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Abstract: The distribution network (DN) has large-scale and operates at low-voltage level.
This causes a high-power loss and voltage drop that negatively affects different load types in
the DN. This paper optimizes the network reconfiguration along with distributed generation
allocation (REC-DGA) in the DN with different load models to minimize power loss of the
DN and consider maintaining the radial-topology, the grid and distributed generation power
limits and improving the voltage and current profiles. The five load models, which have
voltage-dependent power characteristics, are used to evaluate the effects of the simultaneous
REC-DGA solution. A new metaheuristic algorithm namely growth optimizer (GO) is
adapted for searching the optimal solution for the simultaneous REC-DGA. The performance
of GO is also compared to particle-swarm-optimization (PSO) and genetic-algorithm (GA).
The results evaluated on the 33-node DN show that the optimal simultaneous REC-DGA
helps to dramatically reduce power loss. The power loss reduction compared to the initial
configuration of the cases of constant power, industrial, residential, commercial, and mixed
loads is respectively 74.98%, 73.89%, 72.08%, 70.83% and 72.41%. Furthermore, the
optimal REC-DGA also helps enhance the voltage, current profiles, and the power of load
demand in the DN. In comparison with PSO and GA, GO achieves the better performance
than PSO and GA and the better results compared with previous methods.

Keywords: distribution network; network reconfiguration, distributed generation allocation;
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1 Introduction

Distribution network (DN) is one of the most complex parts of the power system
due to the large number of loads and feeders. However, power loss on the DN
accounts for a significant portion, about 10-13% of the total system generation
capacity [1]. The high-power loss of the DN means that the allowable voltage
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configuration is not guaranteed in operation of the DN. Meanwhile, there are many
loads in the DN such as industrial, residential, and commercial loads that have
voltage-dependent power characteristics. This directly affects the operating ability
of the loads. To overcome these difficulties, network reconfiguration (REC)
combined with the installation of distributed generation (DG) is an effective
solution to this problem. REC is the process of selecting the radial network structure
of the DN through the opening and closing of existing electrical switches on the
DN. The DG is types of small power sources that are usually directly connected to
the DN to generate active power, reactive power, or both active and reactive power
[2]. In Vietnam, in recent years, the output capacity from DG using photovoltaic
(PV) has grown strongly and reached 16.7 GW, accounting for 2% of the total
global installed PV capacity [3]. In the past decade, the PV DG capacity has been
installed up to 20% of the total new installed capacity coming from DG [4]. This is
an opportunity to improve the efficiency of power supply but also a challenge for
optimizing the location and capacity of them on the DN.

In recent years, many studies have been conducted on the REC-DGA problem. In
these studies, REC-DGA is mainly used to improve technical indicators in the DNss.
In [5], the power loss of the DN is minimized by the REC-DGA. In [6], the REC-
DGA is considered to maximize voltage stability index and minimize power loss.
In [7], power loss and load ability are optimized by the REC-DGA. In [8], the REC-
DGA is solved for improving voltage stability and minimizing power loss in the
DN considering probabilistic load flow. The REC-DGA for optimizing of power
loss, operational cost and voltage stability of the DN is carried in [9]. However, the
above studies mainly use the constant power load model or extend the constant
power load levels for the REC-DGA problem. There are only a few studies to
consider different load models, but they are mainly used for the DGA or REC
problem separately without combining both of these problems. For example, in [2],
types of loads including constant impedance, constant power, and constant current
are considered in the process of optimizing DG installation to reduce power losses.
In [10], the optimal DG and capacitor installation problem on the DN is considered
to optimize power loss, voltage profile, and system stability, wherein the types of
loads include constant power, industrial, residential, commercial, constant current
and constant impedance loads are considered. In [11], the REC problem with the
impact of constant power, industrial, residential, and commercial load types to
reduce power losses is considered. From a methodological perspective, in recent
years, optimization techniques have played a central role in improving the
performance and intelligence of both technical and non-technical systems [12].
Recent studies have demonstrated the diversity of optimization applications in
various engineering problems, such as optimizing diesel locomotive operating
parameters to reduce fuel consumption [13], optimizing expert knowledge bases
[14] and learning rates [15] in machine learning, optimizing nonlinear servo control
systems [16], and optimizing the applied plastic loads in reinforced concrete
structures in construction [17]. Optimization is not only a theoretical tool but also a
practical solution that enables multi-disciplinary engineering systems to operate
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more intelligently and efficiently. For the REC-DGA problem, it is a constrained
optimization problem that has so far have been primarily solved using optimization
methods based on metaheuristic algorithms such as equilibrium-optimization (EO)
[6], modified particle-swarm-optimization MPSO [18], elitist-jaya (IEJAYA) [7],
three-dimensional-group-search-optimization (3D-GSO) [5] and fireworks-
algorithm FWA [19]. Nowadays, there are many new algorithms being developed.
Their effectiveness is mainly evaluated on standard mathematical functions.
Therefore, the question is that it is necessary to apply them for technical problems
like the REC-DGA problem to expand application possibilities as well as diversify
solving methods for technical problems that should be encouraged for
implementation.

