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Abstract: The distribution network (DN) has large-scale and operates at low-voltage level. 
This causes a high-power loss and voltage drop that negatively affects different load types in 
the DN. This paper optimizes the network reconfiguration along with distributed generation 
allocation (REC-DGA) in the DN with different load models to minimize power loss of the 
DN and consider maintaining the radial-topology, the grid and distributed generation power 
limits and improving the voltage and current profiles. The five load models, which have 
voltage-dependent power characteristics, are used to evaluate the effects of the simultaneous 
REC-DGA solution. A new metaheuristic algorithm namely growth optimizer (GO) is 
adapted for searching the optimal solution for the simultaneous REC-DGA. The performance 
of GO is also compared to particle-swarm-optimization (PSO) and genetic-algorithm (GA). 
The results evaluated on the 33-node DN show that the optimal simultaneous REC-DGA 
helps to dramatically reduce power loss. The power loss reduction compared to the initial 
configuration of the cases of constant power, industrial, residential, commercial, and mixed 
loads is respectively 74.98%, 73.89%, 72.08%, 70.83% and 72.41%. Furthermore, the 
optimal REC-DGA also helps enhance the voltage, current profiles, and the power of load 
demand in the DN. In comparison with PSO and GA, GO achieves the better performance 
than PSO and GA and the better results compared with previous methods. 

Keywords: distribution network; network reconfiguration; distributed generation allocation; 
power loss; growth optimizer 

1 Introduction 

Distribution network (DN) is one of the most complex parts of the power system 
due to the large number of loads and feeders. However, power loss on the DN 
accounts for a significant portion, about 10-13% of the total system generation 
capacity [1]. The high-power loss of the DN means that the allowable voltage 
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configuration is not guaranteed in operation of the DN. Meanwhile, there are many 
loads in the DN such as industrial, residential, and commercial loads that have 
voltage-dependent power characteristics. This directly affects the operating ability 
of the loads. To overcome these difficulties, network reconfiguration (REC) 
combined with the installation of distributed generation (DG) is an effective 
solution to this problem. REC is the process of selecting the radial network structure 
of the DN through the opening and closing of existing electrical switches on the 
DN. The DG is types of small power sources that are usually directly connected to 
the DN to generate active power, reactive power, or both active and reactive power 
[2]. In Vietnam, in recent years, the output capacity from DG using photovoltaic 
(PV) has grown strongly and reached 16.7 GW, accounting for 2% of the total 
global installed PV capacity [3]. In the past decade, the PV DG capacity has been 
installed up to 20% of the total new installed capacity coming from DG [4]. This is 
an opportunity to improve the efficiency of power supply but also a challenge for 
optimizing the location and capacity of them on the DN. 

In recent years, many studies have been conducted on the REC-DGA problem. In 
these studies, REC-DGA is mainly used to improve technical indicators in the DNs. 
In [5], the power loss of the DN is minimized by the REC-DGA. In [6], the REC-
DGA is considered to maximize voltage stability index and minimize power loss. 
In [7], power loss and load ability are optimized by the REC-DGA. In [8], the REC-
DGA is solved for improving voltage stability and minimizing power loss in the 
DN considering probabilistic load flow. The REC-DGA for optimizing of power 
loss, operational cost and voltage stability of the DN is carried in [9]. However, the 
above studies mainly use the constant power load model or extend the constant 
power load levels for the REC-DGA problem. There are only a few studies to 
consider different load models, but they are mainly used for the DGA or REC 
problem separately without combining both of these problems. For example, in [2], 
types of loads including constant impedance, constant power, and constant current 
are considered in the process of optimizing DG installation to reduce power losses. 
In [10], the optimal DG and capacitor installation problem on the DN is considered 
to optimize power loss, voltage profile, and system stability, wherein the types of 
loads include constant power, industrial, residential, commercial, constant current 
and constant impedance loads are considered. In [11], the REC problem with the 
impact of constant power, industrial, residential, and commercial load types to 
reduce power losses is considered. From a methodological perspective, in recent 
years, optimization techniques have played a central role in improving the 
performance and intelligence of both technical and non-technical systems [12]. 
Recent studies have demonstrated the diversity of optimization applications in 
various engineering problems, such as optimizing diesel locomotive operating 
parameters to reduce fuel consumption [13], optimizing expert knowledge bases 
[14] and learning rates [15] in machine learning, optimizing nonlinear servo control 
systems [16], and optimizing the applied plastic loads in reinforced concrete 
structures in construction [17]. Optimization is not only a theoretical tool but also a 
practical solution that enables multi-disciplinary engineering systems to operate 
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more intelligently and efficiently. For the REC-DGA problem, it is a constrained 
optimization problem that has so far have been primarily solved using optimization 
methods based on metaheuristic algorithms such as equilibrium-optimization (EO) 
[6], modified particle-swarm-optimization MPSO [18], elitist-jaya (IEJAYA) [7], 
three-dimensional-group-search-optimization (3D-GSO) [5] and fireworks-
algorithm FWA [19]. Nowadays, there are many new algorithms being developed. 
Their effectiveness is mainly evaluated on standard mathematical functions. 
Therefore, the question is that it is necessary to apply them for technical problems 
like the REC-DGA problem to expand application possibilities as well as diversify 
solving methods for technical problems that should be encouraged for 
implementation. 

Although there are many studies related to the REC-DGA problem, most previous 
works use the constant power load model that is an unrealistic mode in operation of 
the DN. In addition, in the context of strong development of DG using PV in 
Vietnam, consideration of this type of DG when connecting to the DN needs to be 
done. In terms of solving methods, many studies use optimization algorithms for 
the REC-DGA problem. However, there is no effective one for every problem [20]. 
Searching and applying new methods for the REC-DGA problems needs to be 
continuously carried out. In the context of strong development in the field of 
optimization, more new algorithms are being developed, i.e. growth-optimizer 
(GO). GO is a recent algorithm taken metaphor from the learning and reflection of 
people in society [21]. GO has been shown its high performance for benchmark 
functions and two engineering problems in [21] and optimal soft open point 
placement and open switch position [22]. However, the efficiency of GO for the 
REC-DGA also needs to be carried out. 

