
Acta Polytechnica Hungarica Vol. 23, No. 1, 2026 

‒ 287 ‒ 

Multi-Modal Evaluation of Adaptive Interface 
Design and Railway Grade Crossing 
Infrastructure, in Simulated Driving 
Environments 

Viktor Nagy1, Gábor Kovács2, Darko Babić3, Eleonora Desnica4 
1 Széchenyi István University, Egyetem tér 1, H-9026 Győr, Hungary, 
nviktor@sze.hu 
2 Ludovika University of Public Service, Institute of the Information Society, 
Ludovika tér 2, H-1083 Budapest, Hungary, gkovacs@sze.hu 
3 University of Zagreb, Kušlanova 2, 10000 Zagreb, Croatia, 
darko.babic@fpz.unizg.hr 
4 University of Novi Sad, Technical faculty "Mihajlo Pupin", Zrenjanin 23000, 
Serbia, eleonora.desnica@tfzr.rs 

Abstract: This study examines the usability and cognitive workload associated with two 
interface concepts ‒ Context-Driven Adaptive Dashboard System and a Bring-Your-Own-
Device (BYOD) graphical interface ‒ tested within a high-fidelity driving simulator across 
urban and rural routes. Nineteen participants completed realistic driving scenarios, during 
which physiological, behavioral, and subjective data were collected. Usability was assessed 
using the System Usability Scale, while mental workload was measured with the NASA Task 
Load Index. The results show that the context-aware interface achieved a 20.9% higher 
usability score compared to a Bring-Your-Own-Device interface (71.7 vs. 59.3, p = 0.0105). 
However, workload levels did not differ significantly across the interfaces. The experiment 
also analyzed driver behavior at both secured and unsecured railway grade crossings using 
eye-tracking technology. Eye-tracking analysis revealed unsecured crossings elicited 30.2% 
more fixations, a 13.8% increase in fixation frequency, and a 26.4% decrease in average 
fixation duration (p < 0.01), reflecting elevated visual search activity and uncertainty. While 
statistical comparisons of driver risk behavior at crossings yielded limited significance, 
observed trends consistently pointed to safer actions at secured crossings. These findings 
underscore the importance of adaptive interface design and intelligent infrastructure in 
reducing driver distraction and enhancing safety in both everyday and critical driving 
situations. 
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1 Introduction 

The development of driver assistance systems in vehicles introduces new challenges 
in designing Human-Machine Interfaces (HMI). In future vehicles, maintaining 
driver attention and minimizing distraction is of critical importance, especially in 
increasingly complex driving environments. One key area of technology 
development aimed at improving traffic safety is the creation of new, context-driven 
dashboard interfaces. These systems are designed to alert drivers to the most critical 
information, thereby reducing the risk of accidents. 

This research aims to simplify in-vehicle user interfaces (UIs) with a focus on 
ergonomics, user experience (UX), and traffic safety. The proposed system, 
Context-Driven Adaptive Dashboard System (ConDash), adapts to driving 
conditions to support drivers while reducing cognitive load and distraction. Beyond 
interface evaluation, the study examined driver behavior at secured and unsecured 
at-grade railway crossings. These were included in the simulation to assess how 
interface design affects driver attention and decision-making in critical situations. 
Subjective measures, including perceived workload and satisfaction, were 
evaluated to assess interface usability. Eye-tracking technology was also used at 
grade crossings to record gaze metrics and visual attention. 

The structure of our paper begins with a review of existing literature and identifying 
a research gap. Next, section three covers the measurement method and process, 
including the metrics used. Section four presents detailed results along with a 
summary of outcomes. Section five is a discussion, followed by the conclusion and 
abbreviations. 

2 Literature Review 

Developing advanced, context-aware dashboard systems requires a comprehensive 
understanding of both user interface design and driver distraction. Driver 
distractions ‒ particularly those arising within the vehicle ‒ remain a significant 
challenge to road safety. These include both technology-based and non-technology-
based distractions that affect the driver’s cognitive resources [1]. Building upon 
this, the design and usability of in-vehicle information systems (IVIS) play a crucial 
role in mitigating such distractions. As vehicle systems grow increasingly complex, 
adapting the user interface to the driver’s context ‒ such as speed, location, or road 
conditions ‒ becomes essential for enhancing usability and safety. One study 
emphasizes that drivers prefer adaptive displays over manual interaction 
mechanisms, reinforcing the importance of intuitive, context-aware design [2]. 
HMIs were developed to ensure proper interaction between the vehicle and driver. 
HMIs in vehicles (road and railway) consist of output and input channels.  