Although there are many studies related to the REC-DGA problem, most previous
works use the constant power load model that is an unrealistic mode in operation of
the DN. In addition, in the context of strong development of DG using PV in
Vietnam, consideration of this type of DG when connecting to the DN needs to be
done. In terms of solving methods, many studies use optimization algorithms for
the REC-DGA problem. However, there is no effective one for every problem [20].
Searching and applying new methods for the REC-DGA problems needs to be
continuously carried out. In the context of strong development in the field of
optimization, more new algorithms are being developed, i.e. growth-optimizer
(GO). GO is a recent algorithm taken metaphor from the learning and reflection of
people in society [21]. GO has been shown its high performance for benchmark
functions and two engineering problems in [21] and optimal soft open point
placement and open switch position [22]. However, the efficiency of GO for the
REC-DGA also needs to be carried out.

In this paper, five load model types are considered including constant power,
industrial, residential, commercial and mixed loads. The power of these types of
loads has a nonlinear relationship with the voltage amplitude applied to them. To
perform load flow analysis for the DN with these types of loads, the Newton-
Raphson method is adapted to calculate node voltages, branch power, feeder power
and power loss in the DN. The GO optimization algorithm is used to determine the
open switches, location and installed capacity of the DGs in the considered cases.
The goal of optimizing the radial configuration of DN and DG allocation is to
reduce power loss and consider constraints such as the voltage profile, overload in
the DN and the DG power returning to the feeders. The problem of optimizing the
radial configuration, location, and installed capacity of DG is carried out on the 33-
node DN. The ability of the GO method for the REC-DGA problem considering
load types is evaluated through comparison results with the well-known algorithms
consisting of particle-swarm-optimization (PSO) and genetic-algorithm (GA),
which in turn takes ideas from the behavior of birds in the process of searching for
food and from the evolutionary process of organisms in nature. In addition, the
results of GO are also compared with those of the previous studies. The paper’s
main contributions are summarized as follows:
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(i) Propose solution of power loss reduction relied on REC-DGA considering
nonlinear load models.

(i1) Detail steps of GO for the simultaneous REC-DGA problem considering
different nonlinear load models

(iii) It is demonstrated that the simultaneous REC-DGA based on GO algorithm
does not only reduce power loss but also enhances the power of load demand for
nonlinear load models.

(iv) The compared results with PSO and GA as well as the previous methods and
the statistical analysis have shown that GO is an effective method for the optimal
simultaneous REC-DGA considering different nonlinear load models.

2 Problem of Network Reconfiguration and DG
Allocation considering Nonlinear Load Models

2.1 The Problem of REC-DGA for Minimizing Power Loss

Power loss is the most important indicator during DN operation. Thus, in this work,
power loss minimization is considered optimal goal in the REC-DGA process. Let
X denote the decision vector of the REC-DGA problem that consists set of open
switches, DG locations and its active power. The power-loss objective is defined as
follows:

Minimize Py (X) = Y027 u;. AP, (1)

Wherein, X is set of open switches, location and power DGs. P, is power loss of
the DN. AP; is power loss of branch i. Nj, is number of branches. u; € {0, 1} is the
status of branch i that is 1 for closed branches and 0 for open ones.

The optimization of REC-DGA is subject to the following constraints:
1) Constraint of the radial-topology structure [23]:
|det (A)] =1 2)

Where, det (A) is determinant of connected matrix of the DN, wherein A(i, j) is 1
or -1 if branch i connected from/to the node j, otherwise A(i, j) is 0.

ii) Constraint of power of DGs: Power of DGs should be in their capacity limit:
Ppi < Ppgirate 31 =1,..,Npg 3)

iii) Constraint of voltage profile: The voltage amplitudes in the DN should be in the
allowed range:

— 88—



Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

V,=VisVy;j=1,..,N, 4)
Wherein, V; is the voltage amplitude of node j. N}, is number of buses. V;, and Vy, is
the allowed voltage limits that are often chosen to 0.95 pu and 1.05 pu.

iv) Constraint of current profile: The branch currents should be in the allowed range:
KI; <1 ;i=1,.., Ny 5)

Wherein, KI; is load-carrying coefficient of branch i that is defined by ratio of
current flowing on branch i and its rate value.

