
Acta Polytechnica Hungarica Vol. 22, No. 12, 2025 

‒ 47 ‒ 

Feedforward Neural Network for Orientation 
Estimation Under Magnetic and Acceleration 
Disturbances 

Akos Odry1*, Istvan Kecskes2, Richard Pesti1, Dominik Csik1, 
Massimo Stefanoni3, Imre Kovacs1, Edit Laufer4, Peter Sarcevic1 

1 Faculty of Engineering, University of Szeged, Mars tér 7, 6724 Szeged, 
Hungary, {odrya, pestir, csikd, kovacs.imre, sarcevic}@mk.u-szeged.hu 
2 Institute of Informatics, University of Dunaújváros, Táncsics Mihály u. 1, 2400 
Dunaújváros, Hungary, kecskesi@uniduna.hu 
3 Doctoral School of Applied Informatics and Applied Mathematics, Óbuda 
University, Bécsi út 96/B, 1034 Budapest, Hungary,  
massimo.stefanoni@uni-obuda.hu 
4 Bánki Donát Faculty of Mechanical and Safety Engineering, Óbuda University, 
Bécsi út 96/B, 1034 Budapest, Hungary, laufer.edit@bgk.uni-obuda.hu 

Abstract: Orientation estimation using magnetic, angular rate, and gravity (MARG) sensors 
is primarily affected by two error sources: external accelerations and magnetic disturbances. 
These disturbances hinder the accurate separation of sensor observations from their 
corresponding reference vectors, thereby degrading estimation accuracy. This paper 
presents a feedforward neural network (FFNN) architecture designed to estimate the 
disturbance vectors, enabling the generation of disturbance-compensated signals for 
improved state estimation within an Extended Kalman Filter (EKF) framework. First, the 
MARG sensor models are introduced and their integration into an EKF-based orientation 
estimation system is outlined. The proposed FFNN model for disturbance estimation is 
described in detail, with emphasis on its architectural design and the methodology for 
effective augmentation of the EKF. The practical feasibility of the approach is demonstrated 
in a laboratory setting using a calibrated UR5 robot. The robot performs various motions 
with a MARG sensor mounted on its end-effector, thereby subjecting the system to a range 
of disturbance magnitudes. A comprehensive evaluation is conducted across 16 distinct 
measurement scenarios, analyzing the influence of various disturbance combinations and 
intensities on estimation performance. The results indicate that the proposed FFNN-EKF 
approach consistently outperforms the standard EKF, with improvements in estimation 
accuracy ranging from 19% to 49%. This demonstrates the effectiveness of NN-based 
disturbance compensation in enhancing orientation estimation under real-world conditions. 

Keywords: magnetic disturbance compensation; acceleration compensation; orientation 
estimation; neural network; Kalman filter 
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1 Introduction 

Reliable orientation estimation is fundamental in embedded systems across 
robotics, mechatronics, automotive, aerospace, and human motion tracking 
applications [1]-[11]. 

MARG units, composed of accelerometers, gyroscopes, and magnetometers, are 
widely used for this task due to their lightweight, low cost, and high-resolution 
output. However, each sensor has inherent limitations: accelerometers measure both 
the gravitational acceleration and any additional acceleration caused by the 
movement of the body they are attached to; gyroscopes suffer from drift, and 
magnetometers are sensitive to magnetic disturbances. These issues hinder robust 
attitude estimation and require advanced algorithms [12]-[15]. 

Accurate orientation is essential for separating gravity and external acceleration 
components; if not ensured, velocity and position estimates accumulate large drift 
[16]-[18]. While EKFs are popular for incorporating system models [11], [19], [20], 
complementary filters (CFs) offer simpler, real-time alternatives [21], [22], though 
with less flexibility. In either case, effective handling of disturbances typically 
requires additional augmentation. 

Existing compensation methods include constraint augmentation [11], gradient 
descent correction [22], measurement criteria-based sensor selection [20], adaptive 
covariance tuning [16], [23], [24], and soft computing approaches [25]. Most of the 
disturbance handling algorithms rely on covariance adjustment instead of explicit 
disturbance estimation. When exact disturbance vectors are required, either model-
based [26], [27] or data-driven [5], [28]-[34] methods are used—both with notable 
drawbacks: high modeling effort or computational cost. 