Acta Polytechnica Hungarica Vol. 23, No. 1, 2026 

‒ 289 ‒ 

The output channels provide the operator with information regarding the system 
status, including visual displays and auditory signals, as well as details on energy 
consumption and energy-saving functions, utilizing an advanced monitoring and 
assistance system designed for train operators [3]. Conversely, the input channels 
accept the operator’s intentions to input information, such as through buttons, 
steering wheels, or pedals [4]. 

In support of these findings, a multimodal interface was introduced that integrates 
speech recognition, hand gesture recognition, and rotary control to improve user 
interaction with infotainment systems [5]. The significance of usability was further 
confirmed in a study examining the design of touchscreen interfaces. The results 
showed that medium-to-large square buttons offered optimal performance, 
demonstrating how interface elements, such as size, shape, and spacing, influence 
usability and cognitive load [6]. These findings align with earlier research that 
identified layout clarity, color precision, and rich interaction as key to effective 
digital dashboard design [7]. 

The driving context also affects how users engage with IVIS. A study using a fixed-
base simulator revealed that subjective workload and secondary task performance 
vary significantly depending on driving scenarios and task types, indicating the need 
for adaptable systems that respond to situational demands [8]. In our previous study, 
a comparison of touchscreens and physical buttons showed that touchscreens led to 
significantly more visual, manual, and cognitive distractions, as measured by eye-
tracking and psychological surveys [9]. 

Broader analyses of interactive automotive UIs further highlight the shift toward 
novel modalities such as virtual touch, wearables, speech control, and gaze-based 
systems. These emerging technologies each offer specific advantages and 
limitations that must be carefully evaluated when designing automotive interfaces 
[10]. Smartphone use while driving is another pervasive source of distraction. To 
address this, researchers proposed a context-aware adaptive UI framework 
explicitly designed to reduce smartphone-induced distractions while maintaining 
usability [11]. This represents a targeted application of adaptive technology to 
improve road safety directly. 

Context-aware adaptations have also been explored in terms of how vehicle 
functions should respond to environmental changes. A layered context model was 
developed to control automotive functions based on real-time conditions 
dynamically, utilizing qualitative modeling to simplify complex data inputs from 
sensors, navigation systems, and camera systems [12]. These contextual attributes 
serve as the foundation for creating interfaces that are more intuitive and responsive, 
as our previous work showed the framework of the Dynamic Human-Computer 
Interface System (DHCIS) [13]. 

Functionality in such systems is generally divided into Driving-Related Tasks 
(DRT) and Non-Driving Related Tasks (NDRT), a classification commonly used in 
human-computer interaction for vehicles. These categories allow for prioritizing 
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safety-critical functions over comfort or entertainment features during high-demand 
driving conditions [14] [15]. 

Recent research has extensively applied eye-tracking technology to understand 
driver attention at railway-level crossings in both simulated and real environments. 
A simulator study tested six different railway warning systems and found that active 
visual and audio signals significantly improved driver gaze behavior and 
compliance compared to passive signage [16]. Participants were more likely to 
fixate on warning elements and approach the crossing with increased caution, 
indicating that active measures promote more consistent scanning patterns. 

A larger-scale simulator experiment involving 58 participants evaluated the effects 
of three intelligent transport system (ITS) interventions ‒ roadside signs, in-vehicle 
visual displays, and auditory alerts ‒ on cognitive load and visual attention [17]. 
The study concluded that none of the systems caused cognitive overload, and 
drivers maintained adequate gaze focus across all scenarios. This supports the 
integration of in-vehicle technologies without compromising safety or increasing 
mental workload. 

In contrast, a real-world field study examined gaze behavior at two types of grade 
crossings and found that although most drivers glanced at the signage or protection 
system, nearly 66% failed to look down the tracks, especially when passive controls 
were in place [18]. This finding reveals a potentially hazardous gap in driver 
behavior that may not be apparent without eye-tracking data, underscoring the need 
for improved design or training at passive crossings. 

A similar concern was reflected in a simulator-based experiment analyzing eye-
movement patterns across varying crossing types. Results showed that active 
signals significantly increased fixation on relevant areas such as warning devices 
and trains, while passive crossings resulted in more scattered attention and a higher 
chance of critical visual omissions [19]. 