Wherein, Ppg; and Ppg ; rqre current and rated power of DG i.

v) Constraint of grid power: To increase independence and avoid affecting the grid,
the generating capacity of DGs is not returned to the grid. It is ensured by the
follows equation:

Pgria 20 (6)
Wherein, P4 is the power supplied from the grid to the DN.

2.2 Load Models

Since the load characteristics significantly affect the power flow and loss
evaluation, different nonlinear load models are considered. This section introduces
the nonlinear load representations employed in the optimization process. Generally,
the load demand is assumed as constant for load-flow analysis. However, in reality
loads such as industrial, residential and commercial are dependent on voltage. Thus,
in this work, the load models are represented in terms of their power as follows [10],
[24]:

psch — psch [vil \*
i — roi

[Voil

7

sen = qget - (L) @
t 0t Vol

Wherein, [PF", Q"] and [P§f™, Q3" are respectively the real demand and
schedule demand at the nominal condition. V; and V,; are the real and nominal
voltages at bus i. & and 5 are exponential coefficient for load types. The value of a
and S for load types are presented in Table 1 [10]:

Table 1

Exponent coefficients for load types

Load type Constant power Industrial Residential Commercial
a 0 0.18 0.92 1.51
B 0 6.0 4.04 34
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2.3 Load Flow for Different Nonlinear Load Models

To accurately evaluate the objective function of the REC-DGA problem under
nonlinear load conditions, this section describes the power flow calculation
approach developed for DN with nonlinear loads.

Because of the voltage dependence of load, each node's load needs to be updated
during the load flow process. Therefore, the steps to perform load flow for PQ buses
based on the Newton-Raphson method are adjusted as follows:

Step 1: Generate node voltage V;

Step 2: Calculate the schedule power at node i using (7)

Step 3: Calculate the power at node i

{Pi = Y2 ViV Y| cos (8; — 8 — Oy) ®)
Q= ZgﬁﬂVinYiH sin (6; — 6 — i)

Where P; and Q; are the active and reactive power at node i. V;, V,, and §;, 6, are
voltage amplitude and angle of node i and k respectively. Y;; and 8;;, are the mutual
admittance amplitude and angle respectively.

Step 4: Calculate the change power
{APi =ph—p
AQ; = Q7" — @

And determine the maximum change power AP, ., and AQ.ux. If APy4, and
AQ,,qx are less than the allowed accuracy, line flows are calculated. Otherwise, the
below steps are executed.

)

Step 5: Calculate the Jacobian matrix’s elements H, N, M, L:

The off-diagonal and diagonal elements of H, N, M, L matrixes is respectively
determined by the equation (10), (11), (12) and (13):

6Pi . .
%6 [ViViYik| sin(6; — 6 — Oy) ;i # k
6Pl- n . (10)
= = — Xk=1ViViYi| sin (8; — &) — 6)
P

35,
aTtI:;i(I = Vi¥il cos(8; = 8k — 6); i # k
9P . (11)
7 2|V;Y;| cos(6y) + ZE:1|VkYik| sin (8; — 8 — 6ix)
¢ ES
20— VWil coS(8, — B — 0y %
2Q; n (12)
55, = — 2k=1|ViViYic| cos (8; = 8k — Ou)
L ki
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3Q; . .

s = V¥l sin(8; = 8 = 0,); i # k

3Q; . _ (13)
S = ~2IVi¥il sin(6,) + s |ViYiel sin (8 = 8 = 04

k#i

Step 6: Solve the equation:

H Nj[A§] _ [AP
[M L”AIVI]_[AQ (14)
Step 7: Update the node volatge:
6i=5i+A6i
15
v = w21 v, (1)

The process comes back to step 2 for continuing until AP,,,, and AQ,, ., are less
than the allowed accuracy (€). The flowchart of the Newton-Raphson method for
PQ buses considering the load models is shown in Figure 1.

|Input: Bus and branch data, tolerances (g) of AP and AQ|

v
[ Construct admittance matrix |

[ Generate initial bus voltage |

[Calculate the schedule power of at node i using (1)]

it=it+1

v
[Calculate the power of at node i using (2)]

[ Update the voltage using (9) |
)

[Calculate the change power at node i using (3)]

Calculate A|V| and Ad by
solving (8)
7

Calculate the Jacobian’s
elements using (4), (5), (6)
and (7)