This paper introduces a novel methodology that employs a FFNN model for 
effective disturbance estimation and proposes its integration EKF framework.  
The goal is to enable orientation estimation using disturbance-compensated MARG 
sensor signals. To evaluate the real-world performance of the approach, a robotic 
arm-based laboratory setup is used, in which the impact of varying levels and 
combinations of external disturbances on EKF-based orientation estimation is 
systematically analyzed. The proposed FFNN-based real-time disturbance 
compensation method is then validated, demonstrating that the FFNN-EKF system 
significantly enhances orientation estimation accuracy under challenging and 
disturbance-prone conditions. 
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2 Problem Formulation 

2.1 MARG Signals 

In practice, measurements are affected by typical sensor errors: scale factor (Δ𝑆𝑆), 
misalignment (𝑀𝑀), temperature-dependent bias (𝜔𝜔0, 𝑎𝑎0, ℎ0, which evolves as 
random walks), white noise (𝜂𝜂), and magnetic disturbances (soft iron 𝐵𝐵𝑠𝑠𝑠𝑠 , hard iron 
𝑏𝑏ℎ𝑖𝑖) [1]: 

Ω𝑘𝑘 = (𝐼𝐼 + Δ𝑆𝑆Ω)𝑀𝑀Ω𝜔𝜔𝑘𝑘 + 𝜔𝜔0,𝑘𝑘 + 𝜂𝜂𝑘𝑘Ω  

A𝑘𝑘 = (𝐼𝐼 + Δ𝑆𝑆A)𝑀𝑀A�𝛼𝛼𝑘𝑘 + 𝑔𝑔𝑘𝑘𝑆𝑆 � + 𝑎𝑎0,𝑘𝑘 + 𝜂𝜂𝑘𝑘A  

H𝑘𝑘 = (𝐼𝐼 + Δ𝑆𝑆H)𝑀𝑀H(𝐵𝐵𝑠𝑠𝑠𝑠ℎ𝑘𝑘 + 𝑏𝑏ℎ𝑖𝑖) + ℎ0,𝑘𝑘 + 𝜂𝜂𝑘𝑘H (1) 

ω0,𝑘𝑘 = 𝜔𝜔0,𝑘𝑘−1 + 𝜂𝜂𝑘𝑘
𝜔𝜔0   

a0,𝑘𝑘 = 𝑎𝑎0,𝑘𝑘−1 + 𝜂𝜂𝑘𝑘
𝑎𝑎0   

h0,𝑘𝑘 = ℎ0,𝑘𝑘−1 + 𝜂𝜂𝑘𝑘
ℎ0   

where 𝜂𝜂𝜔𝜔0, 𝜂𝜂𝑎𝑎0 , 𝜂𝜂ℎ0  are zero-mean Gaussian noises. In-field calibration can 
compensate for these errors [35], enabling the use of corrected measurements 𝜔𝜔𝑘𝑘, 
𝛼𝛼𝑘𝑘 + 𝑔𝑔𝑘𝑘𝑆𝑆 , and ℎ𝑘𝑘 for orientation estimation. However, accurate estimation is only 
guaranteed under quasi-static or constant velocity conditions (𝛼𝛼𝑘𝑘 ≈ 0) and in 
magnetic-free environments. 

