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Abstract: This paper describes a modification of a chaotic logistic map which could be 

exploited in a field of image encryption. After a summary of basic image encryption 

methods and problems, the paper mentions properties of a modified version of the logistic 

map. It is shown that the proposed changes help to achieve greater robustness against 

phase space reconstruction attacks. The paper also describes the usage of a modified map 

in an image encryption algorithm. Other techniques applied in the proposed algorithm 

include key diffusion, ciphertext chaining or four step diffusion stage. Evaluation of 

properties of the proposed algorithm is done by means of commonly used techniques. The 

numerical results are then compared with values obtained by other published algorithms. 
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1 Introduction 

One of the first encryption algorithms based on the chaotic maps was proposed in 

1989 by Matthews [1]. Since then, various chaotic encryption algorithms were 

designed, including the one described by Fridrich in 1998 [2]. Fridrich’s approach 

could be considered as important, since it introduced an idea of image encryption. 

Operations created especially for two dimensional matrices allowed simpler and 

more effective computations which is still the main advantage over conventional 

encryption algorithms such as Advanced Encryption Standard (AES). Also, the 

majority of proposals adopted a two stage encryption process which was described 

by Fridrich. The first stage – confusion changes positions of plaintext image pixels 

in order to minimize their correlation. The second stage – diffusion calculates the 

intensities of pixels in the resulting encrypted image. 
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The development of the chaotic image encryption algorithms continued by 

removing their drawbacks. Small key space problems were solved by high 

dimensional chaotic maps [3] or by combinations of various maps [4]. The 

Dynamic degradation of chaos, present in the discrete versions of chaotic maps, 

was studied in [5]. An attack capable of revealing permutations of the image 

pixels was published by Solak et al. in 2010 [6]. Especially the last mentioned 

problem caused the usage of more complicated diffusion stages. 

The diffusion stage usually employs a technique called ciphertext chaining for 

establishing dependencies between the intensities of consecutive image pixels. 

The dependencies are useful for creating different encrypted images for plaintext 

images with only small amount of changes, however they could be easily found 

out by Solak’s attack. In order to provide certain level of robustness against this 

attack, the diffusion stage needs to use another operation. Probably one of the 

most used operations is an addition of elements from pseudo-random (PR) 

sequences in modular arithmetic. In this case, the Solak’s attack would obtain only 

the pixel intensities combined with the elements of PR sequences. 

However, also the generation of the PR sequences requires some care. In the case 

that the PR sequences are simply computed by some of the chaotic maps, already 

calculated elements of the PR sequence could be evaluated by the phase space 

reconstruction attacks. The basic theory of the phase space reconstruction was 

given by Takens in 1985 [7]. In the context of the image encryption algorithms, 

the phase space is a set of values that could be achieved by the used chaotic map. 

Approaches that are effective against phase space reconstruction can be divided 

into two groups. The first group changes parameters of the chaotic maps during 

computation of the PR sequences. Murillo-Escobar et al. [8] described an 

algorithm where parameter of the used map is changed by values produced by 

other map. Liu and Miao [9] used binary PR sequences for diffusion by means of 

a generated code book. The second group of proposals, modifies each sequence 

element after its computation. Guanghui et al. [10] proposed a scheme with 

modular design which could utilize various chaotic maps, however the results 

were presented only for the logistic map. Liu et al. [11] described a modification 

of calculated sequence elements by another map. In all of these cases, the 

robustness against the phase space reconstruction was created by suppressing the 

dependencies between consecutive elements of the PR sequences. 

The algorithm presented in this paper tries to provide certain amount of robustness 

against both Solak’s attack and the phase space reconstruction attacks. Since the 

elements of the generated PR sequences are combined with results of ciphertext 

chaining by means of bitwise eXclusive OR (XOR), the Solak’s attack would be 

useful only for obtaining the combined values. As the elements of PR sequences 

are computed by a modified version of chaotic logistic map which is effective 

against phase space reconstruction, it is difficult to evaluate the elements of PR 

sequences that are required for a successful decryption. 
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The rest of the paper is organized as follows: Chapter 2 deals with the logistic 

map, its properties and the modification which is proposed in this paper for 

purposes of the image encryption. Chapter 3 describes the algorithms used for 

encryption and decryption. An analysis of experimental results is given in 

Chapter 4 and the lastly in Chapter 5, conclusions the paper are given, by a brief 

summary of advantages and disadvantages of the proposed solution and plans for 

the future work. 

