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Abstract: The aim of this work is the unified study of the exponential and logarithm maps
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1 Introduction
Mathematical models and algorithms of Machine Learning are often formulated as
optimization problems for discrete or continuous functions defined on the edges
and vertices of graphs representing hierarchically ordered data. The corresponding
methods can be well used if the graphs are embedded in Euclidean or Riemannian
geometries of constant curvature, so that the images of edges represent line segments
of the geometry. Recently, several papers have initiated the description of data sys-
tems with complex hierarchies using semi-Riemannian manifolds (manifolds with
indefinite Riemannian metrics) of constant curvature. A possible advantage of these
spaces is that they contain more types of geodesics, namely they can be periodically
closed or divergent curves whose covered areas are separated by pairs of straight
lines. (cf. [3], [6], [7], [11], [12], [13]). The geometry of geodesics is well de-
scribed by the properties of exponential and logarithmic maps; explicit analytical
formulas for them in semi-Riemannian manifolds have interesting applications in
computational differential geometry and mathematical physics. (cf. eg. [1], [2],
[10]).
Semi-Riemannian manifolds of constant curvature are represented by pseudo-spheres
and pseudo-hyperbolic spaces, which are given by the subspace geometry of central
hyperquadrics in semi-Euclidean spaces. Using the observation that the point set of
a geodesic on a central hyperquadric is determined by the connected component of
the intersection of the hyperquadric with the 2-space spanned by the initial point and
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tangent vector, T. Gao, L.-H. Lim and K. Ye, (cf. [3], Proposition 4.9 and Corollary
4.22.) expressed formulas for the exponential map on central hyperquadrics in semi-
Euclidean spaces. This map induces a local bijection, the local inverse map defines
the logarithm map. The obtained expressions are given by putting together differ-
ent analytic functions defined on disjoint sets covered by geodesics with space-like,
time-like or light-like tangent vectors, the analyticity of the map cannot be recog-
nized at the boundary points of these sets.
The purpose of this article is to prove the real analytic properties of the exponen-
tial and logarithm maps defined on the tangent space TI(Sq), respectively on a
neighbourhood of the point I ∈ Sq and to find their power series expansions. Our
formulas generalize analytic expressions of the corresponding maps of the special
linear group SL(2,R), introduced by J. Hilgert and K. H. Hofmann in the study Lie
theory of analytic semigroups (§1. in [4], V.4.19. Theorem in [5]) by using the
multiplicative group structure of SL(2,R). Since the 4-dimensional vector space
containing SL(2,R) as submanifold has a natural semi-Euclidean space structure
and the induced submanifold metric coincides woth the invariant group metric on
SL(2,R), the generalization to semi-Euclidean spaces of arbitrary dimension is a
natural task.
After introducing the necessary notations and concepts in §2, we examine in §3 the
exponential map in detail. The main result of §4 the expression of the logarithm map
with help of the functions arcsin t and arsinh t and to find its domain and range. §5
is devoted to the analysis of the power series decomposition of the logarithm map.

2 Preliminaries
In the following we identify the points of a vector space with their position vec-
tors and denote them with capital letters X ,Y . . . . A semi-Euclidean space En

ν of
index 0 < ν < n is a vector space with an indefinite nondegenerate scalar product
(X ,Y ) 7→ ⟨X ,Y ⟩ such that there is a basis (e1, . . . ,en) in En

ν for which the identity

⟨x1e1+ · · ·+xnen,y1e1+ · · ·+xnen⟩= x1y1+ · · ·+xn−ν yn−ν −xn−ν+1yn−ν+1−xnyn

holds. A vector X ∈ En
ν is called

space-like, if ⟨X ,X⟩> 0 or X = 0,
time-like, if ⟨X ,X⟩< 0,
light-like, if X ̸= 0 and ⟨X ,X⟩= 0.

The semi-Euclidean space En
ν is the disjoint union of central hyperquadrics

Sq = {X ∈ En
ν ;⟨X ,X⟩= q} ⊂ En

ν , q ∈ R.

