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Abstract: The purpose of this research is to provide an accurate and low degree of freedom 

model to analyze critical hunting velocity for a rail vehicle. Two types of simplifications 

have been commonly used in investigations, including linearization of nonlinear and 

trigonometric terms and applying static coefficients in linear wheel/rail contact models 

such as Kalker model. To find the effect of these simplifications in the accuracy of 

computed hunting velocity a 3DOF single-axis bogie model with a wheelset possessing 3D 

motion mobility and constant wheel/rail contact is used. The creep forces and spin moment 

in the contact model are obtained from the linear Kalker model with dynamic creep 

coefficients. The contact model coefficients are updated in each moment based on the 

instant values of normal wheel force and wheelset yaw angle using a proposed algorithm. 

The critical speed and bifurcation diagram of the hunting frequencies are obtained and a 

comparison is made between the static creep coefficient model and dynamic creep 

coefficient model. According to the results, dramatic changes in stability margins and 

starting point of period doubling in the bifurcation diagram are observed under the 

presence of dynamic creep coefficients. Also, an increase of normal external load on the 

wheelset causes the reduction of critical velocity, which is merely predicted in the dynamic 

coefficient model. This means the static creep coefficient models do not have enough 

reliability for analyzing the variable weight wagon problems such as freight trains. Another 

important result is that the simplification of most trigonometric terms has a negligible 

effect on the accuracy of results. 
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1 Introduction 

Railway transportation has been played an important role in today’s human life. 

Needs for higher-speed trains to increase the capacity of transportation systems 

besides the aging of the railway networks arises new engineering and technical 

challenges for designers. One of the important problems in the field of stability of 
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the rail vehicles dynamics is hunting behavior. The hunting can lead to an unstable 

amplitude growth in vibration about the yaw axis of the suspension system (or 

bogie) that can be ended by wagon derailment. That is why determining the 

accurate margin of the hunting is of great importance in the multi-body dynamics 

of rail vehicles. The hunting is inevitable and roots in the intrinsic property of 

conical wheelset, creep forces, and bogie’s mass-stiffness-damper interactions in a 

parallel rail system. Also, it reduces ride comfort and causes damage to vehicles 

and rail. 

Ahmadian and Yang [1, 2] evaluated the effect of system parameters on the 

stability of the railway vehicle by considering the nonlinear parameters of yaw 

damper and wheel-rail contact. The numerical simulation showed that damping 

coefficient changes could change the critical hunting speed. They also analyzed 

the Hopf bifurcation phenomenon. The results showed that nonlinear parameters 

in the primary suspension system, as well as rail and wheel flange contact, will 

play a significant role in hunting behavior. Also, nonlinear elements in wheel and 

rail contact and suspension systems affect critical speed and bifurcation. In some 

cases, the results show that the critical velocity obtained from the linear analysis is 

higher, than that obtained from the nonlinear analysis. In the work of True and 

Asmund [3], the dynamic analysis of a freight wagon in the presence of dry 

friction damper and nonlinear creep forces in the contact area of the wheel and rail 

was performed. In another work, Lee and Cheng [4, 5], employed Lyapunov's 

Indirect Method to obtain the critical hunting velocity, under the effects of several 

physical parameters. They compared the results of their model with a 6 DOF 

model and observed that the predicted critical hunting speed by the 6 DOF system 

is much higher than their model. Another interesting finding of this work was that 

the critical hunting velocity of wagons with new wheels is more than that with 

worn wheels. Using a nonlinear creep model, Lee and Cheng [6, 7] derived the 

equations of motion for an 8 DOF system. They compared the results of the 8 

DOF model with a 6 DOF model in a curved path. Unlike the previous studies, 

their investigations showed that the critical hunting velocity for the 8 DOF model 

is higher than the 6 DOF model, However, they both used nonlinear models, 

predicting fewer hunting velocities compared with the linear contact model. Also, 

for 8 DOF model and based on the linear creep model, the effect of the parameters 

of the secondary suspension system on the critical speed was investigated. Zeng 

and Wu [8] examined the derailment of a rail vehicle by considering the contact 

angle of the wheel flange, the coefficient of friction, the creep forces, and the 

presentation of a new relationship. The results showed that increasing the contact 

angle of the wheel rim and reducing the coefficient of friction is effective in 

preventing wheel climb derailment. Cheng et al. [9] used a nonlinear heuristic 

creep model for a 21 DOF wagon model and obtained the critical speed of the 

wagon as it crossed the curved track. Their results showed that the critical speed 

obtained for a 6 and a 14 DOF models is much higher than the 20 DOF model. 