2 Logistic Map and its Modification 

2.1 Logistic Map 

Logistic map (LM) can be described as an one dimensional chaotic map that uses 

one parameter r  (0; 4). An initial value x0 and the values of x in all iterations of 

the map belong to an interval (0; 1). The LM was popularized mainly by a paper 

of May in 1976 [12]. The values of x in consecutive iterations, called iterates of 

the map could be calculated by applying (1): 

)1(1 nnn xrxx  , (1) 

where n denotes an iteration number. 

Chaotic behavior of the LM could be illustrated by its bifurcation diagram. The 

diagram shows values of xn that were calculated with various values of the 

parameter r. An example of the bifurcation diagram that has the initial value x0 

equal to 0.5 and plots 800 values of xn is shown in Figure 1. 

 

Figure 1 

A bifurcation diagram of the logistic map 

As it is visible, behavior of the LM is predictable until the parameter r reaches 

certain value close to 3. At this point the values of calculated iterates start to 

oscillate between two sets. This property of the LM is known as a bifurcation. 
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After several other bifurcations, it is quite difficult to see the relations between 

consecutive iterates. The point where r ~ 3.56995 is known also as a start of a 

chaotic behavior of the LM. However, also some values of r after this point show 

predictable behavior. These are known as islands of stability. Probably the most 

notable example is present around r equal to 3.85. 

Another important property of the LM is an existence of a transient period. This 

period contains iterates that are calculated among the first and therefore their 

values could be predictable. In most cases, the effects of the transient period are 

suppressed by using some iterates only for modification of the initial value x0. 

Common sizes of the transient period are powers of 10, e. g. 100 or 1,000 iterates. 

Because the LM could be considered as a discrete version of a continuous logistic 

differential equation, also the properties regarding the finite amount of possible 

iterate values should be investigated. Periodicity testing was performed in a 

computing environment MATLAB R2015a. In total, 10 sequences were 

computed, each one consisted of 108 iterates. The iterates were represented as 

double precision values (64 bits). As 52 bits are used for storage of a fractional 

part of these values, their precision could be expressed as log10(252) ~ 15.6536. 

Therefore, this data type provides precision of 15 decimal places. 

Each of the 10 sequences used the initial value x0 set to 0.5 and the transient 

period with size of 1,000 iterates. Sequences differed by value of the parameter r 

which was set from 4-10-14 to 4-10-15 with a step of 10-15. The period lengths for 

the sequences with investigated values of the parameter r are shown in Table 1. 

Table 1 

Period lengths of the sequences generated by the LM with various values of the parameter r 

Value of r Period length Value of r Period length 

4-10-14 108 4-5·10-15 108 

4-9·10-15 108 4-4·10-15 108 

4-8·10-15 108 4-3·10-15 12,960,875 

4-7·10-15 108 4-2·10-15 33,767,629 

4-6·10-15 108 4-10-15 15,599,659 

The results from Table 1 show that the values of the parameter r influence period 

lengths. However, also the worst shown case (r = 4-3·10-15) would be sufficient 

for element-wise processing of approx. 13 million elements. This number of 

elements is present in a true color image with a resolution of 2,078x2,078 pixels. 

2.2 Phase Space Reconstruction Attacks 

As it was already mentioned, the Solak’s attack and similar known-plaintext 

attacks could be used for revealing the permutations of image pixels done in the 

confusion stage of the image encryption algorithms. Therefore, the main part of 
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security provided by these algorithms is created by the diffusion stage. Since the 

diffusion stage of image encryption algorithms usually sequentially processes each 

pixel of the input images, the amount of used operations should be minimal. 

Usually, the diffusion stage consists of two operations. The first one, ciphertext 

chaining is applied for establishing dependencies between consecutive image 

pixels in the encrypted images. However, the most popular version of the 

ciphertext chaining could be reversed by anyone who has access to the encrypted 

image. The second operation used during diffusion stages is the combination of 

pixel intensities with the elements of a PR sequence. The combination could be 

done as an addition in modulo 256 or a bitwise XOR. As the ciphertext chaining 

and the confusion stage could be broken by attackers, the security of some 

algorithms depends solely on this operation. 

