to 
140 features explaining approximately 0.9999 explained variance. To ensure direct 

 
1Documentation available: www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3482 
2Documentation available: www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7269 
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comparability between dimensionality reduction methods, the number of bins in the 
Binning method, and the number of components in the PCA method were fixed at 
100 for all folds. We used a PCA implementation with the number of components 
set to 100. For Binning, we calculated 100 wavelength bins by dividing the length 
of the signal by 100. For each bin, we found the mean signal intensity for the 
wavelength range. We repeated this process for all remaining bins to produce a 
lower-resolution signal. 

4.2.3 Pipeline Evaluation 

We evaluated the performance of the modeling pipeline using an intrinsically 
determined 4-fold cross-validation based on sample side data groupings3. We 
separated the front and back of each scan into 6 separate groups. Sample 1 and 
Sample 2 were strategically combined to ensure each fold contained cancerous and 
non-neoplastic tissue. 

This resulted in 4 folds consisting of Sample 1 Front/Sample 2 Front, Sample 1 
Back/Sample 2 Back, Sample 3 Front, and Sample 3 Back. To perform cross-
validation, a single fold was chosen as the test set, and the remaining folds were 
combined for the train set. This process was repeated until each fold was chosen as 
the test set. An overview of the train and test sets are shown in Table 2. To address 
the significant class imbalance in the dataset, random oversampling was performed 
during model training. The metrics reported to evaluate model performance were 
balanced accuracy, sensitivity, specificity, F1 score, area under the receiving 
operating curve (AUC), and accuracy. The mean and standard deviation were 
reported over the test data. The experiment was averaged over 28 trials to account 
for any statistical outlier performances. 

Table 2 
An overview of the 4-fold-cross-validation regimen. S denotes Sample, and [ ] denotes grouped data 

Train set Test set 
[S1Front, S2Front], [S1Back, S2Back], S3Front S3Back 
[S1Front, S2Front], [S1Back, S2Back], S3Back S3Front 

[S1Front, S2Front], S3Front, S3Back [S1Back, S2Back] 
[S1Back, S2Back], S3Front, S3Back [S1Front, S2Front] 

 
3  Splitting the data strictly by the tissue sample number theoretically provides the most 

robust results. This method maximally preserves statistical variation between the 
training and testing sets while minimizing signal contamination. However, the size of 
our dataset limits its application. The inter-sample variation in pathological presentation 
greatly hinders the classification performance, and the size of our dataset limits the 
generalization of the model between samples. Thus, leave-one-sample-out was not 
feasible for this experiment. 
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4.3 Results 

This section details the results of our tissue classification pipeline for the 
differentiation of cancerous and non-neoplastic kidney tissue. We performed an 
ablation study of various state-of-the-art machine learning models including a k-
Nearest-Neighbor classifier, a Linear Discriminant Analysis classifier, and a 
Support Vector Machine (Table 3). We performed an ablation study of the 
preprocessing methods including spectroscope signal normalization, ambient light 
compensation, min-max normalization, and dimensionality reduction (Table 4).  
The evaluation was performed using 4-fold cross-validation. The balanced 
accuracy, sensitivity, specificity, F1 score, AUC, and accuracy are reported.  
The ambient light compensation methods are labeled ALE (Ambient light 
estimation) and APZ (Ambient peak zeroing). The min-max normalization is 
denoted MM. 

Table 3 
The results of our classifier ablation study using baseline processing methods. The mean (± standard 

deviation) balanced accuracy, sensitivity, specificity, F1, AUC, and accuracy are reported (%). 