Also, the critical velocity obtained by the nonlinear heuristic creep model is lower 

than the velocity obtained from the linear creep model. Zboinski and Dusza [10] 
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studied the stability and self-excited vibrations of a rail vehicle on a curved track 

and used the fork diagrams for the curved track to examine the effect of different 

initial conditions. Kim and Seok [11] used the multiple-scale method to study the 

bifurcation diagrams of a rail vehicle using linear and nonlinear models for lateral 

wheelset displacements. By presenting a dynamic model of a rail vehicle, Wang 

and Li [12, 13] investigated the effect of acceleration on the wheel lift. It was 

observed that the contact patch of the wheel and rail at a contact angle has a 

critical point, to start the derailment occurs quickly. Zhang and Dai [14] presented 

a mathematical model of a 2 DOF for a wheelset, to analyze the effect of a yaw 

damper of secondary suspension on Hopf bifurcation. They also applied the 

nonlinear contact model of the wheel and the rail, to extract the equations of 

motion, and study the effect of different parameters on the lateral stability of a 

particular type of wheelset. Wei and Yabuno [15] examined subcritical Hopf and 

saddle-node bifurcations in the hunting motion of a railway vehicle by considering 

cubic and quintic nonlinearities. The results showed that both the cubic and the 

quintic nonlinearities of the wheel system play an important role. Skerman et al. 

[16] have investigated the hunting of an unloaded freight wagon fitted with three-

piece bogies, which utilize friction wedges for damping and have friction at many 

interfaces. Several methods of analysis were compared, including simulation on 

track with irregularities. Also, different initial conditions were used for each bogie 

to excite different types of hunting at a given speed. 

In the present study, the influence of two types of simplifications that are 

commonly used in the prediction of the hunting velocity, including linearization of 

nonlinear and trigonometric terms and employing linear contact models with 

constant coefficients are investigated. In Section 2 dynamic and kinematic 

equations of motion based on the 3D mobility of wheelset and constant contact of 

the wheel/rail are derived. In Section 3 linear Kalker model is represented and an 

algorithm for estimation of dynamical creepage constants is developed. In Section 

4, the results are demonstrated and discussed. In Section 5, concluding remarks 

are presented. The proposed technique could also be useful for the dynamic 

analysis of two-wheeled robots [17]. 

2 Governing Equation of a Wheelset 

The governing equations of the system include three types of equations, i.e., 

dynamic equilibrium equations, kinematic compatibility equations, and creepage 

model constitutive equations for creepage forces and moments. According to 

Figure 1, to describe the three-dimensional rotation of the wheelset with respect to 

the ground frame, three coordinate systems with three associated rotations 

including, ψ  rotation angle about the vertical axis (or Z ) and φ  rotation angle 

about the longitudinal axis (or X ), and θ  angular velocity about wheelset lateral 
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axis can be used. Therefore, the angular velocity of the wheelset and velocity of 

wheelset midpoint are obtained as follows: 

1
ˆˆ ˆ(Ω ) wω φi θ j ψk     (1) 

  ˆˆ ˆv V x i y j z k     (2) 

 

Figure 1 

Axes Systems of Wheelset 

where, V  and Ω  are constant parts and x  and θ  are variable parts of the 

components xv and yω , respectively. 

2.1 Kinematics of the Wheelset Contact Point 

The front view of the wheelset, normal and tangential components of contact 

forces, and also the geometry of the wheelset are depicted in Figure 2. By using 

Figure 2 the position vectors of the contact point for the left and right wheel with 

respect to the wheelset midpoint are given as follows: 

 

Figure 2 

Contact Axes 
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ˆˆ( )Lw
c L w L wr a d j r k    (3) 

ˆˆ( )Rw
c R w R wr a d j r k     (4) 

where, a  is half-track length. Using proper coordinate transformations, the 

normal forces can be obtained for each wheel: 
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Moreover, the angular velocity of the left and right wheel can be expressed in the 

left and right wheels frames as follows: 
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where, 
Lw

cr  and 
Rw

cr  are position vectors of the left and right contact points 

relative to the center of the wheelset in the corresponding frames, 
w
LN  and 

w
LN  

are normal forces in the ground frame. 

