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Abstract: This paper presents some problems with an example of a network steganography 
approach and proposes several simple solutions. The basic approach that uses Internet 
Control Message Protocol messages for injection of secret messages is demonstrated by a 
minimal working example. Since usage of network steganography approaches could be 
limited by commonly used tools such as firewalls, the paper also describes used 
experimental setup. Effects of presented problems and proposed solutions are analyzed by 
performing packet dissections in Wireshark, observation of outputs from Terminal and 
using measured values of Round Trip Times. It is shown that application of the proposed 
solutions should hide easily detectable signs about manipulation of received Internet 
Control Message Protocol messages, but users with some theoretical knowledge in the field 
should still be able to reveal usage of steganography. The paper also mentions several 
other ideas for further improvement of network steganography approaches in the future. 
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1 Introduction 

Steganography can be viewed as an art of hiding secret messages by inserting 
them into other communication in an unsuspicious way. This way of information 
hiding can have multiple forms – in the past seemingly unused wax tablets carried 
secret messages on the wood under the wax, later invisible inks or texts reduced in 
size to fit into punctuation marks were used [1]. The arrival of modern computers 
created many new steganographic techniques, at first mainly approaches that use 
raster images for covering presence of secret messages. In the late 1990s, some 
techniques that use features of network protocols were introduced [2, 3]. 

Several other network steganography techniques were designed and presented 
during the 2000s and early 2010s [4-10]. In general, these were rather complex 
tools since some of them had even more functionality than establishing and using 
of a covert channel. For instance, a tool called Ping Tunnel could create tunnels 
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between two devices by an injection into Internet Control Message Protocol 
(ICMP) Echo Request and Echo Reply messages [4, 11]. This feature could be 
used for sending secret messages in an established covert channel, but also for 
encapsulation of other protocol data units (PDUs), which is the point of tunneling 
[12]. Since usage of such complex tools required some theoretical knowledge, at 
that time network steganography raised interest mainly in researcher community 
[13-17]. 

Development of some Python libraries such as Scapy [18] and NetfilterQueue [19] 
later popularized network steganography among common computer users. With 
these libraries, even a small amount of code could create new network 
steganography techniques, which is visible in amount of various tutorials for these 
libraries [20, 21] or approaches that use these libraries [22-25]. Furthermore, some 
older network steganography techniques were reimplemented using mentioned 
libraries so they could be used together with newer techniques in complex systems 
that allow choice of steganographic approach [26]. 

In this paper, we would like to present a minimal working example (MWE) of a 
network steganography approach using both Scapy and NetfilterQueue libraries 
based on mentioned tutorials and proposed solutions. After analyzing some 
properties of the script, several issues with it will be pointed out and this paper 
would try to either solve them or mitigate their negative effects. Therefore, the 
main benefits of this paper include: 

• demonstration how usage of some simple network steganography tools 
could be revealed, 

• identification of some common problems in area of simple network 
steganography tools (created by merging code parts from tutorials), 

• solution of some of the mentioned problems by using custom approaches or 
those used in more complex tools from the past. 

The rest of the paper is organized as follows: Section 2 presents a brief survey of 
similar techniques, presented either in a form of tutorials aimed for common 
computer users, or as scientific papers. Section 3 describes used experimental 
setup, analyzed network steganography approach and the proposed MWE. 
Section 4 points out the problems caused by simplicity of the presented MWE, 
includes solutions for some of the problems and illustrates their effects on the 
analyzed network steganography approach. The general advice for other 
researchers and possible plans for future research are presented in section 
Conclusions and Future Plans. 
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2 Related Work 

Some of the first network steganography approaches were proposed by Rowland 
in 1997 [2]. The first two methods from [2] modify either ID field or initial 
number in Sequence field of an Internet Protocol version 4 (IPv4) packet and both 
are capable of hiding one byte of secret message in each IPv4 packet. The third 
proposed method was not evaluated in such detail as the other two. 

A paper regarding analysis of network steganography by Fisk et al. from 2002 [5] 
also mentions a way to use urgent pointer in Transmission Control Protocol (TCP) 
segments for sending as much as 2 bytes of secret message in one TCP segment. 
An approach that measures mean delay between IPv4 packets and can increase the 
delays based on secret message bits was proposed by Berk et al. in 2005 [6]. 

