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Abstract: This study examines the usability and cognitive workload associated with two
interface concepts — Context-Driven Adaptive Dashboard System and a Bring-Your-Own-
Device (BYOD) graphical interface — tested within a high-fidelity driving simulator across
urban and rural routes. Nineteen participants completed realistic driving scenarios, during
which physiological, behavioral, and subjective data were collected. Usability was assessed
using the System Usability Scale, while mental workload was measured with the NASA Task
Load Index. The results show that the context-aware interface achieved a 20.9% higher
usability score compared to a Bring-Your-Own-Device interface (71.7 vs. 59.3, p = 0.0105).
However, workload levels did not differ significantly across the interfaces. The experiment
also analyzed driver behavior at both secured and unsecured railway grade crossings using
eye-tracking technology. Eye-tracking analysis revealed unsecured crossings elicited 30.2%
more fixations, a 13.8% increase in fixation frequency, and a 26.4% decrease in average
fixation duration (p < 0.01), reflecting elevated visual search activity and uncertainty. While
statistical comparisons of driver risk behavior at crossings yielded limited significance,
observed trends consistently pointed to safer actions at secured crossings. These findings
underscore the importance of adaptive interface design and intelligent infrastructure in
reducing driver distraction and enhancing safety in both everyday and critical driving
situations.
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1 Introduction

The development of driver assistance systems in vehicles introduces new challenges
in designing Human-Machine Interfaces (HMI). In future vehicles, maintaining
driver attention and minimizing distraction is of critical importance, especially in
increasingly complex driving environments. One key area of technology
development aimed at improving traffic safety is the creation of new, context-driven
dashboard interfaces. These systems are designed to alert drivers to the most critical
information, thereby reducing the risk of accidents.

This research aims to simplify in-vehicle user interfaces (Uls) with a focus on
ergonomics, user experience (UX), and traffic safety. The proposed system,
Context-Driven Adaptive Dashboard System (ConDash), adapts to driving
conditions to support drivers while reducing cognitive load and distraction. Beyond
interface evaluation, the study examined driver behavior at secured and unsecured
at-grade railway crossings. These were included in the simulation to assess how
interface design affects driver attention and decision-making in critical situations.
Subjective measures, including perceived workload and satisfaction, were
evaluated to assess interface usability. Eye-tracking technology was also used at
grade crossings to record gaze metrics and visual attention.

The structure of our paper begins with a review of existing literature and identifying
a research gap. Next, section three covers the measurement method and process,
including the metrics used. Section four presents detailed results along with a
summary of outcomes. Section five is a discussion, followed by the conclusion and
abbreviations.

2 Literature Review

Developing advanced, context-aware dashboard systems requires a comprehensive
understanding of both user interface design and driver distraction. Driver
distractions — particularly those arising within the vehicle — remain a significant
challenge to road safety. These include both technology-based and non-technology-
based distractions that affect the driver’s cognitive resources [1]. Building upon
this, the design and usability of in-vehicle information systems (IVIS) play a crucial
role in mitigating such distractions. As vehicle systems grow increasingly complex,
adapting the user interface to the driver’s context — such as speed, location, or road
conditions — becomes essential for enhancing usability and safety. One study
emphasizes that drivers prefer adaptive displays over manual interaction
mechanisms, reinforcing the importance of intuitive, context-aware design [2].
HMIs were developed to ensure proper interaction between the vehicle and driver.
HMIs in vehicles (road and railway) consist of output and input channels.
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The output channels provide the operator with information regarding the system
status, including visual displays and auditory signals, as well as details on energy
consumption and energy-saving functions, utilizing an advanced monitoring and
assistance system designed for train operators [3]. Conversely, the input channels
accept the operator’s intentions to input information, such as through buttons,
steering wheels, or pedals [4].

In support of these findings, a multimodal interface was introduced that integrates
speech recognition, hand gesture recognition, and rotary control to improve user
interaction with infotainment systems [5]. The significance of usability was further
confirmed in a study examining the design of touchscreen interfaces. The results
showed that medium-to-large square buttons offered optimal performance,
demonstrating how interface elements, such as size, shape, and spacing, influence
usability and cognitive load [6]. These findings align with earlier research that
identified layout clarity, color precision, and rich interaction as key to effective
digital dashboard design [7].