2.2 Equation of Motion for the Wheelset 

Considering dynamic equilibrium and ground frame the equations of motion can 

be derived using the well-known Newton’s second law as follows: 

Σmr F  (9) 

ΣG GH M  (10) 

Using, Figure 3 and substituting the wheelset’s mass, inertia, midpoint 

acceleration, and angular velocity and exerting external forces and moments in 

Eqs. 9 and 10, six Eqs. 11 to 16 will be obtained for the model of a wheelset 

shown in Figure 3: 
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Figure 3 

Model of Wheelset 
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where, ijF , ijM and ijN are creep forces, moments, and normal forces, 

respectively and ijR  are moment arms and    , & , , i l r j x y z . Also, suspension 

force sF , suspension moment sM , flange force TF , and yaw damper moment 

2 dbF  can be derived as follows [2]: 

  ˆ2s y yF K y C y j    (17) 
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Eqs. 12 and 16 will be used as the main equations to derive lateral displacement 

y and the yaw angle ψ . Two unknowns x  and θ  in Eqs. 11 and 15, and the 

vertical forces of the left and right wheels in Eqs. 13 and 14 can be derived using 

the two following kinematic constraints: 

 

 

2

2

0

1λa cosψ λay
z

cosψ a λr


  


 (21) 

0

λy
φ

a λr



 (22) 

2.3 The Creep Forces and Moments 

Large forces are generated in the contact area of wheels and rails, and these forces 

have a significant effect on the dynamics of the vehicle. Among the various 

modeling methods for approximating the creep forces and moments in the wheel-

rail contact patch, Kalker theory [18] is extensively used in the applications. 

According to Kalker theory, if the longitudinal, lateral, and spin creep parameters 

are very small, the slip zone is small, and therefore, regardless of slip, the 

adhesion zone can be considered as the dominant area in wheel-rail contact. Based 

on this theory, creep forces and spin moment are defined through Eqs. 23, 24, and 

25: 

33x xF f ξ   (23) 

11 12y y spF f ξ f ξ    (24) 

12 22z y spM f ξ f ξ   (25) 

where, 11f , 12f , 22f , and 33f  are the creep coefficients and xξ , yξ  and spξ  are 

creepage terms. Since the creep forces are defined on the wheel contact plane they 

should be expressed with respect to the ground frame. 

2.4 Creepage Expressions 

When two relatively rigid bodies are compressed and rolled, a creep phenomenon 

occurs, and creep forces are generated. These forces have a significant effect on 

the dynamic behavior of the wheel and eventually railway vehicles. Based on 

Carter’s work [19] the left and right wheel creepage can be computed as follows: 

     
1

cos sin sin cos ΩL
x L L Lξ V x ψ y ψ r ψ φ a d ψ φ θ r

V
         
 

 (26) 
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     
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2.5 Creep and Creepage Coefficients 

The creep coefficient 11f , 12f , 22f , and 33f  are defined as follows: 

 11 22f ab GC  (32) 

 
3/2

12 23f ab GC  (33) 

 
2

22 33f ab GC  (34) 

 33 11f ab GC  (35) 

where, 11C , 22C , 23C , and 33C  are the creepage and spin coefficients, which 

depend only on Poisson's ratio ( υ ) and the ratio of the semi-axis of the contact 

ellipse  /a b  according to Kalker table of creepage and spin coefficients. Given 

G  and υ , combined rigidity modulus, and combined Poisson's ratio, respectively, 

as follows: 

2 w r

w r

G G
G

G G



 (36) 

2

w w

r r

υ υG
υ

G G

    
     

     
 (37) 

where, a  and b  are the semi-axis of the contact ellipse in the rolling direction and 

lateral direction, respectively, such that [20]: 
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 
1/3

1 2 33 / 4a m πN K K K     (38) 

 
1/3

1 2 33 / 4b n πN K K K     (39) 

where, N  is the normal force, and subscripts w  and r denote wheel and rail, 

respectively and 1K , 2K  and 3K  are defined as follows: 

2

1

1 w

w

υ
K

πE


  (40) 

2

2

1 r

r

υ
K

πE


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3

1 1 1 1 1

2

 
    

  ww rr

K
R R R R

 (42) 

where, R , R and E  denote the rolling radius of the wheel, the transverse radius 

of curvature of the wheel profile at the point of contact, and Young’s modulus of 

elasticity, respectively. 