The hyperquadric S0 is the light-cone of the space En
ν . If q < 0 and ν = 1, or q > 0

and ν = n−1 the hyperquadrics Sq consist of two disjoint connected components,
which are isometric or anti-isometric to the hyperbolic space (Riemannian space of
negative constant curvature). The hyperquadrics Sq ⊂ En

ν are called:

pseudo-sphere of radius r if 0 < ν < n−1, q = r2 > 0,

pseudo-hyperbolic space of radius r if 1 < ν < n, q =−r2 < 0.
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Let be ε = ±1 and denote S n−1
ν (ε) the pseudo-sphere of radius one if ε = 1, and

the pseudo-hyperbolic space of radius one if ε =−1. J. Hilgert and K. H. Hofmann
in in [4], [5] introduced the analytic functions

C(x) =
∞

∑
n=0

xn

(2n)!
= 1+

x
2!

+
x2

4!
+

x3

6!
+ · · ·=

{
cosh

√
x, ifx ≥ 0,

cos
√
−x, ifx < 0,

S(x) =
∞

∑
n=0

xn

(2n+1)!
= 1+

x
3!

+
x2

5!
+

x3

7!
+ · · ·= 1√

|x|

{
sinh

√
x, ifx ≥ 0,

sin
√
−x, ifx < 0,

(1)

defined for all x ∈ R, satisfying the identity 1 = C(x)2 − xS(x)2. Considering the
group SL(2,R) as a submanifold in the vector space M2(R) of 2 × 2 matrices
equipped with the scalar product

⟨X ,Y ⟩= 1
2
(−det(X +Y )+det(X)+det(Y )).

Then M2(R) becomes a semi-Euclidean space E4
2 such that the submanifold metric

of SL(2,R) agrees with the invariant metric defined by the Cartan-Killing form
κ(X ,Y ) = 1

2 Tr(XY ) of the Lie algebra sl(2,R) of SL(2,R). The exponential map
exp : sl(2,R)→ SL(2,R) and its inverse map g 7→ Log(g) in some neighbourhood
U ⊂ SL(2,R) of the identity element 1 ∈ SL(2,R) are expressed by

exp(X) = C(κ(X ,X))1+S(κ(X ,X))X , X ∈ sl(2,R),

Log(g) =
1

S(C−1(τ(g))
(g− τ(g)1), g ∈U ⊂ SL(2,R)

where τ : sl(2,R)→R and κ : sl(2,R)×sl(2,R)→R are the normalized trace func-
tion and Cartan-Killing form on sl(2,R), repectively. In the following we generalize
the above construction to arbitrary semi-Euclidean space and investigate power se-
ries expansion of the corresponding maps.

3 Geodesics and exponential map
Any point P ∈ Sq of a central hyperquadric Sq = {X ∈ En

ν ;⟨X ,X⟩ = q} in En
ν is

orthogonal to the tangent space TP(Sq), hence TP(S n−1
ν (r)) is isometric to En−1

ν

and TP(H
n−1

ν−1 (r)) to En−1
ν−1. We equip the submanifold Sq in En−1

ν with the induced
semi-Riemann metric of the submanifold. We distinguish a point I of Sq, q ∈ R,
the vectors belonging to the tangent subspace TI(Sq)⊂ En−1

ν of Sq we be denoted
by lowercase bold letters x,y, . . . . The point set of a geodesic started at I ∈ Sq
with tangent vector x∈TI(Sq) is a connected subset of the intersection ΠI(x)∩Sq,
where ΠI(x) is the 2-dimensional subspace spanned by I and x. The exponential
map Exp : TI(Sq) → Sq is defined by Exp(x) = γI(1), where γI(t), t ∈ R, is the
affine parametrized geodesic on Sq satisfying γI(0) = I and dγ

dt (0) = x.

3.1 Pseudo-sphere
We consider the pseudo-sphere S n−1

ν ⊂ En
ν , 0 < ν < n−1, and a point I ∈ S n−1

ν .
The tangent space TI(S n−1

ν ) is isometric to the semi-Euclidean space En−1
ν . Since
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the space-like vector I is orthogonal to TI(S n−1
ν ), the vector space En