2.2 Sensor Fusion 

Most MARG-based orientation estimation algorithms output a unit quaternion 𝑞𝑞 ∈
ℝ4, ‖𝑞𝑞‖ = 1 representing the Earth frame's orientation relative to the sensor frame. 
EKF's motion model propagates the quaternion state using the numerical integration 
of angular rates, incorporating slowly varying gyroscope bias into the state vector: 
𝑥𝑥𝑘𝑘 = �𝑞𝑞𝑘𝑘 ,𝜔𝜔0,𝑘𝑘�

𝑇𝑇 ∈ ℝ7 [25]. The prediction step is given by: 

𝑞𝑞𝑘𝑘+1 = 𝑞𝑞𝑘𝑘 + 𝑇𝑇𝑠𝑠
2
𝜚𝜚(𝑞𝑞𝑘𝑘) �

0
Ω𝑘𝑘 − 𝜔𝜔0,𝑘𝑘

� + 𝜂𝜂𝑘𝑘
𝑞𝑞 (2) 

𝜔𝜔0,𝑘𝑘+1 = 𝜔𝜔0,𝑘𝑘 + 𝜂𝜂𝑘𝑘
𝜔𝜔0   

where 𝑇𝑇𝑠𝑠 is the sampling time, 𝜚𝜚(𝑞𝑞𝑘𝑘) denotes the quaternion matrix, and 𝜂𝜂𝑘𝑘
𝑞𝑞, 𝜂𝜂𝑘𝑘

𝜔𝜔0  
represent the process noises. This defines the nonlinear state-space model 𝑥𝑥𝑘𝑘+1 =
𝑓𝑓(𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘,𝑤𝑤𝑘𝑘), with 𝑢𝑢𝑘𝑘 = Ω𝑘𝑘  and 𝑤𝑤𝑘𝑘 = �𝜂𝜂𝑘𝑘

𝑞𝑞 , 𝜂𝜂𝑘𝑘
𝜔𝜔0�. 

EKF's observation model prevents drift from open-loop propagation; it updates the 
state using accelerometer and magnetometer data. Assuming no external 
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disturbances, the reference vectors 𝑔𝑔𝐸𝐸  and ℎ𝐸𝐸  are transformed to the sensor frame 
via the rotation matrix 𝑅𝑅(𝑞𝑞𝑘𝑘)𝐸𝐸

𝑆𝑆 : 

𝐴𝐴𝑘𝑘 = 𝑅𝑅(𝑞𝑞𝑘𝑘)𝐸𝐸
𝑆𝑆  𝑔𝑔𝐸𝐸 , (3) 

𝐻𝐻𝑘𝑘 = 𝑅𝑅(𝑞𝑞𝑘𝑘)𝐸𝐸
𝑆𝑆  ℎ𝐸𝐸 .  

The rotation matrix is constructed using orthonormal triads from normalized sensor 
and reference vectors [36]: 

𝑀𝑀𝑘𝑘 = [𝐴𝐴𝑘𝑘, 𝐴𝐴𝑘𝑘 × 𝐻𝐻𝑘𝑘 , 𝐴𝐴𝑘𝑘 × 𝐴𝐴𝑘𝑘 × 𝐻𝐻𝑘𝑘]  

𝑀𝑀𝐸𝐸 𝑘𝑘 = [ 𝑔𝑔𝐸𝐸 , 𝑔𝑔𝐸𝐸 × ℎ𝐸𝐸 , 𝑔𝑔𝐸𝐸 × 𝑔𝑔𝐸𝐸 × ℎ𝐸𝐸 ] (4) 

𝑅𝑅(𝑞𝑞𝑘𝑘)𝐸𝐸
𝑆𝑆 = 𝑀𝑀𝑘𝑘 𝑀𝑀𝐸𝐸 𝑘𝑘

𝑇𝑇  

A quaternion update 𝑞𝑞�𝑘𝑘 is derived from equation (4), which is valid only under low 
dynamics and undisturbed magnetic conditions. This leads to a linear observation 
model: 𝑦𝑦𝑘𝑘 = 𝐺𝐺 𝑥𝑥𝑘𝑘 + 𝜂𝜂𝑘𝑘

𝑄𝑄 ,𝐺𝐺 = [𝐼𝐼4, 03], where 𝜂𝜂𝑘𝑘
𝑄𝑄 reflects the uncertainty in 𝑞𝑞�𝑘𝑘, 

increasing with external accelerations or magnetic interference. 