Given θ  and 4 3/K K , the coefficients m  and n  in Eqs. 38 and 39 can be 

estimated using Table of Hertz [20], where θ  and 4K  are defined as follows: 

 1
4 3

θ cos K K  (43) 

 
2 2

4

1 1 1 1 1 1 1 1 1
2 cos 2
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            w w r r w w r r

K ψ
R R R R R R R R

 (44) 

where, ψ  is the angle between the normal planes that contain the curvatures 11 R  

and 21 R  such that when the rails are parallel, ψ  is the yaw angle of the wheel 

about the vertical axis. 

According to the above-mentioned equations, an algorithm can be suggested for 

the dynamic updating of creep coefficients. The process of estimation of creep 

forces includes manipulation of, creepage expressions computation, creepage 

coefficients, and creep coefficients. The former is obtained from kinematic 

variables and the latter from the wheel normal force and yaw angle. The flowchart 

in Figure 4 represents this dependency and order of calculations of the variables. 

In this flowchart, the yellow boxes contain the constant parameters depending on 

the mechanical properties of the wheels and rails, the white boxes contain 

parameters that are a function of the normal wheel force and the yaw angle, and 

gray boxes contain input variables of the normal wheel force and the yaw angle. 
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All these boxes stepwise contribute to computing the instant values of creep 

forces. It should be noted that finding some of the parameters such as creepage 

coefficients (  ijC ), m  and n  requires linear interpolation/extrapolation between 

the tabular data, which is a source of inaccuracy, especially when due to the 

dynamic interaction of the wheel/rail, the instant values of 4K , a  and b  are not 

constant. One way of eliminating these inaccuracies is to replace the tables with 

curve-fitting nonlinear functions. 

Creep Forces Creepage Expressions

Creepage Coefficients

Semiaxes of Ellipse Normal Force 

The Coefficients

Creep Coefficients

Wheel-Rail Radii

ijf

,x y spand  
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,x y zaF ndF M

a and b

m and n3K
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, ,w w r rR R RandR 

2 w r

w r

G G
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G G
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

ψ

N

2

w w

r r

υ υG
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G G

    
     

    

2

1

1 w

w

υ
K

πE




2

2

1 r

r

υ
K

πE




 

Figure 4 

Creep forces flowchart 

2.6 Curve Fitting of Creep Coefficients 

One of the tables that should be replaced by curve fitting functions is the table of 

creepage and spin coefficients (including four tables each for one of the 

coefficients ijC ’s; 11C , 22C , 33C and 23C ). In each table, ten columns are 

containing ten values of the ratio of the elliptical diameters of the contact patch 

and three rows contain values of Poisson's ratio 0 , 0.25 , and 0.5 , which forms a 

total of 30 data points. As a beneficial tool for the selection and parameter 

estimation of the interpolation functions, Matlab-CFtool is utilized. Using this tool 

the user would be able to examine various predefined functions for fitting the data 

with the least R-square ( 2R ). In the first step, in each table using the quadratic 

polynomials, values of four ijC ’s, for 0.28ν  , are estimated. A three-parameter 
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power function for curve fitting is employed to fit ten values of elliptical diameter 

ratios for row 0.28ν  : 

2

1 3

c

ij

b
C c c

a

 
  

 
 (45) 

where, 1c , 2c  and 3c  are three function parameters. Table 1 summarizes the three 

parameters of each of the power functions for each of ijC ’s table. These functions 

are depicted in Figure 5 (a) to (d). To ensure the accuracy of estimation of each 

function the value of R-square is represented in Table 1. 