The driving context also affects how users engage with IVIS. A study using a fixed-
base simulator revealed that subjective workload and secondary task performance
vary significantly depending on driving scenarios and task types, indicating the need
for adaptable systems that respond to situational demands [8]. In our previous study,
a comparison of touchscreens and physical buttons showed that touchscreens led to
significantly more visual, manual, and cognitive distractions, as measured by eye-
tracking and psychological surveys [9].

Broader analyses of interactive automotive Uls further highlight the shift toward
novel modalities such as virtual touch, wearables, speech control, and gaze-based
systems. These emerging technologies each offer specific advantages and
limitations that must be carefully evaluated when designing automotive interfaces
[10]. Smartphone use while driving is another pervasive source of distraction. To
address this, researchers proposed a context-aware adaptive Ul framework
explicitly designed to reduce smartphone-induced distractions while maintaining
usability [11]. This represents a targeted application of adaptive technology to
improve road safety directly.

Context-aware adaptations have also been explored in terms of how vehicle
functions should respond to environmental changes. A layered context model was
developed to control automotive functions based on real-time conditions
dynamically, utilizing qualitative modeling to simplify complex data inputs from
sensors, navigation systems, and camera systems [12]. These contextual attributes
serve as the foundation for creating interfaces that are more intuitive and responsive,
as our previous work showed the framework of the Dynamic Human-Computer
Interface System (DHCIS) [13].

Functionality in such systems is generally divided into Driving-Related Tasks
(DRT) and Non-Driving Related Tasks (NDRT), a classification commonly used in
human-computer interaction for vehicles. These categories allow for prioritizing
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safety-critical functions over comfort or entertainment features during high-demand
driving conditions [14] [15].

Recent research has extensively applied eye-tracking technology to understand
driver attention at railway-level crossings in both simulated and real environments.
A simulator study tested six different railway warning systems and found that active
visual and audio signals significantly improved driver gaze behavior and
compliance compared to passive signage [16]. Participants were more likely to
fixate on warning elements and approach the crossing with increased caution,
indicating that active measures promote more consistent scanning patterns.

A larger-scale simulator experiment involving 58 participants evaluated the effects
of three intelligent transport system (ITS) interventions — roadside signs, in-vehicle
visual displays, and auditory alerts — on cognitive load and visual attention [17].
The study concluded that none of the systems caused cognitive overload, and
drivers maintained adequate gaze focus across all scenarios. This supports the
integration of in-vehicle technologies without compromising safety or increasing
mental workload.

In contrast, a real-world field study examined gaze behavior at two types of grade
crossings and found that although most drivers glanced at the signage or protection
system, nearly 66% failed to look down the tracks, especially when passive controls
were in place [18]. This finding reveals a potentially hazardous gap in driver
behavior that may not be apparent without eye-tracking data, underscoring the need
for improved design or training at passive crossings.

A similar concern was reflected in a simulator-based experiment analyzing eye-
movement patterns across varying crossing types. Results showed that active
signals significantly increased fixation on relevant areas such as warning devices
and trains, while passive crossings resulted in more scattered attention and a higher
chance of critical visual omissions [19].

Finally, the accuracy of simulator-based gaze analysis was validated in a study
comparing eye-tracking data from simulated and real-world urban driving [20].
Their results confirmed that simulators can reliably replicate real attention patterns,
thereby supporting the credibility of simulation-based research in transportation
safety.