The LM could be used for generating the PR sequences, but there are still some 

relationships between iterates. The relationships are expressed by a Poincaré plot 

which uses values of two consecutive iterates as the coordinates of plotted points. 

An example is shown in Figure 2, where the LM with 108 iterates used the initial 

value x0 = 0.5, the transient period with size of 1,000 iterates and the parameter r 

set to 4-4·10-15. The plot shows only the first 2,000 points for better readability. 

 

Figure 2 

A Poincaré plot for consecutive iterates of the LM 

An iterate (xn-1) that was used for the calculation of a current iterate (xn) could be 

observed by using xn as a coordinate on y axis. The plot shows that there are, at 

most, two points with chosen y coordinate. Therefore, it could be assumed that the 

iterate xn was calculated from one of the two possible coordinates on the x axis. 
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However, this technique has many drawbacks. First of all, the attacker needs to 

determine the parameter r before construction of plots. Also, the plots do not 

provide values of xn-1 for all possible xn. For the precision of 10-15, the plots would 

need to contain 2·1015 points in order to provide all possible relations between 

consecutive iterates. Finally, if each previous element would be represented by 

2 possible values, the reconstruction of sequence with num elements would result 

in 2num possible solutions. Therefore, the computations needed for the phase space 

reconstruction only by the Poincaré plots seem to be computationally exhaustive. 

There are also some other, more efficient approaches for the phase space 

reconstruction. One of them is known as a time delay method. Some examples of 

usage of this method are presented in [13] or [14]. 

2.3 Proposed Modification of Logistic Map 

As it was shown in the previous subchapters, the LM has some drawbacks which 

could impact the security of the designed image encryption algorithms. In order to 

suppress some of them, we propose a modification of (1): 

)1mod()1(104

1 nnn xrxx 
 (2) 

The changes in the equation could seem unimportant, but they cause great 

differences in its behavior. As a double value with 15 decimal places is multiplied 

by 104, the first four decimal places move to a left side of the decimal mark. Other 

11 decimal places are shifted by 4 places to the left side. Remaining 4 decimal 

places are created by increasing the amount of decimal places of the double value. 

The last four decimal places were originally on 16th to 19th decimal place of the 

iterate. As the double precision produces only numbers with 15 decimal places, 

the numbers with more decimal places are chosen to be the closest approximations 

of the double values. This causes a variation from the continuous chaotic systems, 

which could be viewed as an effect of the dynamical degradation of chaos [5]. 

The second operation applied in (2) – a usage of modulo 1 is performed to remove 

the numbers which are on the left side of the decimal mark. This operation is 

important for producing values of xn+1 that belong to an interval (0; 1). 

It is important to point out that the changes done in the map (2) cause appearance 

of other fixed points. While fixed points of the map (1) are well studied, their 

analysis for the map (2) is not done yet. There are only some observations, e. g. 

the initial value x0 = 0.5 produces the same value when the parameter r equals 

3.9902 or 3.999. This is caused by fact that the map (1) computes iterate value that 

has number 5 on the fifth decimal place and it is followed by zeros. After the shift 

of decimal places done in the map (2), iterate values 0.99755 (for r = 3.9902) and 

0.99975 (for r = 3.999) both become 0.5 which is equal to the initial value x0. 
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However, it is quite safe to mention that the occurrence of the fixed points for 

values of the parameter r ≥ 3.9999 is quite rare, because calculated iterates have 

more decimal places than the initial value x0. Hence the probability that the last 11 

decimal places of calculated iterate are equal to other iterates is negligible. 

2.4 Comparison of the Maps 

Following subchapters compare the properties of the LM (1) and the proposed 

map (2), which is for better readability denoted as MLM (modified logistic map). 

2.4.1 Time Consumption 

Measurement of the computational time needed for generating sequences used 

following setup: all sequences generated by the LM (1) and the MLM (2) had the 

transient period with length of 1,000 elements and the initial value x0 was equal to 

0.5. The number of sequence elements was set as 106, 107 or 108 elements. Two 

different values of the parameter r were utilized, 4-10-14 and 4-10-15. Used PC had 

2.5 GHz CPU and 12 GBs of RAM and it utilized the computational environment 

MATLAB R2015a running on Windows 10 OS. The times presented in Table 2 

are arithmetic means of 100 repeated measurements. 