External acceleration 𝛼𝛼𝑘𝑘 is obtained outside the EKF using the current quaternion 
estimate 𝑞𝑞�𝑘𝑘 [16]: 

𝛼𝛼𝑘𝑘 = 𝐴𝐴𝑘𝑘 − 𝑔𝑔𝐸𝐸𝐸𝐸 , �
0
𝐴𝐴𝑘𝑘𝐸𝐸 � = 𝑞𝑞�𝑘𝑘 ⊗ � 0

𝐴𝐴𝑘𝑘
�⊗ 𝑞𝑞�𝑘𝑘∗ , (5) 

where 𝑞𝑞�𝑘𝑘∗  is the quaternion conjugate and ⊗ denotes quaternion multiplication. 

The full EKF algorithm works as follows [37], [38]. Prediction: produces the a 
priori estimate 𝑥𝑥�𝑘𝑘+1−  and covariance 𝑃𝑃𝑘𝑘+1−  using the process noise covariance 𝑄𝑄 =
blkdiag(𝜎𝜎𝑞𝑞𝐼𝐼4,𝜎𝜎𝜔𝜔0𝐼𝐼3). Update: refines the estimate with measurement noise 
covariance 𝑅𝑅 = 𝜎𝜎𝑄𝑄𝐼𝐼4. 𝜎𝜎𝑞𝑞, 𝜎𝜎𝜔𝜔0 , and 𝜎𝜎𝑄𝑄 define the noise variances for quaternion 
propagation, gyro bias, and observation, respectively. This standard EKF approach 
used for orientation estimation is clearly defined by equations (1)-(4), representing 
a widely adopted and well-established configuration in robotics and human motion 
applications [16], [25]. 

3 Disturbance Compensation 

3.1 Method 

The proposed approach focuses on identifying and compensating for disturbance 
vectors, thereby improving MARG measurement quality in orientation estimation, 
see Figure 1. 
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Figure 1 

The method and experimental setup 

The system uses a calibrated UR5 robot with a 9DOF MARG sensor mounted on 
the end-effector, delivering 100 Hz raw data. The UR5 executes a range of motions 
‒ from quasi-static to highly dynamic ‒ controlled via the Robot Operating System 
(ROS). The MARG sensor is intentionally mounted on a relatively long fixture to 
ensure sufficient distance from the end effector and minimize disturbances, and the 
test scenarios are similarly designed to avoid close proximity to the robot's 
actuators. 

UR5-based feedback provides ground truth for the MARG's pose, velocity, and 
acceleration, thereby a diverse dataset of motion scenarios is generated.  
The recorded dataset is used to design and train NN for providing correction vectors 
(𝐴𝐴𝑘𝑘−,𝐻𝐻𝑘𝑘−) in the orientation estimation problem. Multiple NN architectures are 
evaluated, varying in input combinations, hidden layer configurations, and neuron 
counts. The most efficient NN is integrated into the EKF orientation estimation 
loop. Performance is evaluated across a spectrum of scenarios ‒ from static, 
undisturbed conditions to dynamic, noisy environments. The result is the 
identification of the most robust NN-EKF combination for reliable orientation 
estimation. 
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The ground truth-based correction targets 𝐴𝐴𝑘𝑘
−,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  and 𝐻𝐻𝑘𝑘

−,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  are computed 
from the true orientation 𝑞𝑞𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and constant reference vectors 𝑔𝑔𝐸𝐸  and ℎ𝐸𝐸  as follows. 

�
0

𝐴𝐴𝑘𝑘
−,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� = � 0

𝐴𝐴𝑘𝑘
� − 𝑞𝑞𝑘𝑘

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,∗ ⊗ �
0
𝑔𝑔𝐸𝐸 � ⊗ 𝑞𝑞𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (6) 

�
0

𝐻𝐻𝑘𝑘
−,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� = � 0

𝐻𝐻𝑘𝑘
� − 𝑞𝑞𝑘𝑘

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,∗ ⊗ �
0
ℎ𝐸𝐸 � ⊗ 𝑞𝑞𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

3.2 FFNN-EKF Framework 

A comprehensive evaluation identified FFNN as the most suitable topology for 
disturbance estimation model, due to its simplicity, computational efficiency, and 
sufficient modeling capability [1]. 