Enhancing transport efficiency and safety increasingly relies on integrating
advanced technologies, whether in railway operations or supply chain management.
At railway crossings, automated barriers, signaling, and surveillance systems
combined with risk-based assessments can mitigate human error [21]. Similarly,
optimizing track alignments using geodetic methods and computer modeling
enhances safety, reduces costs, and facilitates standardization for high-speed rail
[22]. In logistics, integrating vendor-managed inventory with vehicle routing
through heuristic optimization achieves comparable benefits by lowering costs and
improving reliability [23].
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As a non-invasive and increasingly reliable method for analyzing visual attention
and distraction, eye-tracking provides detailed insights into driver behavior by
capturing fixation, gaze patterns, and pupil dynamics. Eye movement data,
including fixation frequency, pupil diameter, saccades, and blink rate, have been
shown to correlate with cognitive load and can indicate varying levels of driver
distraction [24] [25]. Fixation behavior, specifically the Point of Regard (POR), is
used to define Areas of Interest (AOI) within the vehicle cabin, such as instrument
clusters or infotainment systems, to determine how long and how often drivers
divert their attention from the road [26].

To complement objective eye-tracking data, the NASA Task Load Index (NASA-
TLX) is employed to assess subjective workload. This multi-dimensional tool
evaluates six components of cognitive strain: Mental Demand, Physical Demand,
Temporal Demand, Performance, Effort, and Frustration Level [27]. Its
applicability in naturalistic driving scenarios has been validated due to its sensitivity
to mental workload variations and its suitability for non-expert participants [28].
The results from NASA-TLX scores in this study consistently indicated that tasks
involving touchscreen interactions imposed a higher mental and physical burden
compared to traditional physical interfaces.

The System Usability Scale (SUS), a well-established and quick-to-administer tool,
was utilized to measure the perceived usability of the tested interfaces. It provides
a global score reflecting the subjective satisfaction with the system’s ease of use
[29]. The study found a significant disparity between physical controls and
touchscreen Uls, with the former receiving high usability scores — indicating
intuitive and user-friendly interaction — while the latter was rated significantly
lower, reflecting increased complexity and reduced satisfaction during driving.

Despite extensive research on adaptive in-vehicle interfaces, little evidence links
usability and workload assessments to simplified, context-driven dashboards such
as ConDash. At the same time, studies on railway crossings have shown critical
shortcomings in driver attention, yet few combine eye-tracking with systematic risk
analysis across secured and unsecured crossings. These gaps highlight the need for
independent investigations into both adaptive dashboard usability and gaze
behavior at railway crossings, providing complementary insights into driver
distraction and safety.

3 Measurement Method and Process

The driving simulator experiment was conducted to evaluate two different in-
vehicle interface concepts under both urban and rural driving conditions. The test
was implemented using the BeamNG driving simulation software, operated on a
high-performance simulator hardware setup. The experimental setup consisted of a
high-performance desktop PC equipped with an Intel 19 processor and an NVIDIA
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GTX graphics processing unit. Visual immersion was provided by three 55-inch
OLED monitors arranged in a panoramic configuration. For realistic driving input
and feedback, a Moza Racing force-feedback steering base and wheel were utilized,
complemented by a set of pedals and a manual shifter. A custom-built dummy
dashboard was integrated into the simulator to house a secondary display, which
presented real-time gauge readouts and additional interface content. The primary
HMI under investigation was displayed on a 12.3-inch tablet PC, mounted in the
center console position to replicate an in-vehicle display.

Two distinct interface concepts were evaluated during the study, as shown in Figure
1: ConDash (Interface 1), a context-aware adaptive graphical user interface, and
BYOD GUI (Interface 2), a bring-your-own-device-based graphical interface
concept [30].

12:35
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<« Navigation

¢, Phone

&) Music

0 Car Settings

(b)
Figure 1
GUI layout samples: Interface 1 (a) and Interface 2 (b)

As the dynamic interface design of the ConDash system evolved based on DHCIS,
multiple context-based functional layout versions were developed to adapt to
different driving environments [13]. This study implemented city and rural layout
projections, tailored to the specific needs and expectations of drivers in each
context. To enhance usability and safety, particular functions were made available
as quick-access buttons, dynamically switching based on the environment. These
transitions occurred when the vehicle had exited or re-entered an urban area.
The functional differences between the city and rural layouts are detailed below:

City layout functions:  Parking Aid, Start-Stop, Speed Limiter, Suspension
Adjustment, Camera, Air Conditioning, Seat Heating,
Source, Phone, Speech Recognition