Table 2 

Comparison of the time consumption 

Length of sequences 

[elements] 
Value of r 

Time needed for 

the LM [ms] 

Time needed for 

the MLM [ms] 

106 
4-10-14 15.5829 106.1821 

4-10-15 15.4199 104.7699 

107 
4-10-14 170.6184 1185.5463 

4-10-15 168.2268 1170.6595 

108 
4-10-14 1642.9382 11209.9446 

4-10-15 1556.0445 10607.3564 

The results presented in Table 2 show that the computational complexity of the 

MLM is approx. 7 times higher than the one of the LM. This is due to higher 

amount of operations used for a calculation of each iterate. However, longer 

computational durations are balanced by advantages that are described in 

following subchapters. Also it could be stated that different values of the 

parameter r have only a small impact on the time consumption – the maximal 

recorded difference was approx. 5 %. 

2.4.2 Periodicity Concerns 

It could be assumed that the replacement of some decimal places done by the 

MCM could result in a reduction of the chaotic behavior and therefore also in 
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smaller period lengths. However, the periodicity that occurred for the LM with 

certain values of the parameter r (4-3·10-15, 4-2·10-15 and 4-10-15) was caused by 

the finite precision of the double values – exactly because there are not any double 

values between 1-10-15 and 1. Therefore, all iterates which would have values in 

an interval [1-10-15; 1] in a system with an infinite precision, result in one of these 

two values in the double precision system (with finite precision). As the value of 

the following iterate depends only on a value of the current iterate, the values 

1-10-15 and 1 always produce the same two values. This is the cause of periodicity 

for the LM with certain values of the parameter r. 

Because the MLM changes four decimal places at the end of each iterate, the 

values before the multiplication in an interval [1-10-15; 1) are changed to an 

interval [1-10-11; 1) after the multiplication. This prevents computation of the same 

values in following iterations. Therefore, the period lengths should be enlarged. 

The resulting period lengths computed with the same setting as was used for the 

LM in Table 1 (the initial value x0 set as 0.5, the transient period with size of 

1,000 iterates and the parameter r set in an interval from 4-10-14 to 4-10-15 with 

a step of 10-15) are shown in Table 3. 

Table 3 

Period lengths of the sequences generated by the MLM with various values of the parameter r 

Value of r Period length Value of r Period length 

4-10-14 108 4-5·10-15 108 

4-9·10-15 108 4-4·10-15 108 

4-8·10-15 108 4-3·10-15 108 

4-7·10-15 108 4-2·10-15 108 

4-6·10-15 108 4-10-15 108 

It could be observed that the MLM produces sequences with period lengths of 108 

elements (length of the generated sequence) in all described cases. As the LM had 

shorter period lengths for sequences with the parameter r equal to 4-3·10-15, 

4-2·10-15 and 4-10-15, it could be concluded that the MLM achieves better results 

by means of periodicity. 

2.4.3 Robustness against the Phase Space Reconstruction 

The replacement of the last four decimal places also improves robustness against 

the phase space reconstruction attacks. Because the decimal places of iterates are 

shifted by 4 places to the left side, the relations between values of two consecutive 

iterates are quite unpredictable. This property is also shown by the Poincaré plot 

in Figure 3, where the relations between consecutive iterates of the MLM are 

illustrated. The sequence of 108 elements was generated with the initial value 

x0 of 0.5, the transient period with size of 1,000 iterates and the parameter r set to 

4-4·10-15. The plot shows only the first 2,000 points for better readability. 
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Figure 3 

A Poincaré plot for consecutive iterates of the MLM 

Because coordinates of the plotted points for the MLM are determined mainly by 

decimal places close to the fourth place prior to the multiplication, distribution of 

points in the plot is more uniform. This is due to weak relation between individual 

decimal places of the iterates before the multiplication. More uniform distribution 

of the points could be considered as a difficult problem for the phase space 

reconstruction algorithms, as the number of possible values of previous iterates is 

not clear (it was 2 for the parabola plotted for the LM in Figure 2). Therefore, 

complete reconstruction by the Poincaré plots needs to evaluate all possible 

x coordinates (xn-1) for each current iterate value represented on the y axis (xn). 