In this paper, five load model types are considered including constant power, 
industrial, residential, commercial and mixed loads. The power of these types of 
loads has a nonlinear relationship with the voltage amplitude applied to them. To 
perform load flow analysis for the DN with these types of loads, the Newton-
Raphson method is adapted to calculate node voltages, branch power, feeder power 
and power loss in the DN. The GO optimization algorithm is used to determine the 
open switches, location and installed capacity of the DGs in the considered cases. 
The goal of optimizing the radial configuration of DN and DG allocation is to 
reduce power loss and consider constraints such as the voltage profile, overload in 
the DN and the DG power returning to the feeders. The problem of optimizing the 
radial configuration, location, and installed capacity of DG is carried out on the 33-
node DN. The ability of the GO method for the REC-DGA problem considering 
load types is evaluated through comparison results with the well-known algorithms 
consisting of particle-swarm-optimization (PSO) and genetic-algorithm (GA), 
which in turn takes ideas from the behavior of birds in the process of searching for 
food and from the evolutionary process of organisms in nature. In addition, the 
results of GO are also compared with those of the previous studies. The paper’s 
main contributions are summarized as follows: 
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(i) Propose solution of power loss reduction relied on REC-DGA considering 
nonlinear load models. 

(ii) Detail steps of GO for the simultaneous REC-DGA problem considering 
different nonlinear load models 

(iii) It is demonstrated that the simultaneous REC-DGA based on GO algorithm 
does not only reduce power loss but also enhances the power of load demand for 
nonlinear load models. 

(iv) The compared results with PSO and GA as well as the previous methods and 
the statistical analysis have shown that GO is an effective method for the optimal 
simultaneous REC-DGA considering different nonlinear load models. 

2 Problem of Network Reconfiguration and DG 
Allocation considering Nonlinear Load Models 

2.1 The Problem of REC-DGA for Minimizing Power Loss 

Power loss is the most important indicator during DN operation. Thus, in this work, 
power loss minimization is considered optimal goal in the REC-DGA process. Let 
𝑋𝑋 denote the decision vector of the REC–DGA problem that consists set of open 
switches, DG locations and its active power. The power-loss objective is defined as 
follows: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  (𝑋𝑋) = ∑ 𝜇𝜇𝑖𝑖 .∆𝑃𝑃𝑖𝑖
𝑁𝑁𝑏𝑏𝑏𝑏
𝑖𝑖=1  (1) 

Wherein, 𝑋𝑋 is set of open switches, location and power DGs.  𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is power loss of 
the DN. ∆𝑃𝑃𝑖𝑖  is power loss of branch 𝑖𝑖. 𝑁𝑁𝑏𝑏𝑏𝑏 is number of branches. 𝜇𝜇𝑖𝑖 ∈ {0, 1} is the 
status of branch 𝑖𝑖 that is 1 for closed branches and 0 for open ones. 

The optimization of REC-DGA is subject to the following constraints: 

i) Constraint of the radial-topology structure [23]: 

|𝑑𝑑𝑑𝑑𝑑𝑑 (𝐴𝐴)| = 1 (2) 

Where, 𝑑𝑑𝑑𝑑𝑑𝑑 (𝐴𝐴) is determinant of connected matrix of the DN, wherein 𝐴𝐴(𝑖𝑖, 𝑗𝑗) is 1 
or -1 if branch 𝑖𝑖 connected from/to the node 𝑗𝑗, otherwise 𝐴𝐴(𝑖𝑖, 𝑗𝑗) is 0. 

ii) Constraint of power of DGs: Power of DGs should be in their capacity limit: 

𝑃𝑃𝐷𝐷𝐷𝐷,𝑖𝑖 ≤ 𝑃𝑃𝐷𝐷𝐷𝐷,𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟     ; 𝑖𝑖 = 1, … ,𝑁𝑁𝐷𝐷𝐷𝐷  (3) 

iii) Constraint of voltage profile: The voltage amplitudes in the DN should be in the 
allowed range: 
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𝑉𝑉𝐿𝐿 ≤ 𝑉𝑉𝑗𝑗 ≤ 𝑉𝑉𝑈𝑈 ; 𝑗𝑗 = 1, … ,𝑁𝑁𝑏𝑏 (4) 

Wherein, 𝑉𝑉𝑗𝑗 is the voltage amplitude of node 𝑗𝑗. 𝑁𝑁𝑏𝑏 is number of buses. 𝑉𝑉𝐿𝐿 and 𝑉𝑉𝑈𝑈 is 
the allowed voltage limits that are often chosen to 0.95 𝑝𝑝𝑝𝑝 and 1.05 𝑝𝑝𝑝𝑝. 

iv) Constraint of current profile: The branch currents should be in the allowed range: 

𝐾𝐾𝐾𝐾𝑖𝑖 ≤ 1    ; 𝑖𝑖 = 1, … ,𝑁𝑁𝑏𝑏𝑏𝑏 (5) 

Wherein, 𝐾𝐾𝐾𝐾𝑖𝑖  is load-carrying coefficient of branch 𝑖𝑖 that is defined by ratio of 
current flowing on branch 𝑖𝑖 and its rate value.  

Wherein, 𝑃𝑃𝐷𝐷𝐷𝐷,𝑖𝑖 and 𝑃𝑃𝐷𝐷𝐷𝐷,𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 current and rated power of DG 𝑖𝑖. 

v) Constraint of grid power: To increase independence and avoid affecting the grid, 
the generating capacity of DGs is not returned to the grid. It is ensured by the 
follows equation: 

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  ≥ 0  (6) 

Wherein, 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  is the power supplied from the grid to the DN. 