Rural layout functions: Line Keeping Aid, Windshield Heating / Defogging,
Speed Limiter, Drive Modes, Global Positioning
System, Air Conditioning, Seat Heating, Speaker
(Sound) Settings, Phone, Message
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During the simulation, participants drove along rural roads and encountered two
types of at-grade railway crossings while interacting with the dashboard interfaces.
No additional instructions were provided beyond a navigation prompt stating,
“cross the railway”. The first type of crossing was a secured at-grade railway
crossing (R1, R2), equipped with barriers, warning signs, and flashing lights. No
train was present during the approach or crossing (Figure 2). This type of secured
crossing appeared twice within a single simulation round. The second type was an
unsecured at-grade railway crossing (R3), marked only by signage, including a
STOP sign (Figure 3). Similar to the secured crossings, no train was present at the
time of crossing.

Figure 2
Secured at-grade railway crossing equipped with barriers, warning signs, and flashing lights — eye-
tracking view of driver (R1, R2)

Figure 3

Unsecured at-grade railway crossing with signage, including a STOP sign — eye-tracking view of
driver (R3)

All 19 participants (mean age = 23.42 years, standard deviation = 3.86) wore a Pupil
Labs NEON eye-tracking headset, during the sessions [31]. All vehicle dynamics,
physiological signals, and simulator events were synchronized and logged in real-
time for post-analysis.
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3.1 Measurement Process

Participants were welcomed, informed of the study's objectives and procedures, and
signed a written informed consent form. Participants were briefed on the basic
operation of the simulator and safety protocols. They were asked to behave
normally while driving and follow the traffic rules as much as possible. During the
familiarization phase, participants first completed a practice drive to become
accustomed to the simulator hardware. They then interacted with both interface
types in a non-driving context to understand their layout and functionality.
Following this, the Pupil Labs NEON eye-tracking headset was applied. Each
participant then completed two driving rounds: the first using Interface 1, and the
second with Interface 2, both conducted under similar road and task conditions.
Throughout each round, a research assistant guided the session using auditory
navigation and tasks, following a predefined itinerary on a tablet. Ul control
secondary tasks were as follows: Increase temperature by 2°C; set fan speed to level
2 or 20%; set climate to AUTO; turn on rear window defroster; turn off rear window
defroster; turn on AC; turn on seat heating; turn off seat heating; activate parking
assistant; deactivate parking assistant. After completing both rounds, participants
filled out a post-drive questionnaire to assess workload, usability, and subjective
experience. All collected data were anonymized for subsequent statistical and
behavioral analysis. The process steps are shown in Table 1.

Table 1

Measurement Process Steps

Step Description

Consent & Pre-Test Survey | Informed consent signed

Familiarization Practice drive and non-driving interface exploration
Sensor Setup Eye-tracker attached

Test Round 1 Driving with Interface 1, tasks guided by assistant

Test Round 2 Driving with Interface 2, same conditions as first round
Post-Drive Questionnaire Final survey assessing usability, workload, and preferences

3.2 Measurement Metrics

The Uls were assessed using two widely accepted subjective evaluation tools:

SUS: A 10-item questionnaire providing a composite score from 0 to
100 that reflects perceived usability.

NASA-TLX: A multi-dimensional rating tool capturing mental workload
across six subscales: mental demand, physical demand,
temporal demand, performance, effort, and frustration. Each
participant provided scores on these scales, which were later
combined into an overall workload index.
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These subjective assessments were complemented by participants’ qualitative
feedback and interpreted in conjunction with performance and physiological data.

The analysis of infrastructure focusing on grade crossings involved recording
participants' gaze behavior during encounters with at-grade railway crossings using
Pupil Labs eye-tracking glasses. The study included various eye-tracking metrics,
as shown in Table 2.