3 Proposed Image Encryption Algorithm 

The described map (2) shows a set of properties that could be useful for the image 

encryption algorithms. Therefore, we applied the MLM in an algorithm with usual 

architecture. Firstly, the confusion stage permutes the image pixels and then the 

diffusion stage changes their intensities. The proposed algorithm works with 

images of an arbitrary resolution and color depths of 8 bits (grayscale images) and 

24 bits per pixel (true color images). Algorithm in following subchapter is used 

for the encryption. Different steps done during the decryption are described in 

subchapter 3.2. 
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3.1 Encryption Algorithm 

Inputs: a plaintext image P, a 16-byte key K 

Output: an encrypted image E 

Step 1: Height h, width w and the number of color planes numcp of the matrix P 

are determined. The matrix P is then reshaped to a matrix Pmat that has h rows and 

w’ = w·numcp columns. This is done for establishing dependencies between the 

color planes in true color images. 

Step 2: The key K is divided into four subkeys: Kcol (bytes 1 to 4), Krow (bytes 

5 to 8), Kdif1 (bytes 9 to 12) and Kdif2 (bytes 13 to 16). 

Step 3: The subkeys Kcol, Krow, Kdif1 and Kdif2 are converted to decimal numbers 

and they are used for calculation of four values rcol, rrow, rdif1 and rdif2 by (3): 
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where 104 and 1+232 are constants used to ensure that the values of rcol, rrow, rdif1 

and rdif2  [3.9999; 4). 

Step 4: Four sequences seqcol, seqrow, seqdif1 and seqdif2 are generated by the 

MLM (2) with the initial values x0 equal to 0.5. The transient period has size of 

1,000 iterates. The value of parameter r used during and after the transient period 

depends on a calculated sequence and is shown in Table 4. The lengths of 

generated sequences are following: seqcol has w’ elements, seqrow has h elements 

and both seqdif1 and seqdif2 have 2·h·w’ elements. 

Table 4 

Values of the parameter r used during and after the transient period 

Sequence 

Value of r used 

for iterates  

1 to 250 

Value of r used 

for iterates 251 

to 500 

Value of r used 

for iterates 501 

to 750 

Value of r used 

for following 

iterates 

seqcol rrow rdif1 rdif2 rcol 

seqrow rdif1 rdif2 rcol rrow 

seqdif1 rdif2 rcol rrow rdif1 

seqdif2 rcol rrow rdif1 rdif2 

Changing of the parameter r during the transient period creates effect known as a 

key diffusion. In this case, the change of only one byte in the key K should result 

in differences in all four generated sequences. 

Step 5: Elements of the sequences seqcol, seqrow, seqdif1 and seqdif2 are quantized 

by a set (4). The quantized sequences are denoted by an apostrophe. 
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 (4) 

where k = 1, 2, …, w’, l = 1, 2, …, h and i = 1, 2, …, 2·h·w’ 

Step 6: Two sequences seq’dif1 and seq’dif2 are reshaped to four matrices. The first 

half of seq’dif1 creates a matrix mat’dif11 with h rows and w’ columns. Sequence 

elements are stored in the columns of the matrix, starting from the left side. Other 

half of seq’dif1 creates matrix mat’dif12 with the same size. The sequence seq’dif2 is 

split and reshaped by the same way to matrices mat’dif21 and mat’dif22. 

Step 7: The first part of the confusion stage takes place. Columns of the 

matrix Pmat are scanned and their pixels are permuted by a circular shift. The 

amount of shifting for each column is given by the elements of sequence seq’col. 

Image with shifted pixels in its columns is stored in an auxiliary matrix A. 

Step 8: The second part of the confusion stage is done. Rows of the matrix A are 

scanned and their pixels are permuted by a circular shift. The amount of shifting 

done for each row is given by the elements of sequence seq’row. The permuted 

image is stored in the matrix A. 

Step 9: The first part of the diffusion stage takes place. Pixels in rows of the 

matrix A are diffused from the top to the bottom row (5): 

  :),(':),1(:),(:),( 11 lmatlAlAlA dif  (5) 

where l = 1, 2, …, h denotes a row index, : stands for all pixels in columns of the 

matrix A and   is an operator of bitwise XOR. All additions of elements from 

matrix A are done modulo 256. The top row of pixels (l = 1) uses the bottom row 

(l = h) for the additions. 

Step 10: The second part of the diffusion stage is done. Pixels in rows of the 

matrix A are diffused in the opposite direction from the bottom to the top row (6): 

  :),(':),1(:),(:),( 12 lhmatlhAlhAlhA dif   (6) 

where l = 0, 1, …, h-1 denotes the row index. All additions of elements from the 

matrix A are done modulo 256. The bottom row of pixels (l = h) uses the top row 

(l = 1) for the additions. 