Finally, the accuracy of simulator-based gaze analysis was validated in a study 
comparing eye-tracking data from simulated and real-world urban driving [20]. 
Their results confirmed that simulators can reliably replicate real attention patterns, 
thereby supporting the credibility of simulation-based research in transportation 
safety. 

Enhancing transport efficiency and safety increasingly relies on integrating 
advanced technologies, whether in railway operations or supply chain management. 
At railway crossings, automated barriers, signaling, and surveillance systems 
combined with risk-based assessments can mitigate human error [21]. Similarly, 
optimizing track alignments using geodetic methods and computer modeling 
enhances safety, reduces costs, and facilitates standardization for high-speed rail 
[22]. In logistics, integrating vendor-managed inventory with vehicle routing 
through heuristic optimization achieves comparable benefits by lowering costs and 
improving reliability [23]. 
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As a non-invasive and increasingly reliable method for analyzing visual attention 
and distraction, eye-tracking provides detailed insights into driver behavior by 
capturing fixation, gaze patterns, and pupil dynamics. Eye movement data, 
including fixation frequency, pupil diameter, saccades, and blink rate, have been 
shown to correlate with cognitive load and can indicate varying levels of driver 
distraction [24] [25]. Fixation behavior, specifically the Point of Regard (POR), is 
used to define Areas of Interest (AOI) within the vehicle cabin, such as instrument 
clusters or infotainment systems, to determine how long and how often drivers 
divert their attention from the road [26]. 

To complement objective eye-tracking data, the NASA Task Load Index (NASA-
TLX) is employed to assess subjective workload. This multi-dimensional tool 
evaluates six components of cognitive strain: Mental Demand, Physical Demand, 
Temporal Demand, Performance, Effort, and Frustration Level [27]. Its 
applicability in naturalistic driving scenarios has been validated due to its sensitivity 
to mental workload variations and its suitability for non-expert participants [28]. 
The results from NASA-TLX scores in this study consistently indicated that tasks 
involving touchscreen interactions imposed a higher mental and physical burden 
compared to traditional physical interfaces. 

The System Usability Scale (SUS), a well-established and quick-to-administer tool, 
was utilized to measure the perceived usability of the tested interfaces. It provides 
a global score reflecting the subjective satisfaction with the system’s ease of use 
[29]. The study found a significant disparity between physical controls and 
touchscreen UIs, with the former receiving high usability scores ‒ indicating 
intuitive and user-friendly interaction ‒ while the latter was rated significantly 
lower, reflecting increased complexity and reduced satisfaction during driving. 

Despite extensive research on adaptive in-vehicle interfaces, little evidence links 
usability and workload assessments to simplified, context-driven dashboards such 
as ConDash. At the same time, studies on railway crossings have shown critical 
shortcomings in driver attention, yet few combine eye-tracking with systematic risk 
analysis across secured and unsecured crossings. These gaps highlight the need for 
independent investigations into both adaptive dashboard usability and gaze 
behavior at railway crossings, providing complementary insights into driver 
distraction and safety. 

3 Measurement Method and Process 

The driving simulator experiment was conducted to evaluate two different in-
vehicle interface concepts under both urban and rural driving conditions. The test 
was implemented using the BeamNG driving simulation software, operated on a 
high-performance simulator hardware setup. The experimental setup consisted of a 
high-performance desktop PC equipped with an Intel i9 processor and an NVIDIA 
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GTX graphics processing unit. Visual immersion was provided by three 55-inch 
OLED monitors arranged in a panoramic configuration. For realistic driving input 
and feedback, a Moza Racing force-feedback steering base and wheel were utilized, 
complemented by a set of pedals and a manual shifter. A custom-built dummy 
dashboard was integrated into the simulator to house a secondary display, which 
presented real-time gauge readouts and additional interface content. The primary 
HMI under investigation was displayed on a 12.3-inch tablet PC, mounted in the 
center console position to replicate an in-vehicle display. 

Two distinct interface concepts were evaluated during the study, as shown in Figure 
1: ConDash (Interface 1), a context-aware adaptive graphical user interface, and 
BYOD GUI (Interface 2), a bring-your-own-device-based graphical interface 
concept [30]. 