Table 2
Eye-tracking metrics used in the study

Unit
seconds (s)

Metric
Duration of experiment

Total entries of fixation count

Fixation frequency fixations per minute (fix/min)

Mean fixation duration milliseconds (ms)

Fixation duration SD milliseconds (ms)

Blink count count
Blink frequency

Blink duration SD

blinks per minute (blinks/min)

milliseconds (ms)

The Driver Behavior Categorization Framework (DBCF) was developed to assess
driver behavior at railroad crossings systematically (Table 3). It divides observed
actions into three key behavioral dimensions: speed control, attention to traffic signs
(including both signs and lights), and environmental awareness through head or eye
movements. Each dimension contains discrete, standardized labels to allow for
consistent coding and robust analysis of driving risk patterns across different
crossing types.

Table 3

Driver Behavior Categorization Framework

Category

Label

Definition

1. Speed Behavior

Maintains speed

No observable speed reduction

Reduces speed

Slight or moderate deceleration

Significantly
reduces speed

Noticeable deceleration, possibly preparing
to stop

Comes to a
complete stop

Full stop before the crossing or obstacle

2. Sign Attention

No visual
engagement

No indication of noticing any sign or light

Visual engagement

The participant looks at the traffic sign or
light

3. Surroundings
Awareness

Scans surroundings

Explicit head or eye movements indicating
active environmental assessment

No scanning

No eye or head movements detected
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4 Results

Our study results are presented in the subsections detailing the interfaces and
railway grade crossings, which include risk assessment and eye-tracking data
analysis. The third subsection provides a summary of the results for improved
clarity and transparency.

4.1 User Interface Test

The results of the usability evaluation using the SUS indicated that Interface 1
achieved a mean SUS score of 71.7, corresponding to a grade of B (Good). In
contrast, Interface 2 received a mean score of 59.3, which equates to a grade of D
(Poor) (Figure 4). These scores suggest that participants generally perceived
Interface 1 as more usable than Interface 2.

M Interface 1 M Interface 2

100

SUS Score

Interface type

Figure 4
SUS scores by interface, showing mean (white), median (black), quartiles 1 and 3 (green), and standard

deviation (red)

To statistically assess this difference, non-parametric tests were employed due to
the small sample size and the ordinal nature of the data. The Wilcoxon signed-rank
test confirmed a significant difference between the usability ratings of the two
interfaces (W = 15.0, p = 0.0105). Furthermore, a Spearman rank correlation
analysis revealed a moderate and statistically significant positive correlation
between the SUS scores of the two interfaces (p = 0.59, p = 0.0077), indicating that
participants who rated one interface higher tended to rate the other similarly.

The comparison of the two interfaces using the weighted NASA-TLX scores reveals
that the distribution of perceived workload is very similar between Interface 1 and
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Interface 2. Figure 5 shows nearly identical medians and interquartile ranges across
the two conditions.
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Interface types

Figure 5
Weighted NASA-TLX scores by interface, showing mean (white), median (black), quartiles 1 and 3
(green), and standard deviation (red)

Statistical analysis using the Wilcoxon signed-rank test resulted in a test statistic of
W =176.00 with a p-value of 0.465, indicating that there is no statistically significant
difference in perceived workload between the two interfaces. Additionally, a
Spearman rank correlation, which assesses the strength of monotonic relationships,
yielded a correlation coefficient of p = 0.570 with a p-value of 0.011. This reflects
a moderate and statistically significant positive correlation between the individual
scores across interfaces. In other words, participants who rated one interface as
more demanding tended to do the same with the other.

4.2 Railway Grade Crossing Analysis

The following subsections present the detailed results of the grade crossings risk
assessment, offering an in-depth analysis of driver behavior. The next subsection
displays the eye-tracking data analysis results.

4.2.1 Risk Assessment

The analysis aimed to examine how driver behavior varies between secured and
unsecured railroad crossings by categorizing actions into risk levels: low, medium,
and high. The distribution of these risk levels for two conditions was visualized in
Figure 6: crossings equipped with active signals (R1 & R2), and those lacking such
infrastructure (R3). The visual evidence immediately highlighted that secured
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crossings elicited predominantly low-risk behavior — characterized by proper speed
management, visual attention to signs, and active scanning of the surroundings. In
contrast, the unsecured crossings showed a relatively higher portion of high-risk
behaviors, including failures to slow down, to notice traffic signs, or to look around

before proceeding.
1]
:
. I

Secured (R1 & R2) Unsecured (R3)