A technique called RSTEG using retransmissions of TCP segments was presented 
by Mazurczyk et al. in 2011 [7, 10]. RSTEG uses fact that if reception of some 
TCP segment is intentionally not acknowledged until timeout runs off, the 
segment would be sent again (it would be retransmitted). The payload of this 
segment could be replaced by the secret message, which provides high capacity 
(theoretically more than 1,400 bytes). 

In 2012, Gimbi et al. proposed an approach [8] that exploits the fact that source 
port numbers of TCP segments could be chosen from certain interval of integers. 
However, the interval could be platform-specific as Windows machines use other 
interval as Linux machines. Therefore, the capacity of this solution could not be 
clearly determined. 

Jankowski et al. designed a technique [9] in 2013 that uses padding present in 
multiple network protocols. Since network protocols require different amount of 
padding, the capacity of this approach depends strongly on a type of transmitted 
network traffic. 

There are also several implementations of network steganography tools that do not 
use approaches presented in scientific papers. These include modification of two 
most significant bits in Time to Live (TTL) field of IPv4 packets [22] or offline 
alteration of various Internet Protocol (IP) and ICMP fields [23]. Furthermore, in 
2022 Iglesias et al. proposed a complex system [26] that stops the network traffic, 
evaluates if it could be useful for steganography, and in that case the system 
injects the secret message into the traffic before it is forwarded to its destination. 

A practical study on effects of network steganography tools on network traffic and 
its properties (e. g. introduced delays and bandwidth decrease) was presented by 
Hospital et al. in 2021 [24]. Certain aspects of network steganography tools, such 
as platform-specific design, were briefly analyzed in a paper by Bistarelli et al. 
from 2024 [25]. Their proposal resembles behavior of a computer running 
Windows operating system, and comparison of these packets with packets 
generated by different systems could raise suspicion about system behavior. 
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3 Methodology 

Since evaluating practical properties of various network steganography 
approaches might require specific system settings (e. g. usage of certain fields in 
protocol headers), we decided to build an experimental setup dedicated to this 
task. Then, we chose a network steganography approach that would be useful for 
demonstrating some common problems and produced a simple script that would 
serve as a MWE. 

3.1 Experimental Setup 

The experimental setup shown in Figure 1 consists of a power supply with a 
remotely controlled relay (part a), a junction box with four-channel relay board 
(part b) that powers other components, a MikroTik routerboard (part c) that serves 
as a switch and four microcomputers Raspberry Pi Model 3B+ (parts d, e, f and g). 
The last microcomputer (part g) is not powered from the same power socket as the 
power supply, so it should be always turned on and ready for remote connections. 

 
Figure 1 

Used experimental setup 

There are several ideas behind the used setup: it could be remotely controlled (if 
some of the microcomputers does not respond, it could be restarted by turning the 
power off and later on), one of the microcomputers is used as a server for other 
ones (so they run the same version of scripts) and one microcomputer is used as a 
‘sandbox’ for testing updates before they are applied to other microcomputers. 

Networks used by the experimental setup and the devices which are connected to 
these networks are shown in Table 1. 
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Table 1 
Experimental networks and their devices 

Network IPv4 address 
range 

Devices 
.11 .12 .13 .14 other 

To Internet DHCP no yes no yes relay server 
Control (updates) 192.168.0.0/24 yes yes yes no routerboard 

Experimental 192.168.1.0/24 yes yes yes no none 
Internet of Things 192.168.2.0/24 no yes no yes relays 

Note: words yes or no describe if device is or is not connected to certain network. 

The microcomputers (parts d to g) have last octets of their IPv4 addresses 
beginning with 11 and ending with 14. The first three octets in a network that 
connects the microcomputers to the outside world are determined by Dynamic 
Host Configuration Protocol (DHCP). All other networks – the Ethernet network 
used for controlling and updating microcomputers, experimental network for 
steganography (wireless, IEEE 802.11n) and Internet of Things (IoT) network 
(wireless, IEEE 802.11n) use statically assigned IPv4 addresses. 