Max|AP,| & Max|AQ| < &

Calculate branch flows,
slack bus power, power loss

end

Figure 1
The Newton-Raphson method for load flow considering the load models

3 Optimization of REC-DGA using the GO
Algorithm

In this study, the optimization problem is formulated to minimize the active power
loss of the DN while satisfying operational constraints such as radial topology
structure, voltage and current limits, and power exchange limits with the main grid.
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The decision variables include the locations of open switches, as well as the
placement and power of DGs to be installed. To obtain the optimal solution for the
REC-DGA problem, each individual represents a configuration scheme of the
network along with the DG location and power. The process of updating the
population through learning and reflection mechanisms enables the algorithm to
gradually converge toward the global optimum. The decision variables in each
solution are described as follows:

X = [81,52 s Snswr L1, Ly s Lpagy Py, Pay vy Pragl (16)

Where, {S;,S,,...,Sqsw} displays open switch positions. {Ll, Ly .., Lndg} and
{P1, P;, ..., Ppqg} present the location and capacity of DGs.

The process of mapping each decision-variable solution of the GO algorithm for the
REC-DGA problem model is summarized as follows:

(i) From each decision-variable solution X generated during the initialization and
updated through the learning and reflection mechanisms of the GO algorithm, the
sub-vector [S;, S5, ..., Snew] 18 updated into the branch data of the DN by removing
the branches containing Sy, S5, ..., Spg from the branch parameters of the DN.

(i) The remaining branches of the DN are then checked for the radiality condition
according to Eq. (2).

(ii1) If the radial-topology condition is not satisfied, a very large value is assigned
to the fitness function of solution X. Conversely, if the radiality condition is
satisfied, the control-variable subvector [Ll, Ly, ey Lyag, Py, Py, oo, Pndg] is updated
into the bus data of the DN. Then, the load flow procedure described in Section 2.3
is executed to obtain the bus voltages, branch currents, and power loss of the DN,
and the fitness value of solution X is calculated based on Eq. (17).

F(X) = Pioss (X) + k- [22, (max(V; =V, 0) + max(v, - V;,0)) +
o max(KI; — 1,0) + [min(Pyria, 0)|] (17)
Where, F; is the fitness value of solution i. k is the penalty coefficient.

(iv) These steps are carried out for each decision-variable solution of the GO
algorithm. The fitness values of the decision-variable individuals help guide the
updating and evolution process of the GO population.

The process of initializing and updating GO individuals for the REC-DGA problem
is performed according to the following steps:

Step 1: Generate random solutions the REC-DGA
Each solution in the population is created as follows:

Xoj=Xy;+7m (Xu;— X)) (18)
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Where, X; ; is the variable j (j = 1,..., D) of the solution (i =1,...,N). r is the
random number in [0, 1]. [X} ;, X ;] is the limit of the variable j. N and D are the
population size and dimension.

Because the open switch position and DG installation position are branches and
nodes on the DN, respectively, these variables need to be adjusted after the
initialization process as follows:

{Si,j = round(SL‘]),] = 1,2, e, NSW

19
Ly; =round(Ly;);j = 1,2,...,ndg 19)

Based on the information of each adjusted solution, the DN parameters are updated,
and the fitness function value of each solution is calculated. Based on the fitness
function value, the global best solution X is determined.

Step 2: Update the solution based on the learning phase

In this step, individuals are updated based on interactions with other individuals in
the population. Based on the value of the fitness function of the solutions, the
current best solution of the population (Xj,s:) is determined. The next P; good
solutions are classified as better individuals (X;,,) and the remaining solutions are
considered bad individuals (S,,,,-). After being classified, the spaces between them
are determined as follows:

91 = Xpest — Xvet,p
92 = Xpest — Xwor,w
93 = Xpet,p — Xworw
s = Xp1 — Xz
Where, X,; and X,, are random selected individuals. Xp.., and X, are
respectively solutions selected randomly in the better and worse pools.

(20)

The influence of these gaps on the update process of solutions is defined as follows:

Ly=—-22Kl__.p— 12324 1)

" 1Dy +D2+D3+Dyll”
Where, Ly, is the learning level of each solution that is effected by the gap k.

Additionally, in GO each solution has a different learning level. If the solution is at
a good level, it will learn less from other solutions. On the contrary, if it is at bad
quality, it will have to learn more information from other individuals. This is
described mathematically as follows:

Fi

S; = (22)

FWOTSf

Where, S; is the learning factor of solution i. F,,,,,s; is the fitness value of the worst
solution.