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

ELowRisk ®=MediumRisk ®HighRisk

Figure 6
Risk level comparison: secured and unsecured railroad crossings

While initial trends suggested a behavioral safety benefit for signalized crossings,
statistical validation was necessary. A chi-square test found no significant
difference in risk level distributions between crossing types (p = 0.4999), likely due
to limited sample size. To avoid distributional assumptions, non-parametric tests
were employed. Both the Mann-Whitney U test (p = 0.7339) and the Kruskal-Wallis
test (p = 0.7329) confirmed no significant differences in ranked risk levels.
However, the Wilcoxon signed-rank test indicated a significant difference (p =
0.0339), suggesting some divergence in relative risk distributions. A Spearman
correlation (p = 1.0, p < 0.001) further revealed perfect ordinal agreement,
indicating consistent response patterns despite variations in frequency.

4.2.2 Eye-Tracking Data Analysis

This section presents the comparative analysis of eye-tracking metrics recorded in
two types of grade crossings. The comparison is based on multiple indicators of
visual and cognitive load, including fixation and blink characteristics.

Table 4 summarizes the descriptive statistics of key eye-tracking parameters in both
conditions. The total number of fixations was considerably higher in the unsecured
condition (M = 32.56, SD = 10.52) than in the secured one (M = 25.00, SD = 8.17).
This was reflected in a significantly higher fixation frequency in the unsecured
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scenario (M = 152.75 fixations/min) compared to the secured one (M = 134.27
fixations/min), with p = 0.006, indicating increased visual search activity in more
complex or ambiguous crossing environments.

Table 4

Statistics of selected eye-tracking parameters

Secured Unsecured

Mean SD Median Mean SD Median

Duration of experiment [s] | 11.15 2.50 10.52 12.82 3.62 12.52

Total Entries of fixation 25 8.17 27 32.56 10.52 30
Fixation Frequency 13427 | 3095 | 1356 | 15275 | 2688 | 157.97
(fix/min)

[MmeS?n Duration of fixation | 50014 | 29738 | 4292 | 372.51 | 87.81 | 362.57

Standard Deviation of

. . 462.53 | 271.27 | 405.64 291.33 105.58 | 272.34
fixation duration [ms]

Blinks Count 194 | 18 | 150 189 | 157 2
Blinks Frequency 976 | 867 | 7.80 880 | 7.12 | 936
(blinks/min)

Blinks SD (ms) 1455 | 1465 | 1147 159 | 2258 | 3.54

The total number of fixations was considerably higher in the unsecured condition
(M =32.56, SD = 10.52) than in the secured one (M = 25.00, SD = 8.17). This was
reflected in a significantly higher fixation frequency in the unsecured scenario (M
= 152.75 fixations/min) compared to the secured one (M = 134.27 fixations/min),
with p = 0.006, indicating increased visual search activity in more complex or
ambiguous crossing environments.

Moreover, the mean duration of fixation was substantially lower in the unsecured
crossing (M = 372.51 ms) than in the secured one (M = 506.14 ms), accompanied
by a similar reduction in the standard deviation of fixation durations. These findings
suggest that participants may have adopted a more fragmented, scanning-type gaze
behavior under the less predictable conditions of the unsecured crossings. Blink-
related metrics showed no statistically significant differences.

The Wilcoxon signed-rank test confirmed statistically significant differences in
several visual behavior indicators between secured and unsecured grade crossings
(Table 5). These results highlight robust behavioral adaptations in gaze allocation
patterns when encountering different infrastructure designs. Additionally, the
Spearman correlation showed strong positive associations across the two conditions
in these metrics. For example, mean fixation duration showed a correlation
coefficient of p = 0.678 (p = 0.002), indicating that although the average level
differed, the relative ranking of participants remained consistent across scenarios.
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Table 5