The experimental network filters sent and received packets by iptables firewall in 
order to minimize traffic flow which simplifies the analysis of captured data. Used 
firewall rules block mainly multicast services such as Simple Service Discovery 
Protocol (SSDP) or Multicast Domain Name Service (mDNS). 

The microcomputers used in the experimental setup run their native 64-bit 
Raspberry Pi operating system based on Debian version 11 (called Bullseye), 
Python version 3.9.2, its libraries Scapy version 2.5.0 and NetfilterQueue version 
1.1.0. Detailed packet analysis was done in Wireshark version 3.4.16. 

3.2 Choice of Suitable Network Steganography Approach 

Based on analysis of related work and tutorials presented on Scapy website [27], 
we decided to inject bytes of secret messages into a covert channel created in 
ICMP messages. These messages might contain a field called Data with variable 
size that was also used in the past for ICMP tunneling [4, 12]. Steganographic 
techniques that exploit this field include [9, 23, 26]. 

3.2.1 Internet Control Message Protocol (ICMP) 

ICMP is a protocol from network layer of OSI (Open Systems Interconnection) 
reference model that is used for sending and receiving service messages [11]. 
These are used mainly for detecting connectivity between interfaces of two 
devices or latency measurements. ICMP has several different message types, the 
most common are ICMP Echo Request and ICMP Echo Reply messages. A simple 
example of their usage for evaluating connectivity is demonstrated in Figure 2. 
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Figure 2 

Usage of ICMP messages for detecting connectivity 

The connectivity could be verified together with measurement of link latency by a 
simple utility called ping. The latency represents time necessary for delivering a 
pair of Echo Request and Echo Reply messages, therefore, it is called Round Trip 
Time (RTT). An output from Linux’s Terminal that shows usage of utility ping 
with three pairs of messages is shown in Figure 3. 

 
Figure 3 

A Terminal output displaying Round Trip Times obtained by ping utility 

ICMP messages contain several fields. It is important to mention that the presence 
of fields or their sizes are platform-specific since they are described in RFC 792 
[11], which is only a recommendation. Fields present in ICMP Echo Request and 
Echo Reply messages for the experimental setup are disclosed in Figure 4. 

 
Figure 4 

An example of ICMP Echo Request or Echo Reply message header, adapted from [11] 

The ICMP Data field is included in Echo Request and Echo Reply messages for 
monitoring state of investigated connection. Echo Request messages usually use 
random data and Echo Reply messages should return the same data. In case when 
some Echo Reply message returns different data (it was either corrupted or 
purposely modified during transmission) or it does not arrive until timeout on 
sending device runs off, that connection attempt is evaluated as unsuccessful. 
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3.3 Minimal Working Example (MWE) 

Source code of the MWE that will be used for describing potential problems with 
network steganography approaches is presented in Figure 5. This source code 
together with other ones is also available at first author’s github repository [28]. 

 
Figure 5 

Minimal working example of analyzed network steganography approach 

The MWE and all other scripts from github repository [28] need to be executed by 
a superuser since Scapy and iptables work directly with system kernel. The MWE 
uses two arguments – destination IPv4 address for stego packets with injected 
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secret message and character string containing the secret message. For the sake of 
clarity there are not any checks for these arguments in the MWE, but the scripts 
from [28] check for presence and format of arguments. 

It is important to point out that the MWE itself does not create any cover data. 
Since the investigated network steganography approach uses ICMP Echo Request 
and Echo Reply messages as cover data, these need to be generated outside the 
MWE. The simplest tool for this purpose is the ping utility. After this utility 
creates the ICMP Echo Request messages, the MWE injects secret message into 
the ICMP Data field of the generated messages. 

The MWE starts with a shebang and import of required libraries. Lines 6 to 20 are 
used for definition of processing function which begins by converting 
NetfilterQueue object to a Scapy packet (line 7). Then, presence of required 
header fields is checked (line 9), their data is converted (line 10) and secret 
message is injected to the converted data (lines 13 to 15). Since some of IP header 
and ICMP header fields are modified, it is necessary to recompute IP packet 
length (line 16) and ICMP checksum (line 17). The modified Scapy packet is then 
converted to a NetfilterQueue object (line 19) and it is forwarded (line 20). 