Finally, the new solution is generated as follows:
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XMW =X+ S, [Ly g1+ Ly go+ Ly g3+ Ly g4l (23)

Each newly created solution is checked its bounds to ensure it is all within the
allowed limits and adjusted the information according to (19). Then, the fitness
function value of each solution is calculated. Based on the fitness function value,
the current solutions are updated according to the selection principle as follows:

Xyes if F**" <F;
ST oo ortherwise -
Where, P, indicates the knowledge memory probability of solution X;.
Then, the global optimal solution is also updated as follows:
X; L IifF,<F
Xgvest = {X;best; Z)Crtlhervél;(zt (25)

Step 3: Update the solution based on the reflection phase

In this process, each individual can be updated from information of better
individuals while their good information can be retained. Based on this principle,
each solution is updated as follows:

Xpj+7a (Xyj—Xp;); if r3 <RF '
Rew = . ifr, <P -
Xij =y Ky 75 (Xb.j - Xi,j) ; orthewise (26)
Xij ; ortherwise

Where, 1, to 75 are random numbers. P; is the reflection coefficient. X}, ; is variable
of the better or best solution. RF is the reduction factor determined as follows:

RF = 0.01 + 0.99 - (it /maxit) 27)
Where, it and maxit are the current and maximum number of iterations.

Each newly created solution is checked its bounds to ensure it is all within the
allowed limits and adjusted the information according to (19). Then, the fitness
function value of each solution is calculated. Based on the fitness function value,
the current solutions are updated according to the selection principle in (24) and the
global best solution is updated one gain by (25).

Step 4: Stop updating the solution

The process of finding new solutions and updating the current solutions of GO from
step 2 to step 3 is done in maxit iterations. At the end of the above iterative process,
the globally optimal solution is considered the solution of the REC-DGA problem.
The flowchart of GO for the REC-DGA problem considering the load models is
shown in Figure 2.
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Input: - Bus and branch parameters of the DN
- Control parameters of GO D, N, Py, Py, P3and maxit

3

- Generate random population of REC-DGA solutions using (18) and modify them using (19)
- Calculate fitness value of each REC-DGA solution
+ Update branch and bus parameters of DN from information of open switches, location and power of DGs
+ If the radial-topology constraint (2) is satisfied, execute load flow in section 2.3 and determine fithess value using (17).
Otherwise, fitness value is assigned a bad value
- Find the best solution X .ot and set current iteration if = 1

- Update the population of REC-DGA solutions based on the learning phase using (20), (21), (22), (23) and modify them
using (19)
- Calculate fitness value of each new REC-DGA solution

+ Update branch and bus parameters of DN from information of open switches, location and power of DGs

+ If the radial-topology constraint (2) is satisfied, execute load flow in section 2.3 and determine fitness value using (17).
[Otherwise, fitness value is assigned a bad value
- Update the current population using (24) and the best solution nges‘ using (25)

- Update the population of REC-DGA solutions based on the reflection phase using (26), (27) and modify them using (19)
- Calculate fitness value of each new REC-DGA solution:

+ Update branch and bus parameters of DN from information of open switches, location and power of DGs

+ If the radial-topology constraint (2) is satisfied, execute load flow in section 2.3 and determine fitness value using (17)
[Otherwise, fitness value is assigned a bad value
- Update the current population using (24) and the best solution ngem using (25)

| Output: Xgheg solution ‘

Figure 2
The GO method for the REC-DGA problem considering the load models

4 Results and Discussion

The REC-DGA problem model and proposed method based on GO is applied to
find optimal open switches as well as location and power of DGs on the DN shown
in Figure 3 [25]. The branches’ rated current is 255 A [23]. The number of DGs be
installed on this system is limited to 3 with maximum capacity is 2MW for each.

To consider the influence of load model types as described in section 2.1 and section
2.2 on REC-DGA results, at each load nodes of the DN, the five cases consisting of
constant power load (CON), industrial load (IND), residential load (RES),
commercial load (COM) and mixed load (MIX) are considered. For the MIX load,
the proportion of industrial, residential and commercial loads at each node is
determined by the following equation:
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psch = psch . (0'4 . (ﬂ)o.ls + 03 (M)osz L 03, (ﬁ)l.sl)

[Voil [Voil [Voil

= i (o4 (1) 05 ()™ 03 (1))

(28)