  
(a)   (b) 

Figure 1 
GUI layout samples: Interface 1 (a) and Interface 2 (b) 

As the dynamic interface design of the ConDash system evolved based on DHCIS, 
multiple context-based functional layout versions were developed to adapt to 
different driving environments [13]. This study implemented city and rural layout 
projections, tailored to the specific needs and expectations of drivers in each 
context. To enhance usability and safety, particular functions were made available 
as quick-access buttons, dynamically switching based on the environment. These 
transitions occurred when the vehicle had exited or re-entered an urban area.  
The functional differences between the city and rural layouts are detailed below: 

City layout functions:  Parking Aid, Start-Stop, Speed Limiter, Suspension 
Adjustment, Camera, Air Conditioning, Seat Heating, 
Source, Phone, Speech Recognition 

Rural layout functions: Line Keeping Aid, Windshield Heating / Defogging, 
Speed Limiter, Drive Modes, Global Positioning 
System, Air Conditioning, Seat Heating, Speaker 
(Sound) Settings, Phone, Message 
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During the simulation, participants drove along rural roads and encountered two 
types of at-grade railway crossings while interacting with the dashboard interfaces. 
No additional instructions were provided beyond a navigation prompt stating, 
“cross the railway”. The first type of crossing was a secured at-grade railway 
crossing (R1, R2), equipped with barriers, warning signs, and flashing lights. No 
train was present during the approach or crossing (Figure 2). This type of secured 
crossing appeared twice within a single simulation round. The second type was an 
unsecured at-grade railway crossing (R3), marked only by signage, including a 
STOP sign (Figure 3). Similar to the secured crossings, no train was present at the 
time of crossing. 

 
Figure 2 

Secured at-grade railway crossing equipped with barriers, warning signs, and flashing lights — eye-
tracking view of driver (R1, R2) 

 
Figure 3 

Unsecured at-grade railway crossing with signage, including a STOP sign — eye-tracking view of 
driver (R3) 

All 19 participants (mean age = 23.42 years, standard deviation = 3.86) wore a Pupil 
Labs NEON eye-tracking headset, during the sessions [31]. All vehicle dynamics, 
physiological signals, and simulator events were synchronized and logged in real-
time for post-analysis. 
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3.1 Measurement Process 

Participants were welcomed, informed of the study's objectives and procedures, and 
signed a written informed consent form. Participants were briefed on the basic 
operation of the simulator and safety protocols. They were asked to behave 
normally while driving and follow the traffic rules as much as possible. During the 
familiarization phase, participants first completed a practice drive to become 
accustomed to the simulator hardware. They then interacted with both interface 
types in a non-driving context to understand their layout and functionality. 
Following this, the Pupil Labs NEON eye-tracking headset was applied. Each 
participant then completed two driving rounds: the first using Interface 1, and the 
second with Interface 2, both conducted under similar road and task conditions. 
Throughout each round, a research assistant guided the session using auditory 
navigation and tasks, following a predefined itinerary on a tablet. UI control 
secondary tasks were as follows: Increase temperature by 2°C; set fan speed to level 
2 or 20%; set climate to AUTO; turn on rear window defroster; turn off rear window 
defroster; turn on AC; turn on seat heating; turn off seat heating; activate parking 
assistant; deactivate parking assistant. After completing both rounds, participants 
filled out a post-drive questionnaire to assess workload, usability, and subjective 
experience. All collected data were anonymized for subsequent statistical and 
behavioral analysis. The process steps are shown in Table 1. 

Table 1 
Measurement Process Steps 

Step Description 
Consent & Pre-Test Survey Informed consent signed 
Familiarization Practice drive and non-driving interface exploration 
Sensor Setup Eye-tracker attached 
Test Round 1 Driving with Interface 1, tasks guided by assistant 
Test Round 2 Driving with Interface 2, same conditions as first round 
Post-Drive Questionnaire Final survey assessing usability, workload, and preferences 

3.2 Measurement Metrics 

The UIs were assessed using two widely accepted subjective evaluation tools: 

SUS:  A 10-item questionnaire providing a composite score from 0 to 
100 that reflects perceived usability. 

NASA-TLX:  A multi-dimensional rating tool capturing mental workload 
across six subscales: mental demand, physical demand, 
temporal demand, performance, effort, and frustration. Each 
participant provided scores on these scales, which were later 
combined into an overall workload index. 
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These subjective assessments were complemented by participants’ qualitative 
feedback and interpreted in conjunction with performance and physiological data. 