Table 1 

Power function curve fitting of creepage and spin coefficients for 0.28ν   

Coefficient 1c  2c  3c  2R  

11C  1.2460 -0.8524 2.9650 1 

22C  1.6650 -0.8238 2.0310 1 

23C  0.8630 -1.2200 0.6391 1 

33C  0.7695 +1.0080 0.4180 0.9999 

For estimation of m  and n  using the Hertz table [20], two types of function are 

employed, including a three-parameter power function m  and a four-parameter 

exponential function n . These functions are selected using the evaluation of the 

R-square of the CFtool different functions. Based on the calculations, the 

functions are as 

follows:  0.7236 237.44 0.451 1m θ R    (46) 

     20.3626exp 0.0113 0.259exp 0.107 0.9995n θ θ R     (47) 

The curve of the functions of m  and n  are depicted in Figure 5 (e) and (f). 

 
(a) 11C  

 
(b) 22C  
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(c) 23C  

 
(d) 33C  

 
(e) m θ  

 
(f) n θ  

Figure 5 

Creep Coefficients Curve Fitting 

3 Results 

In this section, several studies are performed to clear both the effect of 

simplification by comparing a simplified 2DOF, with a full terms 3DOF model, as 

well as the effect of contact model by comparing a static creep coefficient (SCC) 

model and a dynamic creep coefficient (DCC) model. The numerical values of the 

parameters and constants of the system are summarized in Table 2. The first study 

results are depicted in Figure 6. In this study, nonlinear and trigonometric terms of 

the mathematical model of the considered system are neglected, however, two 

systems are considered, which are, the simplified model with SCC as well as the 

simplified model with DCC. Also for the purpose of validation, the results are 

compared with those presented in [21]. The results are included a bifurcation 

diagram of lateral vibration amplitude of the wheelset under the velocity up to 

60m s  and for three cases of vertical external loading, exerted on the midpoint of 

the wheelset. It is seen that the results of SCC model are very similar to that of 

[21] and the increase of external load has no significant effect on the hunting 

velocity, by which, jumping on the lateral vibration amplitude occurs.  
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However, for DCC surprisingly a dramatic reduction of hunting velocity for 

higher external loads is observed. Practically, this means that the heavier the 

wagon, the more instability and lower the critical velocity. 

 

Figure 6 

Comparison of bifurcation diagrams for lateral displacement from the simplified equations of motion with 

Reference [21] 

Table 2 

System Parameters [2] 

Half of the track gauge 0.7176a m  

Half of yaw spring arm 1b m  

Lateral damping of suspension 42.1 10 . /yC N s m   

Damping coefficients for yaw dampers 4
1

5
2

6
3

6
4

1.9230 10

5.1400 10

3.1127 10

5.1400 10

C

C

C

C

 

 

 

 

 

Lateral creep force coefficient 6
11 6.728 10f N   

Spin creep force coefficient 2
22 1000 .f N m  

Lateral spin creep force coefficient 3
12 1.2 10 .f N m   

Longitudinal creep force coefficient 6
33 6.728 10f N   

Roll moment of inertia of wheelset 2625.7 .wxI kg m  
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Spin moment of inertia of wheelset 2133.92 .wyI kg m  

Lateral rail stiffness 71.617 10r N mK    

Lateral stiffness of primary suspension 48.67 10y N mK    

Yaw spring stiffness of primary suspension 48.67 10x N mK    

Wheelset mass 1800wm kg  

Wheel radius 
0 0.533r m  

Wheel conicity 0.05λ   

Flange clearance 0.923δ cm  

The second study focuses on the effect of degrees of freedom of the model and the 

effect of the presence of nonlinear terms and additional degrees of freedom in the 

model. The considered model is a 3DOF model, with 6 generalized coordinates 

including, x  , y  , z  , φ  ,ψ  and θ . However, because of the presence of the three 

geometrical constraints, the remaining DOF is 3, e.g., y ,ψ and x . Meanwhile, 

there is a simplified 2DOF model, which is extensively used in nonlinear and 

perturbation analyses [1], which merely considers y  and ψ  2DOF. According to 

this model, x and θ  are assumed to be constant.The diagrams in Figure 7 to 

Figure 9, show that the 2 DOF and 3DOF models have similar responses under the 

different vertical external loading conditions, whether the model is of SCC type or 

DCC. 