Figure 3
The 33-node DN

To find the optimal solution for the REC-DGA problem considering the load types
using GO, the number of decision variables is set to 11, with the first five
representing the locations of open switches, the next three corresponding to the
installation positions of the three DG units, and the last three representing the
respective capacities of these DGs. For GO algorithm, the population size and the
maximum number of iterations are chosen to be 30 and 500, respectively. Other
control parameters GO include P;, P, and P; are chosen to be 5, 0.001 and 0.3,
respectively [21]. In addition, to compare the effectiveness of the GO algorithm for
the REC-DGA problem, two famous algorithms including PSO and GA are also
applied to find the optimal solution for cases of the problem. While GO is developed
based on the idea of human adaptation in society, PSO is an algorithm based on the
behavior of birds in the process of searching for food, and GA is inspired by the
evolutionary process of organisms in nature. The population size of PSO and GA is
chosen to be 60 because both algorithms only update the population once in each
iteration. The specific control parameters of PSO include velocity constants C; and
C, chosen to be 2 [26] while the crossover and mutation rates of GA are chosen to
be 0.5 and 0.2 [27]. The GO algorithm applied to the REC-DGA problem is
implemented in MATLAB software wherein the load flow program with different
load models is developed based on the Matpower tool [28] to obtain the power loss,
voltage and current profiles for calculating the fitness function value of each
decision variable solution of GO. The proposed method is run on personal
computers with Windows 11 (64-bit), Intel Core i7-1360P 2.2 GHz, 16 GB RAM.
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The results of implementing REC-DGA for different load types are presented in
Table 2. For the CON load, the total load power before and after implementing
REC-DGA does not change. After installing DG at nodes of{17, 7 and 25} with
power of {0.75296, 0.956946 and 1.27957 MW} respectively combined with open
switches of {33-34-11-31-28}, P,,ss reduction of the DN is 151.9674 kW
corresponding to the reduction of 74.98% compared to that of the initial DN. The
smallest voltage amplitude (V,,;,,) is improved by 6.60% from 0.9131 to 0.9734 pu.
The highest load-carrying coefficient (K1,,,,) is also reduced by 46.58% compared
to that of the original DN. The supplied power from the grid is also decreased from
3.9177 to 0.7762 MW and there is no power from the DGs returned to the grid.

For IND loads, after implementing REC-DGA, power loss is reduced by 73.89%
compared to that of the original DN. The V,,;,, is improved by 5.14% and the K1,
factor is reduced by 45.04%. Similarly, for the RES and COM loads, the benefits in
term of P,,s, reduction, V,,;, improvement and K1I,,,, reduction are respectively
{72.08%, 4.99% and 43.60%} for the RES load, and {70.83%, 4.83% and 42.56%}
for the COM load. In the case of MIX load, after performing REC-DGA, with open
switch positions of {33-34-11-30-28} and DGs placement of {0.929037 MW (at
node 7), 0.818957 MW (at node 18), 1.01966 MW (at node 25)}, the power loss
has decreased by 158.6091 kW to 43.7611 kW corresponding to a reduction of
72.41%. The V,;, is increased from 0.9235 to 0.9697 pu corresponding to an
increase of 5.00% and the K1,,,,, is reduced by 43.85% compared to those of the
original DN. Figure 4 presents the voltage and current profiles before and after
performing REC-DGA for different load types, wherein the dot lines present the
voltage/current profile of the initial case (ini.) and the solid lines show the
voltage/current profile of the optimal case (opt.). The figure shows that for all types
of loads, after performing REC-DGA, the better DN state is obtained than the initial
state of the DN in terms of power loss, voltage, and current profiles. Notably, the
voltage amplitudes of the nodes are all within the allowable range of [0.95, 1.05 pu]
and no line overload occurs in the DN after REC-DGA.

Voltage

a) Voltage profile b) Current profile

Figure 4
Comparison of voltage and current profiles with different load types before and after REC-DGA
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Figure 5 shows that for voltage-dependent loads, the rated power of the loads
decreases significantly, when the voltage value at the nodes does not reach the rated
value. The total active load for industrial, residential, commercial, and mixed loads
before implementing REC-DGA is reduced by 0.81%, 4.05%, 6.45% and 3.49%
respectively compared to the constant power load, wherein the commercial load has
the largest decline. After performing REC-DGA, because the load remains
unchanged of the constant power load type, the load power before and after
performing REC-DGA does not change compared to the original even though the
system voltage indicators change. For the industrial, residential, commercial, and
mixed loads, the total active load power has increased from {3.6848, 3.5645, 3.4754
and 3.5854 MW} to {3.7049, 3.6634, 3.6357 and 3.6703 MW}, respectively
corresponding to an increase of {0.55%, 2.77%, 4.47% and 2.37%} compared to
the original load thanks to the improvement of voltage profile. This shows that
implementing REC-DGA not only reduces power loss, but the resulting technical
benefits also help the load connected to the DN to operate with parameters as close
to the rated value as possible.