The FFNN, trained with Levenberg-Marquardt backpropagation, was used to 
estimate six correction signals (accelerometer and magnetometer corrections along 
X, Y, and Z axes), and overfitting was evaluated via performance differences 
between training and test sets.  A hidden layer size of 25 neurons was found to offer 
a good balance between accuracy and computational cost. The computational 
complexity analysis was presented in detail in [1]; it quantified the number of 
FLOPs, the constants characterizing the NN, and the implementation-specific 
constraints. Using MATLAB NN support tools, it was found that generating the 
compensation signals required 881 floating-point operations, and the overall 
computational complexity of the FFNN-EKF was 23% lower than that of the 
baseline EKF algorithm. 

Input channel analysis showed that the best performance is provided with 
accelerometer, magnetometer, and approximated acceleration signals (𝐴𝐴𝑘𝑘,𝐻𝐻𝑘𝑘 ,𝛼𝛼𝑘𝑘). 
This is attributed to the FFNN’s explicit compensation of acceleration, vibration, 
and magnetic disturbances, yielding corrected signals for accurate quaternion-based 
orientation estimation. 

Figure 1 presents the structure of the proposed FFNN-EKF framework. The system 
takes MARG measurements as inputs, specifically the real-time signals 𝐴𝐴𝑘𝑘, 𝐻𝐻𝑘𝑘, and 
𝛼𝛼𝑘𝑘, which are processed by the FFNN to generate correction outputs 𝐴𝐴𝑘𝑘− and 𝐻𝐻𝑘𝑘−. 
These outputs effectively mitigate acceleration and magnetic disturbances, resulting 
in corrected signals that are suitable for use in the quaternion update step, as 
described in equation (4). During the prediction step of the EKF, the angular 
velocity input Ω𝑘𝑘 is used to propagate the state, while in the update step, the refined 
quaternion 𝑞𝑞�𝑘𝑘 adjusts the state estimate. 
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4 Experimental Results 

4.1 Scenarios 

The established laboratory environment executed 16 different measurement 
scenarios. 

Tables 1 and 2 summarize the main characteristics of each scenario; these highlight 
the length and volume of each trajectory, the executed speed range and angular 
velocity measures. The total RPY change represents the cumulative absolute change 
in roll, pitch, and yaw angles throughout the entire trajectory, which well 
characterizes the executed rotational dynamics. 

Table 1 
Characteristics of the executed scenarios based on ground truth data 

Scen. 
Path length 

(m) 
Volume 

(𝑚𝑚3) 
Avg. speed 

(m/s) 

Max 
speed 
(m/s) 

Total RPY 
change 
(rad) 

1 8.319 0.075 0.124 0.386 16.571 
2 9.069 0.116 0.154 0.389 19.781 
3 10.159 0.143 0.164 0.560 25.683 
4 12.795 0.146 0.214 0.645 37.971 
5 13.886 0.203 0.238 0.933 44.142 
6 15.948 0.144 0.267 0.954 50.786 
7 18.596 0.343 0.308 1.233 68.612 
8 23.851 0.289 0.373 1.590 88.174 
9 6.526 0.065 0.130 0.395 19.777 

10 6.914 0.065 0.131 0.438 22.173 
11 7.733 0.084 0.153 0.497 27.414 
12 9.038 0.076 0.178 0.716 30.442 
13 10.745 0.121 0.210 0.721 37.208 
14 13.706 0.136 0.267 1.099 48.324 
15 15.767 0.270 0.313 1.121 62.413 
16 20.287 0.431 0.392 1.671 66.274 

Table 2 also indicates the magnetic disturbance magnitude for each scenario.  
The categorization was done based on the standard deviation of both the 
acceleration (STD Acc.) and deviation from the expected magnetic field norm (STD 
Mag.). The former characterizes the dynamic activity of the motion, as higher 
variability indicates more abrupt or rapid movements. The latter reflects magnetic 
disturbances since deviations from the Earth's nominal field suggest local 
interference or anomalies. 