Statistical analysis results of eye-tracking data

Wilcoxon | Wilcoxon | Spearman | Spearman | Significant

Metric Statistic | p-value | Correlation | p-value (p<0.05)
Duration of experiment [s] 57 0.2288 0.2714 0.2760 No
Total Entries of fixation 22.5 0.0040 0.5696 0.0136 Yes
Fixation Frequency (fix/min) 24 0.0056 0.5707 0.0134 Yes
Mean Duration of fixation [ms] 14 0.0008 0.6780 0.0020 Yes
i&i‘;ﬁiﬁi[l’; Z‘atl"n of fixation 9 0.0003 | 0.5831 0.0111 Yes
Blinks Count 72 0.8301 0.2274 0.3641 No
Blinks Frequency (blinks/min) 66 0.6192 0.3137 0.2050 No
Blinks SD (ms) 64 0.8361 -0.1509 0.5502 No

4.3 Summary of Results

The comparative evaluation revealed several statistically and practically significant
findings across the user interface test and the railroad crossing analyses.

Interface 1 outperformed Interface 2 in terms of usability, with a mean SUS score
that was 20.9% higher (71.7 vs. 59.3), corresponding to grades B (Good) and D
(Poor), respectively. This difference was statistically significant (Wilcoxon W =
15.0, p=0.0105), indicating a clear preference for Interface 1. The SUS scores were
also moderately and positively correlated (p = 0.59, p = 0.0077), suggesting
consistent subjective evaluation tendencies among participants.

In contrast, perceived workload (NASA-TLX) did not differ significantly between
interfaces (p = 0.465), although a moderate correlation (p = 0.570, p = 0.011)
indicated that participants who perceived one interface as more demanding tended
to do so for the other as well.

While visual data suggested safer behavior at secured grade crossings, statistical
tests mostly failed to confirm significant differences in DBCF risk level
distributions (e.g., chi-square p = 0.4999; Mann—Whitney p = 0.7339). However, a
Wilcoxon signed-rank test (p = 0.0339) did indicate a significant difference in risk
distribution rankings, and a perfect Spearman correlation (p = 1.0, p < 0.001)
suggested strong consistency in risk rank structure between secured and unsecured
conditions.

Eye-tracking metrics revealed several robust differences between secured and
unsecured crossings. Participants exhibited a 30.2% increase in the number of
fixations (M = 32.56 vs. 25.00) and a 13.8% increase in fixation frequency (152.75
vs. 134.27 fix/min) under unsecured conditions, both of which were statistically
significant (p < 0.01). Simultaneously, the mean fixation duration decreased by
26.4% (372.51 ms vs. 506.14 ms), indicating a shift toward shorter, more
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fragmented gazes in more ambiguous environments. These changes suggest
elevated visual search activity and cognitive load in unsecured crossings.

Blink-related measures, including count and frequency, showed no significant
differences across conditions. Spearman correlations for fixation-related metrics
ranged from p = 0.569 to 0.678 (all p < 0.015), indicating consistent individual
response patterns despite environmental differences.

5 Discussion

The results of the SUS and NASA-TLX assessments reinforce the notion that
usability and workload are not only measurable but also stable across different
interface types. Previous literature shows that higher SUS scores reflect the
established finding that physical controls offer more intuitive interaction, reducing
cognitive effort [6] [29]. In our study, the usability of the more focused and intuitive
Condash (Interface 1) was comparable to that of the more conventional GUI
(Interface 2), even though it would have been a different interface type (e.g.,
physical buttons instead of a touchscreen). Despite Interface 2 scoring lower
overall, the stable within-subject response patterns on both SUS and NASA-TLX
suggest that individual perceptions of usability and workload remain reliable and
contextually anchored, echoing findings by von Janczewski et al. [28].

These results align with earlier work that highlights the ergonomic superiority of
physical interfaces in minimizing cognitive and visual distractions, especially under
high-demand driving conditions [9]. While touchscreen interfaces are now
ubiquitous, their complexity can elevate both perceived and actual task load — a
phenomenon reflected in our participants' workload reports and supported by prior
studies on IVIS systems [1].