 

(a) Static Creep Coefficients 

 

(b) Dynamic Creep Coefficients 

Figure 7 

Comparison of 2DOF and 3DOF results, Axle Load 0  
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(a) Static Creep Coefficients 

 

(b) Dynamic Creep Coefficients 

Figure 8 

Comparison of 2DOF and 3DOF results, Axle Load 18 KN  

 

(a) Static Creep Coefficients 

 

(b) Dynamic Creep Coefficients 

Figure 9 

Comparison of 2DOF and 3DOF results, Axle Load 120 KN  

 

(a) Time Response 

 

(b) Frequency Response 

Figure 10 

Comparison of bifurcation diagrams for lateral displacement, Axle Load 0  
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(a) Time Response 

 

(b) Frequency Response 

Figure 11 

Comparison of bifurcation diagrams for lateral displacement, Axle Load 18 KN  

 

(a) Time Response 

 

(b) Frequency Response 

Figure 12 

Comparison of bifurcation diagrams for lateral displacement, Axle Load 120 KN  

In the third study, the importance of creep coefficients on the regularity of lateral 

dynamic behavior of the wheelset is investigated. To this end, the lateral response 

amplitude of the two SCC 3DOF and DCC 3DOF models under the different 

vertical loads are analyzed. In addition to the amplitude, the frequency content of 

the time domain response of the lateral vibration in the different forward velocities 

are extracted. According to Figure 10(a) to Figure 12(a) not only the DCC model 

predicts that increase of the vertical external load, causes a decrease in the hunting 

velocity, but also from Figure 10 (b) to Figure 12(b) it is concluded that the DCC 

model predicts that entering the behavior to a period-doubling process and burst 

the chaotic dynamic is more probable for the smaller vertical external loads. 

The latter means that as it is depicted from Figure 12(b) the regularity in lateral 

dynamic behavior for a vertical external load 120 KN  is much more than 18 KN and 
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0 KN  cases. While the bifurcation diagram drawn by SCC model has no 

significant difference for the different vertical external loads. 

Another example of the remarkable effect of DCC in the prediction of hunting at 

different speeds is shown in Figure 13. According to Figure 13 in 55m s  both the 

SCC and DCC models predict unstable vibration such that rail-flange contact 

occurs. However, for the unload case in Figure (a) and Figure (d), the DCC model 

reports the presence of a stable limit cycle while the SCC model reports unstable 

growth of amplitude which ends with the flange contact. Also, according to Figure 

13(c) and Figure 13(e) and imminent derailment is predicted by the DCC model 

while the SCC model shows more safe motion. Figure 13 clearly proofs that 

predictions and interpretations of the DCC model in many cases completely differ 

from those of the SCC model. 

   

(a) SCC, Axle Load 0  (b) SCC, Axle Load 18 KN  (c) SCC, Axle Load 120 KN  

   

(d) DCC, Axle Load 0  (e) DCC, Axle Load 18 KN  (e) DCC, Axle Load 120 KN  

Figure 13 

Phase portrait plot for the 3DOF wheelset in velocity 55 m
s

 

Conclusions 

In the present work, the effect of some factors in the final prediction of the 

hunting velocity of a railway vehicle such as the mathematical contact model, 

degree of freedom of the wheelset, dynamic creep coefficients, and the presence 

of small nonlinearities in the model have been studied. A simplified 2DOF model 

and a 3DOF full terms dynamic models are considered. Also, two contact models 

based on the linear Kalker model with the assumption of SCC and DCC have been 

compared. The phase diagram as well as amplitude and frequency bifurcation 
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diagrams for different ranges of velocity and external vertical loads have been 

generated. The results can be summarized as follows: 

The presence of all trigonometric and small nonlinearities in the 3DOF model 

has no particular effect on the accuracy of results compared to the simplified 

2DOF model. 

Bogie models with SCC contact assumption are not able to predict the 

dependency of the hunting velocity to the vertical external load, whereas DCC 

model show this dependency clearly. 

According to the DCC models increase of the external vertical load, causes an 

increase in the instability of velocity margin and decreases the irregularity 

during hunting motion. 

Due to the important role of external load in hunting velocity, different 

permissible velocities should be used for the full and empty state of freight 

trains for more derailment safety. 
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