A. Odry et al.  Feedforward Neural Network for Orientation Estimation Under Magnetic 
  and Acceleration Disturbances 

‒ 54 ‒ 

In summary, the most dynamic scenario was clearly Scenario #8, combining high 
translational and rotational activity. Both Scenarios #1 and #9 reflected the slowest 
and most spatially constrained motions. Scenario #16 stood out for covering the 
most distance and operating in the largest volume, indicative of extensive 
exploration. 

The total spatial volume covered across all trajectories was 0.804 m3. The longest 
trajectory was observed in Scenario #8, spanning 23.85 meters, while the shortest 
trajectory occurred in Scenario #9, with a length of 6.53 meters. 

The fastest overall motion was recorded in Scenario #16, with an average speed of 
0.39 m/s, whereas the slowest movement took place in Scenario #1, averaging only 
0.12 m/s. The greatest orientation change was also found in Scenario #8, showing a 
total RPY rotation of 88.17 rad, and this scenario also exhibited the fastest rotational 
motion, with an average angular velocity of 0.91 rad/s. 

Figure 2 depicts the executed trajectories for four random scenarios; the dynamics 
of the trajectory is color coded. 

Table 2 
Characteristics of the executed scenarios based on MARG data 

Scen. 
Avg. ang. 

velocity (rad/s) 
STD Acc. 

(m/𝑠𝑠2) 
STD Mag. 

(uT) 
Dynamics Magnetism 

1 0.165 0.107 1.823 Low High 
2 0.221 0.214 1.768 Low Low 
3 0.274 0.344 1.762 Low Low 
4 0.421 1.858 1.621 High Low 
5 0.508 1.248 3.708 High High 
6 0.571 2.428 1.804 High Low 
7 0.746 2.878 4.651 High High 
8 0.906 3.284 5.496 High High 
9 0.256 0.222 1.038 Low Low 

10 0.281 0.248 1.032 Low Low 
11 0.362 0.352 1.349 Low Low 
12 0.407 0.474 1.455 Low Low 
13 0.482 2.263 3.916 High High 
14 0.623 2.692 2.770 High High 
15 0.808 2.773 6.994 High High 
16 0.855 2.873 2.871 High High 
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Figure 2 

3D trajectories executed by the robot (colored coded by the realized speed magnitude) 

4.2 Orientation Estimation Performance 

The FFNN-EKF filter performance was evaluated for each scenario and its 
performance was compared to the standard EKF approach designed based on 
equations (1)-(4). In the performance evaluation the real orientation 𝑞𝑞 =
�𝑞𝑞𝑤𝑤 , 𝑞𝑞𝑥𝑥 , 𝑞𝑞𝑦𝑦 , 𝑞𝑞𝑧𝑧�

𝑇𝑇
 constitutes the ground truth, while the filter outputs the prediction 

𝑞𝑞� = �𝑞𝑞�𝑤𝑤 , 𝑞𝑞�𝑥𝑥 , 𝑞𝑞�𝑦𝑦 , 𝑞𝑞�𝑧𝑧�
𝑇𝑇
. 

The performance metrics of the 𝑠𝑠th scenario is given with 𝐹𝐹𝑠𝑠, while the overall 
performance is characterized with 𝐹𝐹: 

𝐹𝐹𝑠𝑠 = 1
𝑁𝑁𝑠𝑠
∑ �(𝑞𝑞𝑘𝑘 − 𝑞𝑞�𝑘𝑘)𝑇𝑇(𝑞𝑞𝑘𝑘 − 𝑞𝑞�𝑘𝑘)𝑁𝑁𝑠𝑠
𝑘𝑘=1 , 𝐹𝐹 = 1

16
∑ 𝐹𝐹𝑠𝑠16
𝑠𝑠=1 , (7) 

where 𝑠𝑠 denotes the scenario index (𝑠𝑠 = 1, . . . ,16), 𝑁𝑁𝑠𝑠 is the length the 𝑠𝑠th scenario 
(number of samples), while 𝑘𝑘 denotes the sample index. 