ν is the or-
thogonal direct sum RI ⊕ TI(S n−1

ν ), giving for any X ∈ En
ν the decomposition

X = xI+x, x ∈R, x ∈ TI(S n−1
ν ). The tangent hyperplane I+TI(S n−1

ν ) of S n−1
ν at

I contains two light-like geodesics satisfying x = 1, and the open domains in S n−1
ν

given by −1 < x < 1 and 1 < x are covered by space-like and time-like geodesics
through I, respectively. Space-like, time-like or light-like geodesics are ellipses,
branches of hyperbolas or lines. We get easily the following reformulation of Propo-
sition 5.38. in [9]:

Lemma 1. (B. O’Neill) For any point xI +x ̸= I in S n−1
ν

(i) I and xI + x are connected by a unique geodesic if and only if −1 < x, this
geodesic is

periodic and space-like, if −1 < x < 1,

injective and light-like, if x = 1,

injective and time-like, if x > 1,

(ii) the point −I is contained in all space-like geodesics through I,

(iii) the points I and xI +x are connected by a geodesic if and only if xI +x =−I
or x >−1.

Now, we can examine the analytical properties of the exponential map.

3.2 Pseudo-hyperbolic space
Introducing the new scalar product ⟨X ,Y ⟩∗ = −⟨X ,Y ⟩ on the underlying vector
space Vn of En

ν , 1 < ν < n, we get a description of the exponential map of pseudo-
hyperbolic spaces H n−1

n−ν ⊂ En
n−ν . The identity map of the space Vn defines a map

Θ : En
ν → En

n−ν changing space-like vectors with time-like vectors and the hyper-
quadrics Sq = {X ∈En

ν ;⟨X ,X⟩= q} with S−q = {X ∈En
n−ν ;⟨X ,X⟩∗ =−q}, q∈R.

In particular, pseudo-spheres S n−1
ν ⊂ En

ν transform into pseudo-hyperbolic spaces
H n−1

n−ν ⊂ En
n−ν and the selected space-like vector I ∈ S n−1

ν into a time-like vector
I ∈ H n−1

n−ν .
Hence we obtain for a pseudo-hyperbolic space H n−1

ν ⊂ En
ν with a fixed point

I ∈ H n−1
ν :

Lemma 3.1.′ For any point xI +x ̸= I in H n−1
ν

(i) I and xI + x are connected by a unique geodesic if and only if −1 < x, this
geodesic is

periodic and time-like, if −1 < x < 1,

injective and light-like, if x = 1,

injective and space-like, if x > 1,

(ii) the point −I is contained in all space-like geodesics through I,
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(iii) the points I and xI +x are connected by a geodesic if and only if xI +x =−I
or x >−1.

3.3 Computing the exponential map

Let be ε =±1 and denote S n−1
ν (ε) =

{
S n−1

ν if ε = 1
H n−1

ν if ε =−1
.

Proposition 1. The exponential map Expε : TI(S n−1
ν (ε))→S n−1

ν (ε) is expressed
by

Expε(x) = C(−ε⟨x,x⟩)I +S(−ε⟨x,x⟩)x for all x ∈ TI(S
n−1

ν (ε)), (2)

where the functions C : R→ R and S : R→ R are defined by (1).
Moreover, Expε(x) = −I on S n−1

ν (ε) if and only if ⟨x,x⟩ = ε and
√
|⟨x,x⟩| =

(2k+1)π , 0 ≤ k ∈ Z.

Proof. First, we consider the map Exp = (Exp1) : TI(S n−1
ν )→ S n−1

ν . Let 0 ̸= x ∈
TI(S n−1

ν ) be a tangent vector and denote ΓI(x) the connected component of the
intersection of S n−1

ν with the 2-space spanned by I and x such that I ∈ ΓI(x). If x
is space-like or time-like, then J = x√

|⟨x,x⟩|
is a unit vector orthogonal to I and we

get ⟨uI+vJ,uI+vJ⟩= u2±v2. If ⟨x,x⟩> 0 then ΓI(x) = {cos tI+sin tJ; t ∈R} is a
circle, if ⟨x,x⟩< 0 then ΓI(x) = {cosh tI+sinh tJ; t ∈R} is a branch of a hyperbola.
It follows

Exp(x) =

{
cos(

√
⟨x,x⟩)I + sin(

√
⟨x,x⟩)J, if ⟨x,x⟩< 0,

cosh(
√
−⟨x,x⟩)I + sinh(

√
−⟨x,x⟩)K, if ⟨x,x⟩> 0.