2.2 Load Models 

Since the load characteristics significantly affect the power flow and loss 
evaluation, different nonlinear load models are considered. This section introduces 
the nonlinear load representations employed in the optimization process. Generally, 
the load demand is assumed as constant for load-flow analysis. However, in reality 
loads such as industrial, residential and commercial are dependent on voltage. Thus, 
in this work, the load models are represented in terms of their power as follows [10], 
[24]: 

�
𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠ℎ = 𝑃𝑃0𝑖𝑖𝑠𝑠𝑠𝑠ℎ ∙ �

|𝑉𝑉𝑖𝑖|
|𝑉𝑉0i|

�
𝛼𝛼

𝑄𝑄𝑖𝑖𝑠𝑠𝑠𝑠ℎ = 𝑄𝑄0𝑖𝑖𝑠𝑠𝑠𝑠ℎ ∙ �
|𝑉𝑉𝑖𝑖|

|𝑉𝑉0𝑖𝑖|
�
𝛽𝛽  (7) 

Wherein, �𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠ℎ ,𝑄𝑄𝑖𝑖𝑠𝑠𝑠𝑠ℎ� and �𝑃𝑃0𝑖𝑖𝑠𝑠𝑠𝑠ℎ ,𝑄𝑄0𝑖𝑖𝑠𝑠𝑠𝑠ℎ� are respectively the real demand and 
schedule demand at the nominal condition. 𝑉𝑉𝑖𝑖 and 𝑉𝑉0𝑖𝑖 are the real and nominal 
voltages at bus 𝑖𝑖. 𝛼𝛼 and 𝛽𝛽 are exponential coefficient for load types. The value of 𝛼𝛼 
and 𝛽𝛽 for load types are presented in Table 1 [10]: 

Table 1 
Exponent coefficients for load types 

Load type Constant power Industrial Residential Commercial 
𝛼𝛼 0 0.18 0.92 1.51 
𝛽𝛽 0 6.0 4.04 3.4 
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2.3 Load Flow for Different Nonlinear Load Models 

To accurately evaluate the objective function of the REC-DGA problem under 
nonlinear load conditions, this section describes the power flow calculation 
approach developed for DN with nonlinear loads. 

Because of the voltage dependence of load, each node's load needs to be updated 
during the load flow process. Therefore, the steps to perform load flow for PQ buses 
based on the Newton-Raphson method are adjusted as follows: 

Step 1: Generate node voltage 𝑉𝑉𝑖𝑖 

Step 2: Calculate the schedule power at node 𝑖𝑖 using (7) 

Step 3: Calculate the power at node 𝑖𝑖 

�
𝑃𝑃𝑖𝑖 = ∑ |𝑉𝑉𝑖𝑖𝑉𝑉𝑘𝑘𝑌𝑌𝑖𝑖𝑖𝑖|𝑁𝑁𝑏𝑏

𝑘𝑘=1 cos (𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑘𝑘 − 𝜃𝜃𝑖𝑖𝑖𝑖)
𝑄𝑄𝑖𝑖 = ∑ |𝑉𝑉𝑖𝑖𝑉𝑉𝑘𝑘𝑌𝑌𝑖𝑖𝑖𝑖|𝑁𝑁𝑏𝑏

𝑘𝑘=1 sin (𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑘𝑘 − 𝜃𝜃𝑖𝑖𝑖𝑖)
 (8) 

Where 𝑃𝑃𝑖𝑖  and 𝑄𝑄𝑖𝑖  are the active and reactive power at node 𝑖𝑖. 𝑉𝑉𝑖𝑖 ,𝑉𝑉𝑘𝑘 and 𝛿𝛿𝑖𝑖, 𝛿𝛿𝑘𝑘 are 
voltage amplitude and angle of node 𝑖𝑖 and 𝑘𝑘 respectively. 𝑌𝑌𝑖𝑖𝑖𝑖 and 𝜃𝜃𝑖𝑖𝑖𝑖 are the mutual 
admittance amplitude and angle respectively. 

Step 4: Calculate the change power 

�
Δ𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠ℎ − 𝑃𝑃𝑖𝑖
ΔQ𝑖𝑖 = 𝑄𝑄𝑖𝑖𝑠𝑠𝑠𝑠ℎ − 𝑄𝑄𝑖𝑖

 (9) 

And determine the maximum change power Δ𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  and Δ𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 . If Δ𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  and 
Δ𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚  are less than the allowed accuracy, line flows are calculated. Otherwise, the 
below steps are executed. 

Step 5: Calculate the Jacobian matrix’s elements H, N, M, L: 

The off-diagonal and diagonal elements of H, N, M, L matrixes is respectively 
determined by the equation (10), (11), (12) and (13): 

�

𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑘𝑘

= |𝑉𝑉𝑖𝑖𝑉𝑉𝑘𝑘𝑌𝑌𝑖𝑖𝑖𝑖| sin(𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑘𝑘 − 𝜃𝜃𝑖𝑖𝑖𝑖) ; 𝑖𝑖 ≠ 𝑘𝑘 
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

= −∑ |𝑉𝑉𝑖𝑖𝑉𝑉𝑘𝑘𝑌𝑌𝑖𝑖𝑖𝑖|𝑛𝑛
𝑘𝑘=1
𝑘𝑘≠𝑖𝑖

sin (𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑘𝑘 − 𝜃𝜃𝑖𝑖𝑖𝑖)
  (10) 

�

𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕|𝑉𝑉𝑘𝑘|

= |𝑉𝑉𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖| cos(𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑘𝑘 − 𝜃𝜃𝑖𝑖𝑖𝑖) ;  𝑖𝑖 ≠ 𝑘𝑘                         
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕|𝑉𝑉𝑖𝑖|

= 2|𝑉𝑉𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖| cos(𝜃𝜃𝑖𝑖𝑖𝑖) + ∑ |𝑉𝑉𝑘𝑘𝑌𝑌𝑖𝑖𝑖𝑖|𝑛𝑛
𝑘𝑘=1
𝑘𝑘≠𝑖𝑖

sin (𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑘𝑘 − 𝜃𝜃𝑖𝑖𝑖𝑖)
 (11) 

�

𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑘𝑘

= −|𝑉𝑉𝑖𝑖𝑉𝑉𝑘𝑘𝑌𝑌𝑖𝑖𝑖𝑖| cos(𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑘𝑘 − 𝜃𝜃𝑖𝑖𝑖𝑖) ; 𝑖𝑖 ≠ 𝑘𝑘 
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