The analysis of infrastructure focusing on grade crossings involved recording 
participants' gaze behavior during encounters with at-grade railway crossings using 
Pupil Labs eye-tracking glasses. The study included various eye-tracking metrics, 
as shown in Table 2. 

Table 2 
Eye-tracking metrics used in the study 

Metric Unit 
Duration of experiment seconds (s) 
Total entries of fixation count 
Fixation frequency fixations per minute (fix/min) 
Mean fixation duration milliseconds (ms) 
Fixation duration SD milliseconds (ms) 
Blink count count 
Blink frequency blinks per minute (blinks/min) 
Blink duration SD milliseconds (ms) 

The Driver Behavior Categorization Framework (DBCF) was developed to assess 
driver behavior at railroad crossings systematically (Table 3). It divides observed 
actions into three key behavioral dimensions: speed control, attention to traffic signs 
(including both signs and lights), and environmental awareness through head or eye 
movements. Each dimension contains discrete, standardized labels to allow for 
consistent coding and robust analysis of driving risk patterns across different 
crossing types. 

Table 3 
Driver Behavior Categorization Framework 

Category Label Definition 

1. Speed Behavior 

Maintains speed No observable speed reduction 
Reduces speed Slight or moderate deceleration 
Significantly 
reduces speed 

Noticeable deceleration, possibly preparing 
to stop 

Comes to a 
complete stop Full stop before the crossing or obstacle 

2. Sign Attention 

No visual 
engagement No indication of noticing any sign or light 

Visual engagement The participant looks at the traffic sign or 
light 

3. Surroundings 
Awareness 

Scans surroundings Explicit head or eye movements indicating 
active environmental assessment 

No scanning 
 

No eye or head movements detected 
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4 Results 

Our study results are presented in the subsections detailing the interfaces and 
railway grade crossings, which include risk assessment and eye-tracking data 
analysis. The third subsection provides a summary of the results for improved 
clarity and transparency. 

4.1 User Interface Test 

The results of the usability evaluation using the SUS indicated that Interface 1 
achieved a mean SUS score of 71.7, corresponding to a grade of B (Good). In 
contrast, Interface 2 received a mean score of 59.3, which equates to a grade of D 
(Poor) (Figure 4). These scores suggest that participants generally perceived 
Interface 1 as more usable than Interface 2. 

 
Figure 4 

SUS scores by interface, showing mean (white), median (black), quartiles 1 and 3 (green), and standard 
deviation (red) 

To statistically assess this difference, non-parametric tests were employed due to 
the small sample size and the ordinal nature of the data. The Wilcoxon signed-rank 
test confirmed a significant difference between the usability ratings of the two 
interfaces (W = 15.0, p = 0.0105). Furthermore, a Spearman rank correlation 
analysis revealed a moderate and statistically significant positive correlation 
between the SUS scores of the two interfaces (ρ = 0.59, p = 0.0077), indicating that 
participants who rated one interface higher tended to rate the other similarly. 

The comparison of the two interfaces using the weighted NASA-TLX scores reveals 
that the distribution of perceived workload is very similar between Interface 1 and 
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Interface 2. Figure 5 shows nearly identical medians and interquartile ranges across 
the two conditions. 

 

Figure 5 
Weighted NASA-TLX scores by interface, showing mean (white), median (black), quartiles 1 and 3 

(green), and standard deviation (red) 

Statistical analysis using the Wilcoxon signed-rank test resulted in a test statistic of 
W = 76.00 with a p-value of 0.465, indicating that there is no statistically significant 
difference in perceived workload between the two interfaces. Additionally, a 
Spearman rank correlation, which assesses the strength of monotonic relationships, 
yielded a correlation coefficient of ρ = 0.570 with a p-value of 0.011. This reflects 
a moderate and statistically significant positive correlation between the individual 
scores across interfaces. In other words, participants who rated one interface as 
more demanding tended to do the same with the other. 

4.2 Railway Grade Crossing Analysis 

The following subsections present the detailed results of the grade crossings risk 
assessment, offering an in-depth analysis of driver behavior. The next subsection 
displays the eye-tracking data analysis results. 