Experiment Bal Acc Sens Spec F1 AUC Acc 
SVM 63 ± 10 73 ± 31 89 ± 11 75 ± 15 63 ± 10 67 ± 14 
kNN 73 ± 7 77 ± 21 91 ± 9 82 ± 9 73 ± 7 74 ± 11 
LDA 𝟖𝟖𝟖𝟖 ± 𝟏𝟏𝟏𝟏 𝟖𝟖𝟖𝟖 ± 𝟏𝟏𝟏𝟏 𝟗𝟗𝟗𝟗 ± 𝟗𝟗 𝟖𝟖𝟖𝟖 ± 𝟖𝟖 𝟖𝟖𝟖𝟖 ± 𝟏𝟏𝟏𝟏 𝟖𝟖𝟖𝟖 ± 𝟏𝟏𝟏𝟏 

In our evaluation of various machine learning classification models, the Linear 
Discriminant Analysis (LDA) method demonstrated superior performance 
compared to other approaches. This statistical significance was established through 
a one-tailed Wilcoxon rank-sum test, with maximum p-values of 0.007 for the 
balanced accuracy measure. The LDA method projects the data onto a lower 
dimensional latent space while maximizing the separation between classes. This 
approach optimizes the ratio of between-class variance to within-class variance, 
enhancing data clustering within the latent space. Moreover, projecting to a lower-
dimensional feature space may improve the handling of noisy features compared to 
alternative methods. We use the LDA classifier for the remainder of the 
experiments. 

Table 4 
The results of our preprocessing experimentation using a 4-fold sample-side-based cross-validation 
regimen. The mean (± standard deviation) balanced accuracy, sensitivity, specificity, F1, AUC, and 

accuracy are reported (%). 

Experiment Bal Acc Sens Spec F1 AUC Acc 
Baseline 80 ± 11 89 ± 15 92 ± 8 89 ± 7 80 ± 11 84 ± 10 

ALE 81 ± 12 91 ± 12 93 ± 7 91 ± 5 81 ± 12 86 ± 7 
APZ 83 ± 9 90 ± 11 93 ± 7 91 ± 4 83 ± 9 86 ± 6 

Min-Max (MM) 80 ± 12 89 ± 15 92 ± 9 89 ± 7 80 ± 12 84 ± 10 
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PCA 84 ± 10 93 ± 12 93 ± 7 92 ± 6 84 ± 10 88 ± 9 
Binning (Bin) 88 ± 8 92 ± 8 95 ± 6 93 ± 3 88 ± 8 89 ± 5 

PCA+ALE+MM 85 ± 9 94 ± 10 94 ± 6 93 ± 5 85 ± 9 89 ± 7 
PCA+APZ+MM 85 ± 9 94 ± 11 93 ± 6 93 ± 5 85 ± 9 89 ± 7 
Bin+APZ+MM 90 ± 7 92 ± 8 96 ± 6 94 ± 4 90 ± 7 90 ± 5 
Bin+ALE+MM 91 ± 4 93 ± 7 96 ± 4 95 ± 3 91 ± 4 91 ± 4 

Our evaluations of the effect of dimensionality reduction techniques, Binning and 
PCA, showed they were beneficial to the performance of the classifier. Both 
techniques reduce the complexity of the input data which is significant for small 
datasets. Our dataset contains just 399 spectra whereas each spectrum contains 2578 
features. This introduces significant variance and noise into the data which is 
difficult to generalize for many machine learning models. By reducing the 
dimensionality, we simplify the data, reducing high variance noise that can distract 
the model, and allowing it to focus on relevant features. Binning provided a greater 
performance increase compared to PCA. Binning preserves information related to 
the order of features along the electromagnetic spectrum. PCA projects the features 
to a latent space and orders the features according to their variance. This may be a 
contributing factor to explain the discrepancy in performance between the methods. 
However, we can confirm the importance of dimensionality reduction techniques. 
Min-max normalization and Spectroscope signal normalization did not find a 
significant impact on classifier performance. Min-max normalization compensated 
for the inconsistent probe-to-surface distance inherent to freehand scanning without 
diminishing classification performance. Spectroscope signal normalization 
increased the robustness of the trained model by compensating for differences in 
the light source and the spectrometer used for data collection. Ambient peak zeroing 
(APZ), and ambient light estimation (ALE) were able to successfully reduce the 
effects of ambient light while providing a small positive impact on classifier 
performance. However, each technique was limited. APZ does not compensate for 
the entire ambient light spectrum, focusing just on the peak range. In an effort to 
reduce over-processing, ALE was performed using average ambient light profiles 
for the entire dataset. Since different tissues interacted with the ambient light 
differently, this technique was less effective on a dataset scale. The ideal ambient 
light compensation would record the ambient light directly before each 
measurement to allow for accurate compensation. A light source that can be rapidly 
digitally toggled would be ideal for this application. We observed that Binning in 
conjunction with ALE and Min-Max produced the strongest and most consistent 
performance across folds. This configuration increased the balanced accuracy by 
11%, from a baseline of 80% to 91% and the standard deviation decreased 8% from 
a baseline of 13% to 5%. Additionally, there was an average increase of 7% across 
all reported metrics. 