The above mentioned function is not called at the beginning of the script’s run, 
which starts with establishing of iptables rule for packets sent to the desired IPv4 
address (line 22). These packets would be appended as objects to a NetfilterQueue 
queue, which is created (line 25) and the function for processing objects in the 
queue is specified (line 26). The queue is then started in a try block (lines 27 to 
32) which stops after pressing Ctrl+C. After the queue is stopped, iptables rule is 
disabled (line 30), the queue is unbound (line 31) and the script could be ended 
(line 32). 

4 Formulation of Problems and their Solutions 

Experiments with the MWE shown in Figure 5 produced several problems. 
Corresponding versions of scripts (both problematic and those with implemented 
solutions) are presented at github repository [28]. 

4.1 Problem 1: ICMP Data Field Size 

Since the recommendation for ICMP protocol – RFC 792 [11] does not clearly 
limit lengths of Echo Request and Echo Reply messages, they are restricted only 
by maximal size of frames that are used for their encapsulation. Operating system 
used in the experimental setup limits frame size to 1,500 bytes by default and 
since data fields in other headers (or a footer) usually require 42 bytes, in theory 
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the other 1,458 bytes are left for ICMP Data field. It might seem that all these 
bytes could be used for injection of the secret message. 

However, ICMP Echo Request messages with this size sent to devices in the 
experimental setup have not produced answers in form of ICMP Echo Reply 
messages. This behavior is desired since it was designed as a defensive 
mechanism against ICMP tunneling [12]. The Echo Reply messages crucial for 
normal function of ICMP and displaying statistics such as RTT are sent only if 
Echo Request messages have so-called standard sizes, which is 98 bytes for the 
experimental setup. 

The situation when injection of secret message into Data fields of ICMP Echo 
Request messages enlarges them and the receiving device does not send back 
ICMP Echo Reply messages is shown in Figures 6 and 7. The first mentioned 
figure shows a shortened packet capture from Wireshark and the second one 
presents a Terminal output. 

 
Figure 6 

A shortened packet capture showing ICMP Echo Reply message only after ICMP Echo Request 
message has certain size 

 
Figure 7 

A Terminal output showing response only for message with certain size 

Common users might not analyze network traffic via packet dissections from 
Wireshark, but absence of some RTT values in the Terminal output might raise 
some suspicion. Limiting size of ICMP Echo Request messages to the standard 
size of 98 bytes means that only 56 bytes per packet are available for injection of 
the secret message, but these ICMP Echo Request messages should be answered 
by ICMP Echo Reply messages. These messages would provide data for 
displaying RTT values in the Terminal output and since the output would have an 
expected form, it should not raise any suspicion about usage of steganography. 
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4.2 Problem 2: Dissection of ICMP Messages into Fields 

Although the limitation of secret message size to 56 bytes solves the issue that 
was visible in previous packet capture, it still does not solve all problems.  
A shortened packet capture made after injecting parts of secret message with at 
most 56 bytes into ICMP Echo Request messages is shown in Figure 8. 

 
Figure 8 

A shortened packet capture showing correct behavior of ICMP – Echo Request messages are followed 
by corresponding Echo Reply messages 

However, another issue is visible in a Terminal output presented in Figure 9. 

 
Figure 9 

A Terminal output showing invalid timestamps in some messages 

This problem is caused by a fact that RFC 792 which defines ICMP messages is 
only a recommendation [11]. Therefore, implementations of ICMP vary in some 
details and the experimental setup uses a pair of timestamps between mandatory 
ICMP header fields presented in Figure 4 and ICMP Data field. This is a desired 
behavior since it enables relatively accurate latency measurements. 

For preventing any kind of suspicion and keeping the timestamps unmodified, the 
injection of secret message should not use 16 bytes that follow after ICMP header. 
This could be done quite easily, but there might be some problems with dissection 
of raw data into protocol fields. While Wireshark dissects the first 8 bytes of 
timestamps into a separate field and other 8 bytes to beginning of a field called 
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‘Data’, Scapy dissects all 16 timestamp bytes into a specific layer called ‘Raw’. 
An example dissection of timestamp bytes in Wireshark is shown in Figure 10. 