4.2.1 Risk Assessment 

The analysis aimed to examine how driver behavior varies between secured and 
unsecured railroad crossings by categorizing actions into risk levels: low, medium, 
and high. The distribution of these risk levels for two conditions was visualized in 
Figure 6: crossings equipped with active signals (R1 & R2), and those lacking such 
infrastructure (R3). The visual evidence immediately highlighted that secured 
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crossings elicited predominantly low-risk behavior ‒ characterized by proper speed 
management, visual attention to signs, and active scanning of the surroundings. In 
contrast, the unsecured crossings showed a relatively higher portion of high-risk 
behaviors, including failures to slow down, to notice traffic signs, or to look around 
before proceeding. 

 
Figure 6 

Risk level comparison: secured and unsecured railroad crossings 

While initial trends suggested a behavioral safety benefit for signalized crossings, 
statistical validation was necessary. A chi-square test found no significant 
difference in risk level distributions between crossing types (p = 0.4999), likely due 
to limited sample size. To avoid distributional assumptions, non-parametric tests 
were employed. Both the Mann-Whitney U test (p = 0.7339) and the Kruskal-Wallis 
test (p = 0.7329) confirmed no significant differences in ranked risk levels. 
However, the Wilcoxon signed-rank test indicated a significant difference (p = 
0.0339), suggesting some divergence in relative risk distributions. A Spearman 
correlation (ρ = 1.0, p < 0.001) further revealed perfect ordinal agreement, 
indicating consistent response patterns despite variations in frequency. 

4.2.2 Eye-Tracking Data Analysis 

This section presents the comparative analysis of eye-tracking metrics recorded in 
two types of grade crossings. The comparison is based on multiple indicators of 
visual and cognitive load, including fixation and blink characteristics. 

Table 4 summarizes the descriptive statistics of key eye-tracking parameters in both 
conditions. The total number of fixations was considerably higher in the unsecured 
condition (M = 32.56, SD = 10.52) than in the secured one (M = 25.00, SD = 8.17). 
This was reflected in a significantly higher fixation frequency in the unsecured 
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scenario (M = 152.75 fixations/min) compared to the secured one (M = 134.27 
fixations/min), with p = 0.006, indicating increased visual search activity in more 
complex or ambiguous crossing environments. 

Table 4 
Statistics of selected eye-tracking parameters 

 Secured Unsecured 
 Mean SD Median Mean SD Median 
Duration of experiment [s] 11.15 2.50 10.52 12.82 3.62 12.52 
Total Entries of fixation 25 8.17 27 32.56 10.52 30 
Fixation Frequency 
(fix/min) 134.27 30.95 135.6 152.75 26.88 157.97 

Mean Duration of fixation 
[ms] 506.14 297.38 429.2 372.51 87.81 362.57 

Standard Deviation of 
fixation duration [ms] 462.53 271.27 405.64 291.33 105.58 272.34 

Blinks Count 1.94 1.85 1.50 1.89 1.57 2 
Blinks Frequency 
(blinks/min) 9.76 8.67 7.80 8.80 7.12 9.36 

Blinks SD (ms) 14.55 14.65 11.47 15.9 22.58 3.54 

The total number of fixations was considerably higher in the unsecured condition 
(M = 32.56, SD = 10.52) than in the secured one (M = 25.00, SD = 8.17). This was 
reflected in a significantly higher fixation frequency in the unsecured scenario (M 
= 152.75 fixations/min) compared to the secured one (M = 134.27 fixations/min), 
with p = 0.006, indicating increased visual search activity in more complex or 
ambiguous crossing environments. 

Moreover, the mean duration of fixation was substantially lower in the unsecured 
crossing (M = 372.51 ms) than in the secured one (M = 506.14 ms), accompanied 
by a similar reduction in the standard deviation of fixation durations. These findings 
suggest that participants may have adopted a more fragmented, scanning-type gaze 
behavior under the less predictable conditions of the unsecured crossings. Blink-
related metrics showed no statistically significant differences. 