= −∑ |𝑉𝑉𝑖𝑖𝑉𝑉𝑘𝑘𝑌𝑌𝑖𝑖𝑖𝑖|𝑛𝑛
𝑘𝑘=1
𝑘𝑘≠𝑖𝑖

cos (𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑘𝑘 − 𝜃𝜃𝑖𝑖𝑖𝑖)
 (12) 
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�

𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕|𝑉𝑉𝑘𝑘|

= |𝑉𝑉𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖| sin(𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑘𝑘 − 𝜃𝜃𝑖𝑖𝑖𝑖) ;  𝑖𝑖 ≠ 𝑘𝑘                                  
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕|𝑉𝑉𝑖𝑖|

= −2|𝑉𝑉𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖| sin(𝜃𝜃𝑖𝑖𝑖𝑖) + ∑ |𝑉𝑉𝑘𝑘𝑌𝑌𝑖𝑖𝑖𝑖|𝑛𝑛
𝑘𝑘=1
𝑘𝑘≠𝑖𝑖

sin (𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑘𝑘 − 𝜃𝜃𝑖𝑖𝑖𝑖)
 (13) 

Step 6: Solve the equation: 

�𝐻𝐻 𝑁𝑁
𝑀𝑀 𝐿𝐿� �

Δ𝛿𝛿
Δ|𝑉𝑉|� = �Δ𝑃𝑃Δ𝑄𝑄�  (14) 

Step 7: Update the node volatge: 

�
𝛿𝛿𝑖𝑖 = 𝛿𝛿𝑖𝑖 + Δ𝛿𝛿𝑖𝑖

|𝑉𝑉𝑖𝑖| = |𝑉𝑉𝑖𝑖| + Δ|𝑉𝑉𝑖𝑖|
 (15) 

The process comes back to step 2 for continuing until Δ𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  and Δ𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚  are less 
than the allowed accuracy (ε). The flowchart of the Newton-Raphson method for 
PQ buses considering the load models is shown in Figure 1. 

Start

Input: Bus and branch data, tolerances (ε) of ΔP and ΔQ

Construct admittance matrix

Generate initial bus voltage

it = 1

Bus i = 1

i = i + 1

Calculate the schedule power of at node i using (1)

Calculate the power of at node i using (2)

Calculate the change power at node i using (3)

Yes

No i =  Nb

Calculate the Jacobian’s 
elements using (4), (5), (6) 

and (7)

Calculate Δ|V| and Δδ by 
solving (8)

No

Yes

Max|ΔPi| & Max|ΔQi| ≤  ε

Update the voltage using (9)

Calculate branch flows, 
slack bus power, power loss

end

it = it + 1

 

Figure 1 
The Newton-Raphson method for load flow considering the load models 

3 Optimization of REC-DGA using the GO 
Algorithm 

In this study, the optimization problem is formulated to minimize the active power 
loss of the DN while satisfying operational constraints such as radial topology 
structure, voltage and current limits, and power exchange limits with the main grid. 
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The decision variables include the locations of open switches, as well as the 
placement and power of DGs to be installed. To obtain the optimal solution for the 
REC-DGA problem, each individual represents a configuration scheme of the 
network along with the DG location and power. The process of updating the 
population through learning and reflection mechanisms enables the algorithm to 
gradually converge toward the global optimum. The decision variables in each 
solution are described as follows: 

 X = [𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 , 𝐿𝐿1, 𝐿𝐿2, … , 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛,𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛] (16) 

Where, {𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛} displays open switch positions. �𝐿𝐿1, 𝐿𝐿2 … , 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛� and 
{𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛} present the location and capacity of DGs. 

The process of mapping each decision-variable solution of the GO algorithm for the 
REC-DGA problem model is summarized as follows: 

(i) From each decision-variable solution X generated during the initialization and 
updated through the learning and reflection mechanisms of the GO algorithm, the 
sub-vector [𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛] is updated into the branch data of the DN by removing 
the branches containing 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 from the branch parameters of the DN. 

(ii) The remaining branches of the DN are then checked for the radiality condition 
according to Eq. (2). 

(iii) If the radial-topology condition is not satisfied, a very large value is assigned 
to the fitness function of solution X. Conversely, if the radiality condition is 
satisfied, the control-variable subvector �𝐿𝐿1, 𝐿𝐿2, … , 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛� is updated 
into the bus data of the DN. Then, the load flow procedure described in Section 2.3 
is executed to obtain the bus voltages, branch currents, and power loss of the DN, 
and the fitness value of solution 𝑋𝑋 is calculated based on Eq. (17). 

F(X) = 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  (𝑋𝑋) + 𝑘𝑘 ∙ �∑ �𝑚𝑚𝑚𝑚𝑚𝑚�𝑉𝑉𝑗𝑗 − 𝑉𝑉𝑈𝑈, 0� + 𝑚𝑚𝑚𝑚𝑚𝑚�𝑉𝑉𝐿𝐿 − 𝑉𝑉𝑗𝑗 , 0��𝑁𝑁𝑏𝑏
𝑗𝑗=1 +

 ∑ 𝑚𝑚𝑚𝑚𝑚𝑚(𝐾𝐾𝐾𝐾𝑖𝑖 −  1,0)𝑁𝑁𝑏𝑏𝑏𝑏
𝑖𝑖=1 + �𝑚𝑚𝑚𝑚𝑚𝑚�𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , 0��� (17) 

Where, 𝐹𝐹𝑖𝑖 is the fitness value of solution 𝑖𝑖. 𝑘𝑘 is the penalty coefficient. 

(iv) These steps are carried out for each decision-variable solution of the GO 
algorithm. The fitness values of the decision-variable individuals help guide the 
updating and evolution process of the GO population. 