 
Figure 10 

Dissection of ICMP timestamp bytes into two different fields in Wireshark 

Omitting the 16 bytes from ‘Raw’ layer in Scapy during injection of secret 
message further decreases capacity of the investigated approach to 40 bytes of 
secret message per one packet. Also, even when these bytes are left unmodified, 
there is still a minor issue regarding Terminal output. This problem is caused by 
packet processing in Scapy, which uses library called libpcap. 

After the cover data generated by a sending device (ICMP Echo Request 
messages) are dissected and modified by libpcap library, a receiving device gets 
already modified data. It produces replies (ICMP Echo Reply messages) with 
modified data which are delivered to the original sending device. This means that 
the sending device has different values in ICMP Data fields of sent and received 
messages and therefore Terminal output is similar to one presented in Figure 7. 

The issue with different values in Data fields of ICMP messages could be solved 
by a simple technique which replaces injected secret message after it was received 
by libpcap library on the receiving device. For purposes of this paper, we named 
this approach as masking technique. Its workflow is demonstrated in Figure 11. 

  
Figure 11 

Masking technique employed for correcting Terminal output 
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Usage of the masking technique results in transmission of secret messages only 
between libpcap libraries of communicating devices. Since Wireshark also uses 
libpcap library for capturing network traffic, the injected secret messages are still 
visible in Wireshark packet dissections, but they are later replaced by original 
values from Data field. Then, the ICMP Echo Request messages are processed and 
answered with ICMP Echo Reply messages. The presence of injected secret 
message in Wireshark packet dissection is shown in Figure 12 and a 
corresponding Terminal output is illustrated in Figure 13. This example uses a 
section of ‘Lorem ipsum’ placeholder text [29]. 

 
Figure 12 

Presence of a secret message in a packet dissection in Wireshark 

 
Figure 13 

A corrected Terminal output after the masking technique was applied 

4.3 Problem 3: Usage of ICMP Data Field as a Bidirectional 
Covert Channel 

Since the transmission of secret messages requires two devices – one that injects 
secret messages into ICMP Echo Request messages and other device that receives 
these messages, extracts the secret messages and returns ICMP Echo Reply 
messages, it is natural to think that the created covert channel is bidirectional. 
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This is true in most cases, but there are also some exceptions. For instance, when 
PC A is connected to PC B and both PCs start injecting secret messages into 
ICMP messages at the same time, the resulting values in ICMP Data fields in 
Wireshark packet dissections of sent and received packets would be different. This 
is caused by a fact that both Wireshark and Scapy use libpcap and therefore 
Wireshark dissects ICMP Data field before the secret message is masked. 

For ensuring that only one device injects secret message at certain time, a simple 
mechanism that checks for modifications of ICMP Data field in received messages 
can be employed. For purposes of this paper, we named this technique as 
modification check mechanism. Its workflow is illustrated in Figure 14. 

 
Figure 14 

Modification check mechanism for detecting usage of the covert channel 

The modification check mechanism starts with a step when a device that wants to 
inject a secret message sends an ICMP Echo Request message and then receives 
an ICMP Echo Reply message. If the received message carries original values of 
ICMP Data field, the next ICMP Echo Request message should be eligible for 
injection of secret message. In order to support multiple covert channels at the 
same time (for instance running ping commands from several devices), the 
received ICMP Echo Reply message and the ICMP Echo Request message which 
is going to be sent need to have the same values in Identifier field and subsequent 
values in Sequence Number field (see Figure 4 for a detail of ICMP header). 

Proposed conditions rule out a situation when a device starts injecting secret 
message into sent ICMP Echo Reply messages. Therefore, if a device wants to 
inject secret messages, it has to start the communication by sending an ICMP 
Echo Request message. 
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Other drawback of the presented modification check mechanism is that it wastes 
one pair of ICMP messages for checking usage of the covert channel. Therefore, 
the capacity of investigated approach is further decreased. 