Step 11: The third part of the diffusion stage is carried out. Pixels in columns of 

the matrix A are diffused from the leftmost to the rightmost column (7): 

  )(:,')1(:,)(:,)(:, 21 kmatkAkAkA dif  (7) 

where k = 1, 2, …, w’ denotes a column index and : stands for all pixels in rows of 

the matrix A. All additions of elements from the matrix A are done modulo 256. 
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The leftmost column of pixels (k = 1) uses the rightmost column (k = w’) for the 

additions. 

Step 12: The fourth and final part of the diffusion stage is computed. Pixels in 

columns of the matrix A are diffused in the opposite direction from the rightmost 

to the leftmost column (8): 

  )'(:,')1'(:,)'(:,)'(:, 22 kwmatkwAkwAkwA dif   (8) 

where k = 0, 1, …, w’-1 denotes the column index. All additions of elements from 

the matrix A are done modulo 256. The rightmost column of pixels (k = w’) uses 

the leftmost column (k = 1) for the additions. 

Step 13: The auxiliary matrix A is reshaped to a matrix E with h rows, w columns 

and numcp color planes. The matrix E represents encrypted version of the image P. 

3.2 Differences in the Decryption Algorithm 

The decryption is analogous to the encryption, only the order of operations is 

reversed. After the generation and the processing of sequences (Steps 1 to 6), the 

first change is done when the removal of diffusion removal is applied before the 

removal of confusion. Also the parts of the diffusion stage are used backwards, 

starting with Step 12 and continuing to Step 9. These steps apply subtractions 

instead of the additions, the usage of modulo 256 arithmetic remains the same. 

Since repeated usage of bitwise XOR produces the values before diffusion, this 

operation is not changed. However, the order of the two operations is reversed, the 

bitwise XOR is used prior to the subtractions. 

The removal of confusion is done also in the opposite order. First, shuffling in 

image rows is removed by using circular shifts with negative values of elements 

from sequence seq’row. Then, the rearrangements in image columns are removed 

by circular shifts given by negative values of elements from sequence seq’col. 

4 Analysis and Comparison of Experimental Results 

All experiments with the proposed algorithms were performed on a PC with 2.5 

GHz CPU, 12 GBs of RAM in the MATLAB 2015a running on the Windows 10 

OS. The set of images used for testing is shown in Figure 4. The first two images, 

lena and lenaG have resolution of 512x512 pixels and color depths of 24 and 8 

bits per pixel, respectively. Images black1 and black2 have resolution of 256x128 

pixels and color depth of 8 bits per pixel. Image black2 has a pixel with intensity 

255 located on the coordinates [128; 64]. The keys used during experiments are 

illustrated in Table 5. Differences between similar keys are indicated by bold 

characters. The images from Figure 4 encrypted by key K1 are shown in Figure 5. 
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Figure 4 

Set of images used for the experiments 

Table 5 

Keys used for the experiments 

Key Value 

K1 0x746869736973617365637265746B6579 

K2 0x746869726973617365637265746B6579 

K3 0x746869736973617365637265746C6579 

 

Figure 5 

Encrypted versions of the images from the testing set 

4.1 Size of the Key Space and the Key Sensitivity 

A key space consists of all possible keys that could be used. As the proposed 

algorithm utilizes 16-byte key K, the total size of the key space is given as 

25616 = 2128. If we would consider the time required for a decryption of one true 

color image with resolution of 512x512 pixels as approx. 550 ms, the brute-force 

attack on the image with these parameters would take approx. 5.9347·1030 years. 

Therefore, the brute-force attack could be considered as infeasible. 
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Sensitivity of the proposed algorithm to used keys could be investigated by an 

encryption with one key and a decryption with other keys. The images decrypted 

by an incorrect key should not contain any information about the original plaintext 

image (which is the same as the image decrypted by a correct key). This 

experiment is shown in Figure 6, where the image lena was encrypted by key K1. 

Then it was decrypted with all three keys. 

 

Figure 6 

Illustration of the key sensitivity 

Please note that the change of a key in portion which is used for the confusion 

stage (pixel rearrangement) also influences the diffusion stage. This property is 

result of the key diffusion and it is visible on image decrypted by key K2. 