pa— S—— 3_7150(7031%) mInitial = Optimal
- 3.6808 37049

3.7000 i 3.6634 3.6703
3.6500 - 3.6307 |
(-4.05%) 7% )
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3.5500 (-6.45%)

3.4754

RES CoMm MIX
Load type

Active load (MW)
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3.4500

3.4000

3.3500 T

Figure 5
Comparison load demand before and after REC-DGA for the 33-node DN

The comparison results between GO, PSO and GA for different load type cases are
presented in Table 3. In all cases, the open switches, the DGs’location and power
found by GO gain smaller power loss compared to PSO and GA. The power loss
obtained by PSO for the CON, IND, RES, COM, and MIX load types are 54.4019,
43.4870, 47.2139, 49.1772 and 45.3293 kW, respectively. These values are
respectively 7.26%, 3.01%, 6.14%, 8.81% and 3.58% higher than that of GO. For
GA, the power loss obtained in cases are lower than PSO, but they are still 1.44%,
0.43%, 0.30%, 0.26% and 0.12% higher than that of GO.
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Table 2
The REC-DGA results for the 33-node DN with different load models
Item CON load IND load RES load COM load MIX load
Initial Optimal Initial Optimal Initial Optimal Initial Optimal Initial Optimal
Load MW, | 3.7150, 3.7150, 3.6848, 3.7049, 3.5645, 3.6634, 3.4754, 3.6307, 3.5854, 3.6703,
MVAr) 2.3000 2.3000 1.7177 2.0920 1.8850 2.1565 1.9481 2.1784 1.8374 2.1371
0s 33-34- 33-34-11- | 33-34-35- | 33-34- 33-34-35- | 33-34- 33-34- 33-34-11- | 33-34-35- | 33-34-11-
35-36-37 | 31-28 36-37 11-30-28 | 36-37 11-30-28 | 35-36-37 | 30-28 36-37 30-28
0.75296 1.01000 1.02672 1.02764 0.92904
(17), (25), (25), (25), (N,
DG (MW) 0.95695 0.82796 0.93025 0.807604 0.81896
[node] None ), None (18), None ), None (18), None (18),
1.27957 0.92957 0.81882 0.927545 1.01966
(25) ) as) () (25)
Pjoss (KW) 202.6863 | 50.7189 161.7035 42.2167 159.3392 44.484 154.9378 | 45.1963 158.6091 43.7611
Vinin (pu) 0.9131 0.9734 0.9228 0.9702 0.9234 0.9695 0.9246 0.9693 0.9235 0.9697
Kl oy (pu) 0.8250 0.4407 0.7614 0.4185 0.7552 0.4259 0.7457 0.4283 0.7544 0.4236
Pyria MW) | 3.9177 0.7762 3.8466 0.9796 3.7239 0.9321 3.6303 0.9131 3.7440 0.9464
Table 3
The comparison results between GO, PSO and GA for different load types of the 33-node DN
Load type | Method oS DG (MW) [node] Pioss kW) | Vipin (W) | Klpax (0w) | Pgria (MW) | Run time (s)
33-34-11- 0.75296 (17), 0.956946 (7),
GO 3128 127957 (25) 50.7189 0.9734 0.4407 0.7762 35.9273
CON 33-34-10- 0.622025 (14), 1.42892
PSO 36-28 (29), 0.94184 (7) 54.4019 0.9722 0.4409 0.7766 37.4004
33-34-11- 0.862773 (18), 1.18178
GA 30-27 (25), 0.851517 (7) 51.4511 0.9677 0.4466 0.8704 31.8521

—-99—




T.T. Nguyen

Optimization of Network Reconfiguration and Distributed Generation Allocation
with Nonlinear Load Models Using Growth Optimizer