The Wilcoxon signed-rank test confirmed statistically significant differences in 
several visual behavior indicators between secured and unsecured grade crossings 
(Table 5). These results highlight robust behavioral adaptations in gaze allocation 
patterns when encountering different infrastructure designs. Additionally, the 
Spearman correlation showed strong positive associations across the two conditions 
in these metrics. For example, mean fixation duration showed a correlation 
coefficient of ρ = 0.678 (p = 0.002), indicating that although the average level 
differed, the relative ranking of participants remained consistent across scenarios. 
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Table 5 
Statistical analysis results of eye-tracking data 

Metric Wilcoxon 
Statistic 

Wilcoxon 
p-value 

Spearman 
Correlation 

Spearman 
p-value 

Significant 
(p<0.05) 

Duration of experiment [s] 57 0.2288 0.2714 0.2760 No 
Total Entries of fixation 22.5 0.0040 0.5696 0.0136 Yes 
Fixation Frequency (fix/min) 24 0.0056 0.5707 0.0134 Yes 
Mean Duration of fixation [ms] 14 0.0008 0.6780 0.0020 Yes 
Standard Deviation of fixation 
duration [ms] 9 0.0003 0.5831 0.0111 Yes 

Blinks Count 72 0.8301 0.2274 0.3641 No 
Blinks Frequency (blinks/min) 66 0.6192 0.3137 0.2050 No 
Blinks SD (ms) 64 0.8361 -0.1509 0.5502 No 

4.3 Summary of Results 

The comparative evaluation revealed several statistically and practically significant 
findings across the user interface test and the railroad crossing analyses. 

Interface 1 outperformed Interface 2 in terms of usability, with a mean SUS score 
that was 20.9% higher (71.7 vs. 59.3), corresponding to grades B (Good) and D 
(Poor), respectively. This difference was statistically significant (Wilcoxon W = 
15.0, p = 0.0105), indicating a clear preference for Interface 1. The SUS scores were 
also moderately and positively correlated (ρ = 0.59, p = 0.0077), suggesting 
consistent subjective evaluation tendencies among participants. 

In contrast, perceived workload (NASA-TLX) did not differ significantly between 
interfaces (p = 0.465), although a moderate correlation (ρ = 0.570, p = 0.011) 
indicated that participants who perceived one interface as more demanding tended 
to do so for the other as well. 

While visual data suggested safer behavior at secured grade crossings, statistical 
tests mostly failed to confirm significant differences in DBCF risk level 
distributions (e.g., chi-square p = 0.4999; Mann–Whitney p = 0.7339). However, a 
Wilcoxon signed-rank test (p = 0.0339) did indicate a significant difference in risk 
distribution rankings, and a perfect Spearman correlation (ρ = 1.0, p < 0.001) 
suggested strong consistency in risk rank structure between secured and unsecured 
conditions. 

Eye-tracking metrics revealed several robust differences between secured and 
unsecured crossings. Participants exhibited a 30.2% increase in the number of 
fixations (M = 32.56 vs. 25.00) and a 13.8% increase in fixation frequency (152.75 
vs. 134.27 fix/min) under unsecured conditions, both of which were statistically 
significant (p < 0.01). Simultaneously, the mean fixation duration decreased by 
26.4% (372.51 ms vs. 506.14 ms), indicating a shift toward shorter, more 
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fragmented gazes in more ambiguous environments. These changes suggest 
elevated visual search activity and cognitive load in unsecured crossings. 

Blink-related measures, including count and frequency, showed no significant 
differences across conditions. Spearman correlations for fixation-related metrics 
ranged from ρ = 0.569 to 0.678 (all p < 0.015), indicating consistent individual 
response patterns despite environmental differences. 

5 Discussion 

The results of the SUS and NASA-TLX assessments reinforce the notion that 
usability and workload are not only measurable but also stable across different 
interface types. Previous literature shows that higher SUS scores reflect the 
established finding that physical controls offer more intuitive interaction, reducing 
cognitive effort [6] [29]. In our study, the usability of the more focused and intuitive 
Condash (Interface 1) was comparable to that of the more conventional GUI 
(Interface 2), even though it would have been a different interface type (e.g., 
physical buttons instead of a touchscreen). Despite Interface 2 scoring lower 
overall, the stable within-subject response patterns on both SUS and NASA-TLX 
suggest that individual perceptions of usability and workload remain reliable and 
contextually anchored, echoing findings by von Janczewski et al. [28]. 

These results align with earlier work that highlights the ergonomic superiority of 
physical interfaces in minimizing cognitive and visual distractions, especially under 
high-demand driving conditions [9]. While touchscreen interfaces are now 
ubiquitous, their complexity can elevate both perceived and actual task load ‒ a 
phenomenon reflected in our participants' workload reports and supported by prior 
studies on IVIS systems [1]. 