The process of initializing and updating GO individuals for the REC-DGA problem 
is performed according to the following steps: 

Step 1: Generate random solutions the REC-DGA 

Each solution in the population is created as follows: 

𝑋𝑋𝑖𝑖,𝑗𝑗 = 𝑋𝑋𝐿𝐿,𝑗𝑗 + 𝑟𝑟1 ∙ �𝑋𝑋𝐻𝐻,𝑗𝑗 − 𝑋𝑋𝐿𝐿,𝑗𝑗� (18) 
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Where, 𝑋𝑋𝑖𝑖,𝑗𝑗 is the variable 𝑗𝑗 (𝑗𝑗 = 1, … ,𝐷𝐷) of the solution  (𝑖𝑖 = 1, … ,𝑁𝑁). 𝑟𝑟1 is the 
random number in [0, 1]. [𝑋𝑋𝐿𝐿,𝑗𝑗 ,𝑋𝑋𝐻𝐻,𝑗𝑗] is the limit of the variable 𝑗𝑗. 𝑁𝑁 and 𝐷𝐷 are the 
population size and dimension.  

Because the open switch position and DG installation position are branches and 
nodes on the DN, respectively, these variables need to be adjusted after the 
initialization process as follows: 

�
𝑆𝑆𝑖𝑖,𝑗𝑗 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑆𝑆𝑖𝑖,𝑗𝑗�; 𝑗𝑗 = 1,2, … ,𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿𝑖𝑖,𝑗𝑗 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝐿𝐿𝑖𝑖,𝑗𝑗�; 𝑗𝑗 = 1,2, … ,𝑛𝑛𝑛𝑛𝑛𝑛

 (19) 

Based on the information of each adjusted solution, the DN parameters are updated, 
and the fitness function value of each solution is calculated. Based on the fitness 
function value, the global best solution 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  is determined. 

Step 2: Update the solution based on the learning phase 

In this step, individuals are updated based on interactions with other individuals in 
the population. Based on the value of the fitness function of the solutions, the 
current best solution of the population (𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) is determined. The next 𝑃𝑃1 good 
solutions are classified as better individuals (𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏) and the remaining solutions are 
considered bad individuals (𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤). After being classified, the spaces between them 
are determined as follows: 

⎩
⎨

⎧
𝑔𝑔1 = 𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏,𝑏𝑏
𝑔𝑔2 = 𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑋𝑋𝑤𝑤𝑤𝑤𝑤𝑤,𝑤𝑤

     

𝑔𝑔3 = 𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏,𝑏𝑏 − 𝑋𝑋𝑤𝑤𝑤𝑤𝑤𝑤,𝑤𝑤     
𝑔𝑔4 = 𝑋𝑋𝑟𝑟1 − 𝑋𝑋𝑟𝑟2              

 (20) 

Where, 𝑋𝑋𝑟𝑟1 and 𝑋𝑋𝑟𝑟2 are random selected individuals. 𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏,𝑏𝑏 and 𝑋𝑋𝑤𝑤𝑤𝑤𝑤𝑤,𝑤𝑤 are 
respectively solutions selected randomly in the better and worse pools. 

The influence of these gaps on the update process of solutions is defined as follows: 

𝐿𝐿𝑘𝑘 = ‖𝐷𝐷𝑘𝑘‖
‖𝐷𝐷1+𝐷𝐷2+𝐷𝐷3+𝐷𝐷4‖

; 𝑘𝑘 = 1, 2, 3, 4 (21) 

Where, 𝐿𝐿𝑘𝑘 is the learning level of each solution that is effected by the gap 𝑘𝑘. 

Additionally, in GO each solution has a different learning level. If the solution is at 
a good level, it will learn less from other solutions. On the contrary, if it is at bad 
quality, it will have to learn more information from other individuals. This is 
described mathematically as follows: 

𝑆𝑆𝑖𝑖 = 𝐹𝐹𝑖𝑖
𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

 (22) 

Where, 𝑆𝑆𝑖𝑖 is the learning factor of solution 𝑖𝑖. 𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  is the fitness value of the worst 
solution. 

Finally, the new solution is generated as follows: 
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X𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋𝑖𝑖 + 𝑆𝑆𝑖𝑖 ∙ [𝐿𝐿1 ∙ 𝑔𝑔1 + 𝐿𝐿2 ∙ 𝑔𝑔2 + 𝐿𝐿3 ∙ 𝑔𝑔3 + 𝐿𝐿4 ∙ 𝑔𝑔4]  (23) 

Each newly created solution is checked its bounds to ensure it is all within the 
allowed limits and adjusted the information according to (19). Then, the fitness 
function value of each solution is calculated. Based on the fitness function value, 
the current solutions are updated according to the selection principle as follows: 

𝑋𝑋𝑖𝑖 = �
X𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 ;                                𝑖𝑖𝑖𝑖 𝐹𝐹𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 < 𝐹𝐹𝑖𝑖             

�X𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 ;  𝑖𝑖𝑖𝑖 𝑟𝑟2 < 𝑃𝑃2      
𝑋𝑋𝑖𝑖;        𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒     𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                  (24) 

Where, 𝑃𝑃2 indicates the knowledge memory probability of solution 𝑋𝑋𝑖𝑖. 

Then, the global optimal solution is also updated as follows: 

𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = �
𝑋𝑋𝑖𝑖        ;  𝑖𝑖𝑖𝑖 𝐹𝐹𝑖𝑖 < 𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔    
𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔;   𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒      (25) 

Step 3: Update the solution based on the reflection phase 

In this process, each individual can be updated from information of better 
individuals while their good information can be retained. Based on this principle, 
each solution is updated as follows: 

𝑋𝑋𝑖𝑖,𝑗𝑗𝑛𝑛𝑛𝑛𝑛𝑛 = �
�

𝑋𝑋𝐿𝐿,𝑗𝑗 + 𝑟𝑟4 ∙ �𝑋𝑋𝐻𝐻,𝑗𝑗 − 𝑋𝑋𝐿𝐿,𝑗𝑗�;  𝑖𝑖𝑖𝑖 𝑟𝑟3 < 𝑅𝑅𝑅𝑅 
𝑋𝑋𝑖𝑖,𝑗𝑗 + 𝑟𝑟5 ∙ �𝑋𝑋𝑏𝑏,𝑗𝑗 − 𝑋𝑋𝑖𝑖,𝑗𝑗�         ;   𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

;     𝑖𝑖𝑖𝑖 𝑟𝑟2 < 𝑃𝑃3             

𝑋𝑋𝑖𝑖,𝑗𝑗                                                                      ;  𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒             
 (26) 

Where, 𝑟𝑟2 to 𝑟𝑟5 are random numbers. 𝑃𝑃3 is the reflection coefficient. 𝑋𝑋𝑏𝑏,𝑗𝑗 is variable 
of the better or best solution. 𝑅𝑅𝑅𝑅 is the reduction factor determined as follows: 

𝑅𝑅𝑅𝑅 = 0.01 + 0.99 ∙ (𝑖𝑖𝑖𝑖/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)  (27) 

Where, 𝑖𝑖𝑖𝑖 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are the current and maximum number of iterations. 