Figure 3 provides a performance comparison of the standard EKF approach and the 
proposed FFNN-EKF method. In this evaluation across 16 scenarios, the FFNN-
EKF method consistently outperformed the standard EKF, demonstrating 
significant improvement in estimation accuracy. 
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Figure 3 

Standard EKF vs FFNN-EKF performance comparison 

On average, the performance index of the standard EKF was 0.0551, while the 
FFNN-EKF achieved a lower (better) average value of 0.0346, indicating 
significant overall improvement ranging from modest 19% to substantial 49%.  
The largest performance gain was observed in Scenario #9, where the FFNN-EKF 
reduced the error by 48.6% compared to the standard EKF. Several other scenarios, 
such as #3, #7, #10, and #13, also exhibited more than 40% improvement. Even in 
the worst case (Scenario #1), the NN-EKF still outperformed the standard EKF with 
a 19.1% improvement. 

The aforementioned results strongly suggest that integrating NN-based correction 
into the EKF framework can significantly enhance estimation performance, 
especially in complex scenarios. 

In low magnetic disturbance scenarios, the FFNN-EKF showed improvements 
ranging from approximately 27% to 49%, indicating enhanced performance even 
under nominal conditions. In high magnetic disturbance scenarios, the 
improvements were significant ‒ up to 48% improvement. This suggests that 
FFNN-EKF is particularly robust in magnetically noisy environments. Under low 
dynamic conditions, FFNN-EKF provided reliable enhancements over EKF, with 
significant error reduction observed in Scenarios #9-#12. In high dynamic 
scenarios, where fast motion or orientation changes are expected, FFNN-EKF 
maintained strong performance, showing substantial error reduction (e.g., Scenario 
#8 and #16). 

Despite being tested under simultaneously high dynamics and high magnetic 
disturbance (Scenarios #5, #7, #8, #13-#16), FFNN-EKF maintained its advantage, 
suggesting high robustness and adaptability of the NN-enhanced method. 



Acta Polytechnica Hungarica Vol. 22, No. 12, 2025 

‒ 57 ‒ 

Figure 4 presents the orientation estimation performance of the FFNN-EKF method 
for a 50-second measurement scenario. 

 
Figure 4 

RPY estimation errors of standard EKF and FFNN-EKF approaches 

The measurement results highlight the RPY estimation errors with respect to the 
ground truth for two filtering techniques. The blue lines represent the standard EKF 
error, while the red lines correspond to the proposed FFNN-EKF approach. It is 
evident that the FFNN-EKF delivers a marked improvement in estimation accuracy, 
consistently reducing RPY errors across all axes. This holds true even under 
challenging conditions involving strong external accelerations or magnetic 
disturbances. The FFNN-EKF effectively compensates for these disruptions, 
offering robust and dependable orientation estimates. 

Conclusions 

This paper evaluated the effectiveness of FFNN-based disturbance estimation and 
demonstrated the performance gains achieved by integrating the FFNN model into 
the EKF framework. The proposed disturbance compensator operates on raw 
magnetometer and accelerometer measurements, as well as an approximated 
external acceleration vector. It features a single hidden layer with 25 neurons and 
produces a 6-dimensional output representing the estimated disturbance vectors, 
which are then used to refine the raw MARG sensor data. The EKF propagates the 
state using gyroscope measurements and subsequently updates the orientation based 
on the disturbance-compensated magnetometer and accelerometer observations. 
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The proposed methodology was validated in a laboratory environment using a UR5 
robotic arm equipped with a MARG sensor mounted on its end-effector, following 
a variety of motion trajectories. Across multiple experimental scenarios, the FFNN-
EKF approach consistently outperformed the standard EKF, with orientation 
estimation accuracy improvements ranging from 19% to 49%. Notably, the method 
proved to be particularly robust in both magnetically disturbed indoor environments 
and high-dynamic scenarios typically encountered in outdoor applications such as 
drone navigation. Future work will focus on deploying the proposed method on 
mobile robotic platforms, with the aim of evaluating its impact on localization 
performance in real-world environments. 
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