Behavioral data from grade crossings adds another layer to this analysis. Although 
statistical tests offered mixed results, visual and categorical trends suggest safer 
behavior at secured crossings. This partially confirms simulator-based findings by 
Fakhrhosseini et al., who demonstrated more focused attention and fewer visual 
omissions in the presence of active signaling [19]. Similarly, our observation of 
heightened fixation activity at unsecured crossings aligns with theories of increased 
environmental uncertainty [25]. Drivers likely used more frequent, shorter fixations 
as a compensatory visual strategy to manage ambiguity. 

The lack of blinking differences further supports the idea that some physiological 
markers (like blink rate) are less sensitive to contextual variability ‒ reinforcing 
Skaramagkas et al.'s assertion that cognitive demands affect specific oculomotor 
patterns more than others [25]. 
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From an applied perspective, these results validate the integration of context-
sensitive visual control measures, particularly at high-risk intersections. The field 
study by Grippenkoven et al. demonstrated that drivers frequently overlook critical 
visual checks when only passive signage is present [18]. In our analysis, the 
elevated visual attention at unsecured crossings reflected a situational response to 
increased risk rather than systematic precaution. This highlights the need for 
simulation-based training environments, where drivers can be prepared in advance 
to adopt consistent, proactive scanning strategies at railway grade crossings. 

The ConDash system plays a crucial role in this context. Its adaptive design, rooted 
in context-aware UI principles, offers a promising pathway for reducing driver 
cognitive load without compromising critical task performance [11] [32]. By 
combining real-time interface adaptation with infrastructure awareness (e.g., 
detection of an upcoming unsecured crossing), future systems could proactively 
prompt drivers to adopt safer visual strategies. 

Future studies should involve a larger and more diverse participant sample to 
enhance the statistical power and generalizability of the findings. A more detailed 
eye-tracking analysis focusing on specific interface elements through Area of 
Interest (AOI) detection will provide deeper insight into user interaction patterns. 
Additionally, expanding the range of driving scenarios could help evaluate how 
adaptive interfaces perform under varied contextual demands. 

Conclusions 

This study investigated two critical aspects of driving safety: The usability of 
adaptive in-vehicle interfaces and the behavioral effects of on-grade railway 
crossing infrastructure, using a multimodal evaluation approach. The context-aware 
ConDash interface outperformed the BYOD solution in terms of perceived 
usability, with a 20.9% higher SUS score (71.7 vs. 59.3, p = 0.0105), representing 
a shift from a poor (D) to a good (B) usability rating. Although perceived workload 
did not differ significantly between the two interfaces (p = 0.465), moderate 
correlations in both SUS and NASA-TLX results (ρ ≈ 0.57) suggest stable 
subjective evaluation patterns across conditions. These findings confirm that 
adaptive interface design can enhance usability without imposing a cognitive 
burden. 

The grade crossing analysis revealed that unsecured crossings induced a 30.2% 
increase in fixation count and a 13.8% rise in fixation frequency compared to 
secured crossings (p < 0.01), alongside a 26.4% reduction in average fixation 
duration (372.5 ms vs. 506.1 ms). These shifts indicate a transition to faster, more 
fragmented gaze behavior under uncertain visual conditions ‒ reflecting elevated 
visual search demands and cognitive effort. While statistical confirmation of 
increased behavioral risk at unsecured crossings was limited (e.g., chi-square p = 
0.4999), the Wilcoxon test (p = 0.0339) and perfect rank-order correlation (ρ = 1.0, 
p < 0.001) support meaningful structural differences in risk response. 
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Although the user interface test and railroad crossing analysis were 
methodologically independent, both underscore how design ‒ whether inside the 
vehicle or in the road environment ‒ can significantly influence driver attention, 
cognitive load, and safety-related behavior. 

Future systems should integrate adaptive HMI strategies with infrastructure-aware 
alerts, to better support driver performance in complex or ambiguous traffic 
scenarios. 

Abbreviations 
AOI Area Of Interest 
BYOD Bring-Your-Own-Device 
ConDash Context-Driven Adaptive Dashboard System 
DBCF Driver Behavior Categorization Framework 
DHCIS Dynamic Human-Computer Interface System 
DRT Driving-Related Tasks 
HMI Human-Machine Interfaces 
ITS Intelligent Transport System 
IVIS In-Vehicle Information Systems 
NASA-TLX NASA Task Load Index 
NDRT Non-Driving Related Tasks 
SUS System Usability Scale 
UI User Interfaces 

UX User Experience 
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