4.4 Problem 4: Effects of the Proposed Solutions 

While solutions proposed in previous subsections help with presented problems, 
they also have some negative effects on the investigated network steganography 
approach. First, each solution decreases capacity of the covert channel in ICMP 
messages, what is visible together with advantages of solutions in Table 2. 

Table 2 
Decreasing capacity of the covert channel after applying proposed solutions 

Solution 
Capacity of the covert 
channel per one ICMP 
Echo Request message 

Advantage(s) 

MWE 1,458 bytes High capacity 

Solution 1 56 bytes Might be undetectable in Terminal 
(platform-specific) 

Solution 2 40 bytes Undetectable in Terminal 

Solution 3 
1 unused message 
and then 40 bytes 

Undetectable in Terminal, supports 
multiple covert channels at once 

Also, each added operation that processes network traffic will increase latency of 
the connection. The increase of latency could be measured by multiple ways, 
however. results of some measurements might not be useful. For instance since 
the injection of secret messages is done by libpcap library via Scapy, it does not 
make any sense to measure latency from Wireshark captures because Wireshark 
uses the same library and measured times would not include the processing time. 

Therefore, the latency measurements could be done by getting Round Trip Times 
(RTTs) from Terminal output by running ping utility. RTTs represent amount of 
time necessary for sending an ICMP Echo Request message and receiving an 
ICMP Echo Reply message. Since RTTs are not shown if values in Data field of 
sent and received messages are different, they could not be reported for all 
presented solutions. 

Other issue with RTTs is that the first measured time could be affected by missing 
destination Media Access Control (MAC) address which needs to be found by 
Address Resolution Protocol (ARP) messages. Hence, reported measured values 
do not contain first returned RTT. 

As the values of RTTs could be affected by different characters in secret message, 
a long enough text was necessary for providing parts of used secret message. 
Performed measurements used Universal Declaration of Human Rights [30] which 
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has 10,804 bytes in total. The first 440 bytes of this document were divided into 
11 non-overlapping parts with lengths of 40 bytes. 

The measurements were repeated for five times to identify random delays, caused 
by operating system searching for updates, transmission of ARP messages, etc. 
Reported values include minimal RTT, average RTT calculated by (1), maximal 
RTT and standard deviation of the RTTs computed by (2). These values are 
presented in Table 3. 

 (1) 

where i is an index of a message in RTT measurement and n represents amount of 
messages in a measurement (all measurements used 10 messages). 

 (2) 

Table 3 
Comparison of Round Trip Times without and with modifications 

Measurement 1 2 3 4 5 
Round Trip Times for unmodified ICMP messages [ms] 

Minimal 3.43 3.42 2.27 3.44 3.41 
Average 4.11 3.7 2.94 3.64 4.15 
Maximal 9.47 5.3 3.66 4.36 8.39 

Standard Deviation 1.79 0.54 0.55 0.29 1.51 
Round Trip Times for ICMP messages modified by Solution 2 [ms] 

Minimal 13.4 7.56 13 11.6 13.2 
Average 13.55 12.05 13.48 14.54 14.27 
Maximal 14.5 19 14.5 24.9 18.3 

Standard Deviation 0.32 3.31 0.41 3.54 1.59 
Round Trip Times for ICMP messages modified by Solution 3 [ms] 

Minimal 7.86 13.5 13.6 13.5 13.5 
Average 11.67 14.98 14.79 15.36 16.63 
Maximal 14 20.9 19.3 20.3 30 

Standard Deviation 2.69 2.53 1.83 2.2 4.84 

The measured results from Table 3 show that proposed solutions increase RTTs, 
but the increase is reasonable. While average RTT for unmodified messages took 
from 2.94 ms to 4.15 ms, these values for processed messages increased to 
intervals from 12.05 ms to 14.54 ms (for Solution 2) or from 11.67 ms to 16.63 ms 
(for Solution 3). For better clarity, the increase of average RTT values after 
modifying ICMP messages by Solution 2 and Solution 3 is displayed also 
graphically in Figure 15. 