Behavioral data from grade crossings adds another layer to this analysis. Although
statistical tests offered mixed results, visual and categorical trends suggest safer
behavior at secured crossings. This partially confirms simulator-based findings by
Fakhrhosseini et al., who demonstrated more focused attention and fewer visual
omissions in the presence of active signaling [19]. Similarly, our observation of
heightened fixation activity at unsecured crossings aligns with theories of increased
environmental uncertainty [25]. Drivers likely used more frequent, shorter fixations
as a compensatory visual strategy to manage ambiguity.

The lack of blinking differences further supports the idea that some physiological
markers (like blink rate) are less sensitive to contextual variability — reinforcing
Skaramagkas et al.'s assertion that cognitive demands affect specific oculomotor
patterns more than others [25].
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From an applied perspective, these results validate the integration of context-
sensitive visual control measures, particularly at high-risk intersections. The field
study by Grippenkoven et al. demonstrated that drivers frequently overlook critical
visual checks when only passive signage is present [18]. In our analysis, the
elevated visual attention at unsecured crossings reflected a situational response to
increased risk rather than systematic precaution. This highlights the need for
simulation-based training environments, where drivers can be prepared in advance
to adopt consistent, proactive scanning strategies at railway grade crossings.

The ConDash system plays a crucial role in this context. Its adaptive design, rooted
in context-aware Ul principles, offers a promising pathway for reducing driver
cognitive load without compromising critical task performance [11] [32]. By
combining real-time interface adaptation with infrastructure awareness (e.g.,
detection of an upcoming unsecured crossing), future systems could proactively
prompt drivers to adopt safer visual strategies.

Future studies should involve a larger and more diverse participant sample to
enhance the statistical power and generalizability of the findings. A more detailed
eye-tracking analysis focusing on specific interface elements through Area of
Interest (AOI) detection will provide deeper insight into user interaction patterns.
Additionally, expanding the range of driving scenarios could help evaluate how
adaptive interfaces perform under varied contextual demands.

Conclusions

This study investigated two critical aspects of driving safety: The usability of
adaptive in-vehicle interfaces and the behavioral effects of on-grade railway
crossing infrastructure, using a multimodal evaluation approach. The context-aware
ConDash interface outperformed the BYOD solution in terms of perceived
usability, with a 20.9% higher SUS score (71.7 vs. 59.3, p = 0.0105), representing
a shift from a poor (D) to a good (B) usability rating. Although perceived workload
did not differ significantly between the two interfaces (p = 0.465), moderate
correlations in both SUS and NASA-TLX results (p =~ 0.57) suggest stable
subjective evaluation patterns across conditions. These findings confirm that
adaptive interface design can enhance usability without imposing a cognitive
burden.

The grade crossing analysis revealed that unsecured crossings induced a 30.2%
increase in fixation count and a 13.8% rise in fixation frequency compared to
secured crossings (p < 0.01), alongside a 26.4% reduction in average fixation
duration (372.5 ms vs. 506.1 ms). These shifts indicate a transition to faster, more
fragmented gaze behavior under uncertain visual conditions — reflecting elevated
visual search demands and cognitive effort. While statistical confirmation of
increased behavioral risk at unsecured crossings was limited (e.g., chi-square p =
0.4999), the Wilcoxon test (p = 0.0339) and perfect rank-order correlation (p = 1.0,
p <0.001) support meaningful structural differences in risk response.
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Although the wuser interface test and railroad crossing analysis were
methodologically independent, both underscore how design — whether inside the
vehicle or in the road environment — can significantly influence driver attention,
cognitive load, and safety-related behavior.

Future systems should integrate adaptive HMI strategies with infrastructure-aware
alerts, to better support driver performance in complex or ambiguous traffic
scenarios.

Abbreviations

AOI Area Of Interest

BYOD Bring-Your-Own-Device

ConDash Context-Driven Adaptive Dashboard System
DBCF Driver Behavior Categorization Framework
DHCIS Dynamic Human-Computer Interface System
DRT Driving-Related Tasks

HMI Human-Machine Interfaces

ITS Intelligent Transport System

IVIS In-Vehicle Information Systems
NASA-TLX NASA Task Load Index

NDRT Non-Driving Related Tasks

SUS System Usability Scale

Ul User Interfaces

UX User Experience
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