4.2 Statistical Attacks 

Statistical attacks try to obtain some properties of the image encryption algorithms 

by comparing known pairs of the plaintext images and corresponding encrypted 

images. When some properties of the encryption algorithms are known, statistical 

attacks could be used for breaking the algorithms or their parts. There are several 

measures that could be used to illustrate robustness against the statistical attacks. 

The first measure is histogram comparison. The histogram of the encrypted image 

should have distribution close to uniform without notable peaks which are present 

in the histogram of the plaintext image. Histograms of the image lenaG before and 

after encryption by the key K1 are shown in Figure 7. 

Second measure is illustrated by scatter plots that contain points with coordinates 

given by intensities of two adjacent image pixels. The adjacencies could be 

horizontal, vertical or diagonal. If the plotted points are close to line y = x, it could 

be concluded that the intensities of adjacent pixels are highly correlated. The 

distribution of the points for the encrypted images should be close to uniform. The 

scatter plots for the horizontal adjacencies of 1,000 randomly chosen pixel pairs 

from the image lenaG and its version encrypted by key K1 are shown in Figure 8. 
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Figure 7 

Comparison of the histograms 

Third measure are values of correlation coefficients ρ, computed separately for 

each color plane by (9) for the horizontally (ρhor), vertically (ρver) or diagonally 

(ρdiag) adjacent image pixel pairs. Vector I1 contains intensities of the first pixels 

from the pairs and vector I2 is created by scanning of the adjacent pixel intensities. 
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where pp = 1, 2, …, npp is an index of pixel pair, npp denotes an amount of the 

pixel pairs and xI  stands for an arithmetic mean of vector 
xI . 

The last measure is an entropy H which is calculated for each color plane by (10). 
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0 2 pixelbitsinpinpH
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  (10) 

where p(in) is a probability of occurrence of a pixel with intensity in. 

Computed values of the correlation coefficients ρ and entropy H are included with 

other values in Table 6. The values of the correlation coefficients are arithmetic 

means of 100 repeated measurements for 1,000 randomly chosen pixel pairs. 
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Figure 8 

Scatter plots for the horizontally adjacent pixel pairs 

4.3 Differential Attacks 

Differential attacks reveal the properties of the encryption algorithms by exploring 

differences in encrypted versions of similar plaintext images. Robustness against 

the differential attacks is evaluated by two parameters – Number of Pixel Change 

Ratio (NPCR) and Unified Average Changing Intensity (UACI). Both these 

parameters use a pair of plaintext images, P1 and P2 which differ only in an 

intensity of one pixel. Furthermore, the size of this difference is minimal (one 

intensity level). These two images are then encrypted by the same key as E1 and 

E2. NPCR for individual color planes of image pair E1 and E2 is given by (11): 
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where h and w represent height and width of images E1 and E2, l and k denote row 

and column indexes, Diff is a difference matrix, Diff(l, k) = 1 if E1(l, k) ≠ E2(l, k), 

otherwise Diff(l, k) = 0. 

Calculation of UACI for the color planes uses (12): 
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where L is a color depth of a color plane in bits per pixel. 

A difference between NPCR and UACI is hidden in the way how these parameters 

evaluate changes in the pair of encrypted images. While NPCR only sums the 

number of pixel intensity changes, UACI also records the sizes of the changes. 

Calculated values of NPCR and UACI for the set of images presented in Figure 4 

are included in Table 6. These values are arithmetic means of 100 repeated 

measurements with randomly chosen pixel with modified intensity. 

Both NPCR and UACI are given as percentages. Wu et al. [15] described 

theoretically critical values of NPCR and UACI that depend on the resolution of 

the encrypted images. For the resolution of 512x512 pixels, the theoretically 

critical values are 99.6094% for NPCR 33.4635% for UACI. 

4.4 Time Consumption and Computational Complexity 

Images as a data type could be characterized by high redundancy. Therefore, the 

speed of encryption or decryption is an important property of the image 

encryption algorithms. Durations of encryption tenc and decryption tdec are included 

in Table 6. These times are arithmetic means of 100 repeated measurements. 