J. Oravec et al. On Practical Aspects of Network Steganography 

 – 178 – 

 
Figure 15 

Increase of average RTT after performing modifications by proposed solutions 

These increases of RTTs might seem quite big, but the proposed network 
steganography approach injects secret messages into ICMP messages used only 
for transmitting supplementary information during e. g. connectivity evaluation or 
latency measurement. Therefore, increase of RTT with size of approx. 10 ms does 
not cause big problems. Also, by default the ICMP Echo Request messages are 
generated with a frequency of one message per second, which provides a lot of 
time for processes such as injection or extraction of secret messages. 

The measurement that scored the highest value of Standard Deviation (5th 
measurement for Solution 3) is further analyzed in Figure 16. It is visible that out 
of the 10 RTTs in the measurement, only one had a significant delay spike and the 
other ones were relatively close to the average value of RTT. 

 
Figure 16 

Variances in measured RTTs during measurement with the highest standard deviation 
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The mentioned delay spike can be caused by some other processes running on 
used device. This situation is not unusual even in dedicated experimental setups 
such as the one presented in section 3.1 since many operating systems are able to 
run multiple processes at once. Higher load on hardware or higher network 
utilization might increase both frequency and amplitude of these delay spikes. 

4.5 Some Other Problems 

There are still some well-known issues that were not solved or even analyzed in 
this paper. First, since both Wireshark and Scapy use the libpcap library, the secret 
message injected by Scapy is visible in packet dissections from Wireshark (see 
Figure 12). This issue could be mitigated by encryption of secret messages, 
however, the communicating devices would need to share encryption parameters. 
Since keys, nonces or other parameters have certain size, their exchange between 
devices might cause problems for approaches that do not create a covert channel 
with sufficient capacity. 

Secondly, keep in mind that the analyzed network steganography approach is 
probably platform-specific as it was designed and tested using the experimental 
setup (seen in Figure 1). Different operating systems might use various 
implementations of ICMP protocol, which is described in RFC 792 [11]. Since it 
is only a recommendation and not a strict standard, ICMP messages might contain 
various combinations of fields. Therefore, a presence of ICMP Data field used for 
transmission of secret messages in this proposal might result in dropping of a 
packet, since the receiving device does not support presence of ICMP Data field. 

Thirdly, it is quite common to block inbound ICMP Echo Request messages on 
firewalls since ICMP Echo Reply messages sent to various devices might reveal 
some information about network topology behind the firewall. In this case, the 
ICMP Echo Request messages could not pass through the firewall, so secret 
messages would not be delivered to their destination. Situations like this one limit 
the usability of all network steganography approaches. 

Finally, some well protected networks might use an Intrusion Detection System 
(IDS) which is a tool that monitors inbound network traffic for anomalies and is 
able to create warnings. Combinations of an IDS with other tools might even 
block network traffic with some characteristic feature, such as suspicious values 
of protocol fields. In that case, the connectivity to all devices behind the IDS 
might be blocked which could negatively affect many more users than those 
which want to share secret messages by the means of network steganography. 

Conclusions and Future Plans 

The presented paper analyzed some practical problems regarding network 
steganography approaches. Currently, there is an increasing interest in this field by 
the community of common computer users that tend to use popular libraries such 
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as Scapy and NetfilterQueue. However, usage of some simple implementations 
might be easily detectable by noticing differences in outputs of standard tools such 
as Terminal. This paper proposed some solutions, but it was shown that if the 
analysis tool uses the same library as the processing tool (libpcap in case of 
Wireshark and Scapy), the analysis tool might be able to capture modified 
messages. Therefore, if the users have some theoretical knowledge, they could 
easily reveal usage of steganography. 

This paper also briefly discussed possibility of encrypting secret messages prior to 
their injection into cover messages. This might be an interesting topic for future 
research since it may make evaluation of network traffic by analysis tools or an 
IDS more difficult. However, it places several requirements on used network 
steganography approach. Used approach would have to provide sufficient capacity 
for exchange of encryption parameters, enable their distribution in both directions, 
be reasonably fast and use cover messages of a common network protocol. 

Also, if the used approach would not be platform-specific, it would be a big 
advantage over other network steganography approaches. However, a reliable 
declaration that the approach is not platform-specific requires either a lot of 
experiments on multiple operating systems or a lot of research into network 
protocols that have a strict structure of their fields. Both options are great choices 
for future work. 
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