If x is light-like, then it has the form (J + K) ∈ TI(S n−1
ν ), where J and K are

space-like, respectively, time-like orthogonal unit vectors, and the geodesic ΓI(x) =
{I+ t(J+K); t ∈R} is one of a pair of parallel lines. Hence Exp(x) = I+x and the
formula (2) is true for any x ∈ TI(S n−1

ν ). Clearly, Exp(x) = −I if and only if x is
space-like and

√
⟨x,x⟩= (2k+1)π , 0 ≤ k ∈ Z, giving the claim for pseudo-sphere.

Changing the scalar product ⟨X ,Y ⟩∗ = −⟨X ,Y ⟩ on the underlying vector space Vn

of En
ν we get a description of the exponential map H n−1

n−ν ⊂ En
n−ν . The identity map

Θ : En
ν → En

n−ν transforms space-like vectors into time-like vectors, and we get the
proof of the assertion for the exponential map Exp−1 : TI(H n−1

ν )→ H n−1
ν of the

pseudo-hyperbolic space.

We notice the following consequence of the previous discussion:

Remark 1. Let En−1
ν be a semi-Euclidean subspace of codimension one in the vector

space Vn. For any N ∈Vn \En−1
ν the scalar product ⟨X ,Y ⟩ on En−1

ν can be extended
to a scalar product on Vn defining a semi-Euclidean space

(a) En
ν satisfying N ∈ S n−1

ν (ε)⊂ En
ν and TN(S n−1

ν ) = En−1
ν ,

(b) En
ν+1 satisfying N ∈ S n−1

ν (ε)⊂ En
ν+1 and TN(H n−1

ν ) = En−1
ν .
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Theorem 1. The exponential map Expε : TI(S n−1
ν (ε)) → S n−1

ν (ε) for all x ∈
TI(S n−1

ν (ε)) has the absolutely convergent power series expansion

Expε(x) =
∞

∑
n=0

(
(ε⟨x,x⟩)n

(2n)!
I +

(ε⟨x,x⟩)n

(2n+1)!
x
)
=

=
∞

∑
n=0

(ε⟨x,x⟩)n
(

1
(2n)!

I +
1

(2n+1)!
x
)
=

= I+x+ ε⟨x,x⟩
(1

2
I +

1
3!

x
)
+ ⟨x,x⟩2( 1

4!
I +

1
5!

x
)
+ ε⟨x,x⟩3( 1

6!
I +

1
7!

x
)
. . .

Proof. The assertion follows from the formula Expε(x) = C(ε⟨x,x⟩)I+S(ε⟨x,x⟩)x
using the power series (1) of the functions C(x) and S(x).

4 Logarithm map
Proposition 2. The domain in TI(S n−1

ν (ε)) of the form {x;ε⟨x,x⟩< r2} with max-
imal radius r, on which the map induced by Expε : TI(S n−1

ν (ε)) → S n−1
ν (ε) is

bijective, is

Dε = {x ∈ TI(S
n−1

ν (ε));ε⟨x,x⟩< π
2} ⊂ TI(S

n−1
ν (ε)).

The image Expε(Dε) is Rε ∩S n−1
ν (ε), where Rε is the half-space

Rε = {X = xI +x ∈ En
ν ; x = ε⟨X , I⟩>−1} ⊂ En

ν .

Proof. We assume ε⟨x,x⟩< π2, since Expε(x) =−I if ⟨x,x⟩= ε and
√
|⟨x,x⟩|= π .

It follows from the inequalities −1 < cos
√

ε⟨x,x⟩ ≤ 1 for 0 ≤ ε⟨x,x⟩< π2 and 1 ≤
cosh

√
−ε⟨x,x⟩ for ε⟨x,x⟩ ≤ 0, that −1 < ε⟨Expε(x), I⟩= C(−ε⟨x,x⟩) is satisfied,

consequently Expε(x) ∈ Rε ∩S n−1
ν (ε).