Each newly created solution is checked its bounds to ensure it is all within the 
allowed limits and adjusted the information according to (19). Then, the fitness 
function value of each solution is calculated. Based on the fitness function value, 
the current solutions are updated according to the selection principle in (24) and the 
global best solution is updated one gain by (25). 

Step 4: Stop updating the solution 

The process of finding new solutions and updating the current solutions of GO from 
step 2 to step 3 is done in 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 iterations. At the end of the above iterative process, 
the globally optimal solution is considered the solution of the REC-DGA problem. 
The flowchart of GO for the REC-DGA problem considering the load models is 
shown in Figure 2. 
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Figure 2 

The GO method for the REC-DGA problem considering the load models 

4 Results and Discussion 

The REC-DGA problem model and proposed method based on GO is applied to 
find optimal open switches as well as location and power of DGs on the DN shown 
in Figure 3 [25]. The branches’ rated current is 255 A [23]. The number of DGs be 
installed on this system is limited to 3 with maximum capacity is 2MW for each. 

To consider the influence of load model types as described in section 2.1 and section 
2.2 on REC-DGA results, at each load nodes of the DN, the five cases consisting of 
constant power load (CON), industrial load (IND), residential load (RES), 
commercial load (COM) and mixed load (MIX) are considered. For the MIX load, 
the proportion of industrial, residential and commercial loads at each node is 
determined by the following equation: 



T. T. Nguyen Optimization of Network Reconfiguration and Distributed Generation Allocation 
  with Nonlinear Load Models Using Growth Optimizer 

‒ 96 ‒ 

�
𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠ℎ = 𝑃𝑃0𝑖𝑖𝑠𝑠𝑠𝑠ℎ ∙ �0.4 ∙ � |𝑉𝑉𝑖𝑖|

|𝑉𝑉0𝑖𝑖|
�
0.18

+ 0.3 ∙ � |𝑉𝑉𝑖𝑖|
|𝑉𝑉0𝑖𝑖|

�
0.92

+ 0.3 ∙ � |𝑉𝑉𝑖𝑖|
|𝑉𝑉0𝑖𝑖|

�
1.51

�

𝑄𝑄𝑖𝑖𝑠𝑠𝑠𝑠ℎ = 𝑄𝑄0𝑖𝑖𝑠𝑠𝑠𝑠ℎ ∙ �0.4 ∙ � |𝑉𝑉𝑖𝑖|
|𝑉𝑉0𝑖𝑖|

�
6

+ 0.3 ∙ � |𝑉𝑉𝑖𝑖|
|𝑉𝑉0𝑖𝑖|

�
4.04

+ 0.3 ∙ � |𝑉𝑉𝑖𝑖|
|𝑉𝑉0𝑖𝑖|

�
3.4
�     

 (28) 
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Figure 3 
The 33-node DN 

To find the optimal solution for the REC-DGA problem considering the load types 
using GO, the number of decision variables is set to 11, with the first five 
representing the locations of open switches, the next three corresponding to the 
installation positions of the three DG units, and the last three representing the 
respective capacities of these DGs. For GO algorithm, the population size and the 
maximum number of iterations are chosen to be 30 and 500, respectively. Other 
control parameters GO include 𝑃𝑃1, 𝑃𝑃2 and 𝑃𝑃3 are chosen to be 5, 0.001 and 0.3, 
respectively [21]. In addition, to compare the effectiveness of the GO algorithm for 
the REC-DGA problem, two famous algorithms including PSO and GA are also 
applied to find the optimal solution for cases of the problem. While GO is developed 
based on the idea of human adaptation in society, PSO is an algorithm based on the 
behavior of birds in the process of searching for food, and GA is inspired by the 
evolutionary process of organisms in nature. The population size of PSO and GA is 
chosen to be 60 because both algorithms only update the population once in each 
iteration. The specific control parameters of PSO include velocity constants 𝐶𝐶1 and 
𝐶𝐶2 chosen to be 2 [26] while the crossover and mutation rates of GA are chosen to 
be 0.5 and 0.2 [27]. The GO algorithm applied to the REC-DGA problem is 
implemented in MATLAB software wherein the load flow program with different 
load models is developed based on the Matpower tool [28] to obtain the power loss, 
voltage and current profiles for calculating the fitness function value of each 
decision variable solution of GO. The proposed method is run on personal 
computers with Windows 11 (64-bit), Intel Core i7-1360P 2.2 GHz, 16 GB RAM. 
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The results of implementing REC-DGA for different load types are presented in 
Table 2. For the CON load, the total load power before and after implementing 
REC-DGA does not change. After installing DG at nodes of{17, 7 and 25} with 
power of {0.75296, 0.956946 and 1.27957 MW} respectively combined with open 
switches of {33-34-11-31-28}, 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 reduction of the DN is 151.9674 kW 
corresponding to the reduction of 74.98% compared to that of the initial DN. The 
smallest voltage amplitude (𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚) is improved by 6.60% from 0.9131 to 0.9734 pu. 
The highest load-carrying coefficient (𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚) is also reduced by 46.58% compared 
to that of the original DN. The supplied power from the grid is also decreased from 
3.9177 to 0.7762 MW and there is no power from the DGs returned to the grid. 