Load type | Method (0N DG (MW) [node] Pioss kW) | Vipin (0w) | Klpax (pw) | Pgria (MW) | Run time (s)
GO zgzgg'l I- (1):(9);(9)(5)(7) %5) 0.82796 (13), 422167 0.9702 0.4185 0.9796 49.9023
IND PSO zigg'l I- (1):(9)225‘2‘4(2(;;’ 0.71764 (17), 43.4870 0.9745 0.4238 1.0458 51.7912
GA gigg'“' ?2'2’68210%)’(71)'15641 42.3981 0.9755 0.4169 0.9539 45.8951
GO zgzgg'l I- é:gfg;g 82 0.93025 (7), 44.4840 0.9695 0.4259 0.9321 61.9444
RES PSO zzzgg'lo' (2'55)9,%‘.‘;532346)’ (17')40986 47.2139 0.9700 0.4176 0.8222 49.2917
GA gigg-l I- ?éé??é’éi%% (17';4352 44.6191 0.9736 0.4257 0.9331 48.5662
GO ggzgg'l I- (11%78;527?‘; 50'(3())7604 45.1963 0.9693 0.4283 0.9131 51.5021
COM PSO 3(3):;2_9_ ?1'2;;’1;‘.6213528()2’ 50)'478043 49.1772 0.9751 0.4460 1.1507 52.0665
GA 3(3):3;1-1 I- é:gggégéz(f%’)o'848386 ), 453133 0.9694 0.4298 0.9326 44.9702
GO ggzgg'l I ?:gfggg &,)0.81896 (1), 43.7611 0.9697 0.4236 0.9464 53.6650
MIX PSO z%z;g'g' ?2'2?3.675621256)1’ (17';5687 45.3293 0.9663 0.4169 0.8585 56.0470
GA 3(3):3;1-1 I- ?7'5);’415'206493528()2’ 50)'918095 43.8150 0.9712 0.4216 0.9089 54.8410
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The boxplot plot of the smallest fitness function value obtained in each run of 20
runs of the three algorithms for different load types is presented in Figure 6.
The figure shows that the fitness value obtained in each run of GO is usually lower
than PSO and GA and the data concentration level of GO is also better than the two
comparison algorithms. This result confirms the superiority of GO for this problem.
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Figure 6

Boxplot of GO, PSO and GA for different load type of the 33-node DN

The comparison results with previous studies in Table 4 show that the open
switches, location, and capacity of DGs obtained by the proposed GO method have
smaller power loss than most previous methods. The loss reduction observed by GO
is higher than 3D-GSO [5], EOA [6], IEOA [6], IEJAYA [7], FWA [19] and MPSO
[18] are 3.58%, 4.81%, 2.41%, 19.72%, 8.09% and 22.32%, respectively. This
comparison shows that GO is an effective method for the REC-DGA problem.

Table 4
The comparison results between GO and other methods for the 33-node DN with constant power load
Ploss
Method (0N DG (MW) [node] Pjoss (kW) reduction
(in %)
33-34-11- | 0.75296 (17), 0.956946 (7), o
GO 3128 1.27957 (25) 50.7189 74.98%
7-8-14- 0.63000 (12), 0.60000 (18), o
3D-GSO [5] 2536 1.19000 (30) 57.9700 71.40%
8-27-14- 1.27900 (8), o
EOA 6] 25-36 0.63800 (14), 0.31200 (29) 60.4700 70.17%
7-9-14- 0.42100 (12), 0.65000 (18), o
IEOA [6] 2731 115800 (29) 55.6000 72.57%
6-34-10- 0.32003 (18), 0.36146 (10), o
IEJAYA [7] 37.31 0.28623 (13) 90.6800 55.26%
7-14-11- 0.53670 (32), 0.61580 (29), o
FWA [19] 3228 0.53150 (18) 67.1100 66.89%
2-4-6-34- 0.58519 (17), 0.27088 (9), o
MPSO [18] 35 0.23698 (7) 95.9500 52.66%
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Conclusions

The optimal simultaneous network reconfiguration and DG allocation considering
different load models has been conducted in this study. The load models consisting
of CON, IND, RES, COM and MIX loads in the DN are considered for optimizing
the radial configuration, location and power of DGs to minimize power loss and
satisfy constraints related to the voltage and current profiles and the DG power
returning to the feeders. In addition, the GO is first adapted to search the optimal
open switches, location and power of DGs. The simultaneous REC-DGA problem
and the GO method are implemented to find the optimal solution for the 33-node
DN. The obtained results demonstrate that the power loss of the DNs has been
dramatically reduced by the simultaneous REC-DGA. The power loss reduction
compared to the initial configuration of the cases of constant power, industrial,
residential, commercial, and mixed loads is respectively 74.98%, 73.89%, 72.08%,
70.83% and 72.41%. Furthermore, the voltage and current profiles have been
enhanced after REC-DGA. Moreover, by performing the simultaneous REC-DGA,
the total active load power of the industrial, residential, commercial, and mixed
loads has increased by {0.55%, 2.77%, 4.47% and 2.37%} compared to the total
original load. In terms of solving methods for the simultaneous REC-DGA problem,
GO determines the better solutions than those of PSO and GA. The power loss
gained by GO in different load types is lower than that of PSO and GA. Therefore,
GO can be an efficient method for the optimal network reconfiguration and DG
allocation position problem. For future works, the REC-DGA problem for different
load models should be studied further considering the uncertainty of load types and
DGs.
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