Conversely, for given xI + x ∈ Rε ∩S n−1
ν (ε) we want to find y ∈ TI(S n−1

ν (ε))
such that xI +x = Expε(y) = C(−ε⟨y,y⟩)I +S(−ε⟨y,y⟩)y, or equivalently

x = C(−ε⟨y,y⟩), x = S(−ε⟨y,y⟩)y. (3)

Since 0 < C′(t) = 1
2 S(t) for t > −π2 the induced map C : {t ∈ R; t > −π2} →

{t ∈ R; t > −1} is bijective. Hence we can express −ε⟨y,y⟩ = C−1(x) > −π2 and
x = S(C−1(x))y for x >−1, and we get

y =
1

S(C−1(x))
x, (4)

proving the bijectivity of Expε |Dε
: Dε → Rε ∩S n−1

ν (ε).

The expression (4) of the inverse map of Expε |Dε
generalizes the formula given in

V.4.19 Theorem in [5] and Theorem 1.3.a) in [4].
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Definition 1. The logarithm map Logε : Rε ∩S n−1
ν (ε)→ Dε is the inverse of the

exponential map Expε |Dε
: Dε → Rε ∩S n−1

ν (ε), expressed by

Logε(X) =
X − ε⟨X , I⟩I

S(C−1(ε⟨X , I⟩))
, X ∈ Rε ∩S n−1

ν (ε). (5)

Proposition 3. The map Logε : Rε ∩S n−1
ν (ε)→ Dε can be written in the form

Logε(xI +x) =
x

S(C−1(x))
=

x√
|⟨x,x⟩|

{
arccosx, if −1 < x < 1,
arcosh x, if 1 ≤ x.

(6)

or equivalently,

Logε(xI +x) =
x√

|⟨x,x⟩|


π − arcsin(

√
ε⟨x,x⟩), if −1 ≤ x ≤ 0,

arcsin(
√

ε⟨x,x⟩), if 0 ≤ x ≤ 1,
arsinh(

√
−ε⟨x,x⟩), if 1 ≤ x.

(7)

C(x) =

{
cosh

√
x, ifx ≥ 0,

cos
√
−x, ifx < 0,

, S(x) =
1√
|x|

{
sinh

√
x, ifx ≥ 0,

sin
√
−x, ifx < 0,

Proof. According to (3) the equation xI + x = C(−ε⟨y,y⟩)I + S(−ε⟨y,y⟩)y for
given

X = xI +x ∈ Rε ∩S n−1
ν (ε), x = ε⟨X , I⟩>−1, x ∈ TI(S

n−1
ν (ε))

yields x = C(−ε⟨y,y⟩) with ε⟨y,y⟩< π2. One has

x =

{
cos(

√
ε⟨y,y⟩) = cos(

√
|⟨y,y⟩|), if 0 < ε⟨y,y⟩< π2,

cosh(
√

−ε⟨y,y⟩) = cosh(
√
|⟨y,y⟩|), if ε⟨y,y⟩ ≤ 0

(8)

Since cos : (0,π)→ (−1,1), cosh : [0,∞)→ [1,∞) we get

−1 < x = C(−ε⟨y,y⟩)< 1, if 0 < ε⟨y,y⟩< π
2,

1 ≤ x = C(−ε⟨y,y⟩), if ε⟨y,y⟩ ≤ 0.

Applying the maps arccos : [−1,1]→ [0,π], arcosh : [1,∞)→ [0,∞) to (8) it follows

√
|⟨y,y|⟩=

{
arccosx, if −1 < x < 1,
arcosh x, if 1 ≤ x.

(9)

Since S(−ε⟨y,y⟩)> 0 for ε⟨y,y⟩< π2 and

x = S(−ε⟨y,y⟩)y,
√

|⟨x,x⟩|= S(−ε⟨y,y⟩)
√
|⟨y,y|⟩,

– 229 –



P. T. Nagy Exponential and logarithm on semi-Riemannian manifolds of constant curvature

we can express using (9) that

y =
x

S(−ε⟨y,y⟩)
=

x√
|⟨x,x⟩|

{
arccosx, if−1 < x < 1,
arcosh x, if 1 ≤ x,

proving (6). The maps arccos : [−1,1] → [0,π], arcosh : [1,∞) → [0,∞) can be
expressed by the maps arcsin : [−1,1]→ [− 1

2 π, 1
2 π] and arsinh : R→ R as

arccosx =

{
π − arcsin(

√
1− x2), if −1 ≤ x < 0,

arcsin(
√

1− x2), if 0 ≤ x ≤ 1,

arcosh x = arsinh
√

x2 −1, if 1 ≤ x.