For IND loads, after implementing REC-DGA, power loss is reduced by 73.89% 
compared to that of the original DN. The 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 is improved by 5.14% and the 𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 
factor is reduced by 45.04%. Similarly, for the RES and COM loads, the benefits in 
term of 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 reduction, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 improvement and 𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 reduction are respectively 
{72.08%, 4.99% and 43.60%} for the RES load, and {70.83%, 4.83% and 42.56%} 
for the COM load. In the case of MIX load, after performing REC-DGA, with open 
switch positions of {33-34-11-30-28} and DGs placement of {0.929037 MW (at 
node 7), 0.818957 MW (at node 18), 1.01966 MW (at node 25)}, the power loss 
has decreased by 158.6091 kW to 43.7611 kW corresponding to a reduction of 
72.41%. The 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 is increased from 0.9235 to 0.9697 pu corresponding to an 
increase of 5.00% and the 𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 is reduced by 43.85% compared to those of the 
original DN. Figure 4 presents the voltage and current profiles before and after 
performing REC-DGA for different load types, wherein the dot lines present the 
voltage/current profile of the initial case (ini.) and the solid lines show the 
voltage/current profile of the optimal case (opt.). The figure shows that for all types 
of loads, after performing REC-DGA, the better DN state is obtained than the initial 
state of the DN in terms of power loss, voltage, and current profiles. Notably, the 
voltage amplitudes of the nodes are all within the allowable range of [0.95, 1.05 pu] 
and no line overload occurs in the DN after REC-DGA. 

 

a) Voltage profile 

 

b) Current profile 

Figure 4 
Comparison of voltage and current profiles with different load types before and after REC-DGA 
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Figure 5 shows that for voltage-dependent loads, the rated power of the loads 
decreases significantly, when the voltage value at the nodes does not reach the rated 
value. The total active load for industrial, residential, commercial, and mixed loads 
before implementing REC-DGA is reduced by 0.81%, 4.05%, 6.45% and 3.49% 
respectively compared to the constant power load, wherein the commercial load has 
the largest decline. After performing REC-DGA, because the load remains 
unchanged of the constant power load type, the load power before and after 
performing REC-DGA does not change compared to the original even though the 
system voltage indicators change. For the industrial, residential, commercial, and 
mixed loads, the total active load power has increased from {3.6848, 3.5645, 3.4754 
and 3.5854 MW} to {3.7049, 3.6634, 3.6357 and 3.6703 MW}, respectively 
corresponding to an increase of {0.55%, 2.77%, 4.47% and 2.37%} compared to 
the original load thanks to the improvement of voltage profile. This shows that 
implementing REC-DGA not only reduces power loss, but the resulting technical 
benefits also help the load connected to the DN to operate with parameters as close 
to the rated value as possible. 

 
Figure 5 

Comparison load demand before and after REC-DGA for the 33-node DN 

The comparison results between GO, PSO and GA for different load type cases are 
presented in Table 3. In all cases, the open switches, the DGs’location and power 
found by GO gain smaller power loss compared to PSO and GA. The power loss 
obtained by PSO for the CON, IND, RES, COM, and MIX load types are 54.4019, 
43.4870, 47.2139, 49.1772 and 45.3293 kW, respectively. These values are 
respectively 7.26%, 3.01%, 6.14%, 8.81% and 3.58% higher than that of GO. For 
GA, the power loss obtained in cases are lower than PSO, but they are still 1.44%, 
0.43%, 0.30%, 0.26% and 0.12% higher than that of GO. 
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Table 2 
The REC-DGA results for the 33-node DN with different load models 

Item CON load IND load RES load COM load MIX load 
Initial Optimal Initial Optimal Initial Optimal Initial Optimal Initial Optimal 

Load (MW, 
MVAr) 

3.7150, 
2.3000 

3.7150, 
2.3000 

3.6848, 
1.7177 

3.7049, 
2.0920 

3.5645, 
1.8850 

3.6634, 
2.1565 

3.4754, 
1.9481 

3.6307, 
2.1784 

3.5854, 
1.8374 

3.6703, 
2.1371 

OS 33-34- 
35-36- 37 

33-34-11-
31- 28 

33-34-35-
36-37 

33-34-
11-30-28 

33-34-35-
36-37 

33-34-
11-30-28 

33-34-
35-36-37 

33-34-11-
30-28 

33-34-35-
36-37 

33-34-11-
30-28 

DG (MW) 
[node] None 

0.75296 
(17), 
0.95695 
(7), 
1.27957 
(25) 

None 

1.01000 
(25), 
0.82796 
(18), 
0.92957 
(7) 

None 

1.02672 
(25), 
0.93025 
(7), 
0.81882 
(18) 

None 

1.02764 
(25), 
0.807604 
(18), 
0.927545 
(7) 

None 

0.92904 
(7), 
0.81896 
(18), 
1.01966 
(25) 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (kW) 202.6863 50.7189 161.7035 42.2167 159.3392 44.484 154.9378 45.1963 158.6091 43.7611 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 (pu) 0.9131 0.9734 0.9228 0.9702 0.9234 0.9695 0.9246 0.9693 0.9235 0.9697 
𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 (pu) 0.8250 0.4407 0.7614 0.4185 0.7552 0.4259 0.7457 0.4283 0.7544 0.4236 
𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (MW) 3.9177 0.7762 3.8466 0.9796 3.7239 0.9321 3.6303 0.9131 3.7440 0.9464 

Table 3 
The comparison results between GO, PSO and GA for different load types of the 33-node DN 

Load type Method OS DG (MW) [node] 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (kW) 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 (pu) 𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 (pu) 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔   (MW) Run time (s) 

CON  
  

GO 33-34-11-
31-28 

0.75296 (17), 0.956946 (7), 
1.27957 (25) 50.7189 0.9734 0.4407 0.7762 35.9273 

PSO 33-34-10-
36-28 

0.622025 (14), 1.42892 
(29), 0.94184 (7) 54.4019 0.9722 0.4409 0.7766 37.4004 

GA 33-34-11-
30-27 

0.862773 (18), 1.18178 
(25), 0.851517 (7) 51.4511 0.9677 0.4466 0.8704 31.8521 
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Load type Method OS DG (MW) [node] 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (kW) 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 (pu) 𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 (pu) 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔   (MW) Run time (s) 