Overall, our experimentation shows promising results for the ability to differentiate 
between cancerous and non-neoplastic human kidney tissue ex vivo using a simple 
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linear classification model. We show that our preprocessing pipeline provides 
significant increases in model performance while effectively compensating for the 
effects of external variables. However, these results are limited by the size and 
variability of our dataset. Further data collection is required to draw more robust 
conclusions. Further investigation of deep learning models and preprocessing steps 
would also be beneficial. 

Conclusions 

The objective of this work was the development and evaluation of a tracked tissue 
sensing research testbed for navigated tumor margin assessment. The results 
presented demonstrated the capabilities of our tracked tissue sensing testbed for 
accurate real-time navigated tissue inspection. The first contribution focused on the 
development and performance of the testbed for real-time tissue assessment. We 
showed that our tracked diffuse reflection spectroscope was capable of real-time 
spatial classification and navigation of an arbitrary tissue volume using handheld 
interrogation methods. The second contribution focused on the application of the 
testbed for a clinically relevant tissue type. The results of our interrogation of human 
kidney tissue demonstrated the viability of the testbed for the rapid application to 
novel tissue types. We showed our tracked tissue sensor was capable of real-time 
data collection and exploration while offering promising potential for the 
classification of cancerous and non-neoplastic kidney tissues. 

The current system, with diffuse reflection spectroscopy, is limited to a superficial 
scan of the tissue surface. However, cancerous tissue may lie under a layer of 
healthy tissue and may not be detected. An important area for development is the 
integration of multimodal imaging. The testbed’s modularity and flexibility enable 
the implementation and combination of various margin detection techniques. Of 
particular interest would be integrating the superficial broadband spectroscope with 
depth information from ultrasound. Various works have shown the potential for 
combining multiple modalities. For example, L. Connolly et al. (2022) [13] 
experimented with using throughput broadband spectroscopy and temporally 
enhanced ultrasound for multilayer tissue differentiation. S. Wilson et al. (2022) 
[14] created a device to focus point-based electromagnetic techniques within a 2D 
ultrasound slice. Both may provide insight into potential future directions for our 
testbed. Another clear direction for future research involves exploring and 
implementing state-of-the-art deep-learning classification models. For example, 
enhancing the testbed by integrating attention CNNs or transformer-based models 
with self-supervised learning and uncertainty estimation has the potential to greatly 
improve system usability and interoperability. 

A substantial gap exists between preoperative and intraoperative information for the 
surgical treatment of early-stage cancer. The capacity to intraoperatively assess 
tumor margin status has the potential to increase surgeon confidence in complete 
tumor resection, mitigating the probability of revision surgery. Mitigation of the 
rate of revision surgeries also minimizes their challenges and risks for patients 
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including reducing the likelihood of postoperative complication, improving 
cosmesis, reducing psychological distress, and decreasing healthcare costs [15]. 

The development of accurate intraoperative tumor margin assessment tools has a 
crucial role to play in improving outcomes for early-stage cancer patients around 
the world. 
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