One has xI +x ∈ S n−1
ν (ε) if and only if 1− x2 = ε⟨x,x⟩, hence we get

y =
x√

|⟨x,x⟩|


π − arcsin(

√
1− x2) = π − arcsin(

√
ε⟨x,x⟩), if −1 ≤ x < 0,

arcsin(
√

1− x2) = arcsin(
√

ε⟨x,x⟩), if 0 ≤ x < 1,
arsinh(

√
x2 −1) = arsinh(

√
−ε⟨x,x⟩), if 1 ≤ x,

proving (7).

The map x 7→ ε⟨x,x⟩ gives a monotone decreasing correspondence [0,∞)→ [1,−∞),
hence

Corollary 1. The map (xI +x) 7→ Logε(xI +x) is expressed by

Logε(xI +x) =
x√

|⟨x,x⟩|

{
arcsin(

√
ε⟨x,x⟩), if 1 ≥ ε⟨x,x⟩> 0,

arsinh(
√

−ε⟨x,x⟩), if 0 ≥ ε⟨x,x⟩

on {xI +x ∈ S n−1
ν (ε); ε⟨x,x⟩ ≤ 1}.

5 Power series of the logarithm map
Definition 2. Let L(t) be the function defined on {t ∈ R; t < 1} by

L(t) =
1√
|t|

{
arcsin

√
t, if 0 ≤ t ≤ 1,

arsinh
√
−t, if t < 0.

Lemma 2. The function L(t) is real analytic on the interval −1 < t < 1. Its abso-
lutely convergent power series expansion around 0 is

L(t) =
∞

∑
n=0

(2n)!
(2nn!)2

tn

2n+1
= 1+

1
2

t
3
+

1 ·3
2 ·4

t2

5
+

1 ·3 ·5
2 ·4 ·6

t3

7
+ . . . (10)
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Proof. The absolutely convergent power series of the functions arcsin t and arcosh t
are

arcsin t =t
∞

∑
n=0

(2n)!
(2nn!)2

t2n

2n+1
= t

(
1+

1
2

t2

3
+

1 ·3
2 ·4

t4

5
+

1 ·3 ·5
2 ·4 ·6

t6

7
+ . . .

)
,

arcosh t =t
∞

∑
n=0

(−1)n (2n)!
(2nn!)2

t2n

2n+1
= t

(
1− 1

2
t2

3
+

1 ·3
2 ·4

t4

5
− 1 ·3 ·5

2 ·4 ·6
t6

7
± . . .

)
,

on the interval −1 < t < 1, (cf. 4.24.1 and 4.34.1 in [8]). Putting
√
|t| into t we

obtain the power series L(t) = ∑
∞
n=0

(2n)!
(2nn!)2

tn

2n+1 . The ratio test shows that the radius
of convergence is 1, therefore this series defines a complex analytic function on the
unit disk from which the claim follows.

Theorem 2. The logarithm map Logε has the absolutely convergent power series
expansion

Logε(xI +x) = L(ε⟨x,x⟩)x =
∞

∑
n=0

(2n)!
(2nn!)2

(ε⟨x,x⟩)n

2n+1
x =

= x
(

1+
1
2

ε⟨x,x⟩
3

+
1 ·3
2 ·4

(ε⟨x,x⟩)2

5
+

1 ·3 ·5
2 ·4 ·6

(ε⟨x,x⟩)3

7
+ . . .

)
around I on the domain {xI +x ∈ S n−1

ν (ε);−1 < ε⟨x,x⟩< 1}.

Proof. Putting ε⟨x,x⟩ into t in the function (10), we get the real analytic function
L(ε⟨x,x⟩) represented by the absolutely convergent power series

∞

∑
n=0

(2n)!
(2nn!)2

(ε⟨x,x⟩)n

2n+1
= 1+

1
2

ε⟨x,x⟩
3

+
1 ·3
2 ·4

(ε⟨x,x⟩)2

5
+

1 ·3 ·5
2 ·4 ·6

(ε⟨x,x⟩)3

7
+ . . .

for −1 < ⟨x,x⟩< 1. According to Corollary 1 we get the assertion.
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