IND  
  

GO 33-34-11-
30-28 

1.01000 (25), 0.82796 (18), 
0.92957 (7) 42.2167 0.9702 0.4185 0.9796 49.9023 

PSO 33-34-11-
31-28 

0.959144 (7), 0.71764 (17), 
1.02622 (29) 43.4870 0.9745 0.4238 1.0458 51.7912 

GA 33-34-11-
31-28 

0.736081 (17), 1.15641 
(25), 0.90156 (7) 42.3981 0.9755 0.4169 0.9539 45.8951 

RES  
  

GO 33-34-11-
30-28 

1.02672 (25), 0.93025 (7), 
0.81882 (18) 44.4840 0.9695 0.4259 0.9321 61.9444 

PSO 33-34-10-
36-28 

 0.598416 (14), 1.40986 
(25), 0.883436 (7) 47.2139 0.9700 0.4176 0.8222 49.2917 

GA 33-34-11-
31-28 

0.702474 (17), 1.14352 
(25), 0.931268 (7) 44.6191 0.9736 0.4257 0.9331 48.5662 

COM  
  

GO 33-34-11-
30-28 

1.02764 (25), 0.807604 
(18), 0.927545 (7) 45.1963 0.9693 0.4283 0.9131 51.5021 

PSO 33-34-9-
30-26 

0.811461 (18), 0.478043 
(12), 1.2393 (25) 49.1772 0.9751 0.4460 1.1507 52.0665 

GA 33-34-11-
30-28 

1.08529 (25), 0.848386 (7), 
0.809698 (18) 45.3133 0.9694 0.4298 0.9326 44.9702 

MIX  
  

GO 33-34-11-
30-28 

0.92904 (7), 0.81896 (18), 
1.01966 (25) 43.7611 0.9697 0.4236 0.9464 53.6650 

PSO 33-10-8-
31-28 

0.933365 (15), 1.15687 
(25), 0.766261 (7) 45.3293 0.9663 0.4169 0.8585 56.0470 

GA 33-34-11-
30-28 

0.845269 (18), 0.918095 
(7), 1.04324 (25) 43.8150 0.9712 0.4216 0.9089 54.8410 
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The boxplot plot of the smallest fitness function value obtained in each run of 20 
runs of the three algorithms for different load types is presented in Figure 6.  
The figure shows that the fitness value obtained in each run of GO is usually lower 
than PSO and GA and the data concentration level of GO is also better than the two 
comparison algorithms. This result confirms the superiority of GO for this problem. 

 
Figure 6 

Boxplot of GO, PSO and GA for different load type of the 33-node DN 

The comparison results with previous studies in Table 4 show that the open 
switches, location, and capacity of DGs obtained by the proposed GO method have 
smaller power loss than most previous methods. The loss reduction observed by GO 
is higher than 3D-GSO [5], EOA [6], IEOA [6], IEJAYA [7], FWA [19] and MPSO 
[18] are 3.58%, 4.81%, 2.41%, 19.72%, 8.09% and 22.32%, respectively. This 
comparison shows that GO is an effective method for the REC-DGA problem. 

Table 4 
The comparison results between GO and other methods for the 33-node DN with constant power load 

Method OS DG (MW) [node] 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (kW) 
𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

reduction 
(in %) 

GO 33-34-11-
31-28 

0.75296 (17), 0.956946 (7), 
1.27957 (25) 50.7189 74.98% 

3D-GSO [5] 7-8-14-
25-36 

0.63000 (12), 0.60000 (18), 
1.19000 (30) 57.9700 71.40% 

EOA [6] 8-27-14-
25-36 

1.27900 (8),  
0.63800 (14), 0.31200 (29) 60.4700 70.17% 

IEOA [6] 7-9-14-
27-31 

0.42100 (12), 0.65000 (18), 
1.15800 (29) 55.6000 72.57% 

IEJAYA [7] 6-34-10-
37-31 

0.32003 (18), 0.36146 (10), 
0.28623 (13) 90.6800 55.26% 

FWA [19] 7-14-11-
32-28 

0.53670 (32), 0.61580 (29), 
0.53150 (18) 67.1100 66.89% 

MPSO [18] 2-4-6-34-
35 

0.58519 (17), 0.27088 (9), 
0.23698 (7) 95.9500 52.66% 
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Conclusions 

The optimal simultaneous network reconfiguration and DG allocation considering 
different load models has been conducted in this study. The load models consisting 
of CON, IND, RES, COM and MIX loads in the DN are considered for optimizing 
the radial configuration, location and power of DGs to minimize power loss and 
satisfy constraints related to the voltage and current profiles and the DG power 
returning to the feeders. In addition, the GO is first adapted to search the optimal 
open switches, location and power of DGs. The simultaneous REC-DGA problem 
and the GO method are implemented to find the optimal solution for the 33-node 
DN. The obtained results demonstrate that the power loss of the DNs has been 
dramatically reduced by the simultaneous REC-DGA. The power loss reduction 
compared to the initial configuration of the cases of constant power, industrial, 
residential, commercial, and mixed loads is respectively 74.98%, 73.89%, 72.08%, 
70.83% and 72.41%. Furthermore, the voltage and current profiles have been 
enhanced after REC-DGA. Moreover, by performing the simultaneous REC-DGA, 
the total active load power of the industrial, residential, commercial, and mixed 
loads has increased by {0.55%, 2.77%, 4.47% and 2.37%} compared to the total 
original load. In terms of solving methods for the simultaneous REC-DGA problem, 
GO determines the better solutions than those of PSO and GA. The power loss 
gained by GO in different load types is lower than that of PSO and GA. Therefore, 
GO can be an efficient method for the optimal network reconfiguration and DG 
allocation position problem. For future works, the REC-DGA problem for different 
load models should be studied further considering the uncertainty of load types and 
DGs. 
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