The computational complexity of image encryption algorithms could be expressed 

also by amount of performed operations in so-called big O notation (also known 

as an asymptotic notation). Following paragraph investigates the case of 

encryption, with the height of a processed image denoted as h, its width w and 

number of color planes numcp represented by w’ = w·numcp. The generation of PR 

sequences by the modified version of the logistic map takes 2hw’ + h + w’ + 

4,000 operations. Each operation for this stage of algorithm consists of three 

multiplications, one subtraction and one modulo operation. Quantization of PR 

sequences requires 2hw’ + h + w’ multiplications and rounding operations. 

Confusion stage of the proposed algorithm needs h + w’ circular shifts of 

sequences with h or w’ elements. The last stage of the algorithm – diffusion 

computes 2hw’ additions and XOR additions. 

If the complexity of various operations would be considered as the same, the 

proposed algorithm requires 16hw’ + 7(h + w’) + 16,000 operations for one 

encryption. Therefore, it could be concluded that the computational complexity 
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for the proposed algorithm is linear and it depends solely on a resolution of the 

processed image (hw’). As for most cases, the term 16hw’ is greater than the other 

two terms, the big O notation of the proposed algorithm could be given as O(16n). 

4.5 Comparison of Numerical Results 

Resulting values of the numerical measures for the proposed algorithm are shown 

in Table 6. Characters R, G and B in the brackets denote individual color planes of 

true color images (Red, Green or Blue). The word “plain” in key column is used 

for plaintext images which are not encrypted.  

Table 6 

Numerical results achieved by the proposed algorithm 

Value Key lena (R) lena (G) lena (B) lenaG black1 black2 

ρhor [-] 

plain 0.973 0.9677 0.953 0.9712 ~1 ~1 

K1 0.0094 0.003 -0.0006 -0.0013 0.0156 -0.0011 

K2 -0.0031 -0.0049 -0.005 0.0044 0.0189 -0.01 

ρver [-] 

plain 0.9737 0.9735 0.956 0.9743 ~1 ~1 

K1 0.0066 0.0044 0.001 -0.0005 -0.0071 0.0202 

K2 -0.0055 -0.0023 -0.0067 -0.0012 0.0049 0.0017 

ρdiag [-] 

plain 0.9541 0.9536 0.9349 0.9572 ~1 ~1 

K1 -0.005 0.0063 0.0005 -0.0034 0.0017 0.0007 

K2 -0.001 0.0021 -0.0019 0.0018 0.0001 -0.0018 

H [bits/ 

pixel] 

plain 7.5883 7.106 6.8147 7.2344 0 0.0005 

K1 7.9992 7.9992 7.9992 7.9992 7.9944 7.9942 

K2 7.9992 7.9993 7.9993 7.9993 7.9944 7.9945 

NPCR 

[%] 

K1 99.7456 99.6094 99.6906 99.6792 99.6674 99.6429 

K2 99.7318 99.6227 99.675 99.7074 99.6307 99.6521 

UACI 

[%] 

K1 33.6223 33.6513 33.6724 33.6274 33.6473 33.6338 

K2 33.6308 33.6425 33.6356 33.6401 33.6186 33.6788 

tenc 

[ms] 

K1 598.481 191.1818 24.6219 24.2081 

K2 601.264 193.2376 24.6448 24.1386 

tdec 

[ms] 

K1 552.0765 173.8621 22.1377 21.9269 

K2 555.3535 174.073 22.1272 21.8784 

Values of the correlation coefficients ρ for images black1 and black2 are close to 

1, as the first image consists only of pixels with zero intensity. The second image 

has one pixel with different, maximal intensity level (255). Presented encryption 

times tenc and decryption times tdec for the true color image are obtained for 

encryption or decryption of all three color planes. A comparison of results with 

other algorithms which used the same images or color planes is shown in Table 7. 
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Table 7 

Comparison of the numerical results with other algorithms 

Value 
Proposed algorithm Ref. [8] Ref. [10] 

lena (R) lenaG lena (R) lenaG 

ρhor [-] 0.0094 -0.0013 0.0135 -0.0278 

ρver [-] 0.0066 -0.0005 Unknown -0.0065 

ρdiag [-] -0.005 -0.0034 Unknown -0.0074 

H [bits/pixel] 7.9992 7.9992 7.9974 7.9895 

NPCR [%] 99.7456 99.6792 99.63 99.66 

UACI [%] 33.6223 33.6274 33.31 33.57 

tenc [ms] 598.481 191.1818 243.2 not reported 

complexity 

[operations] 
O(16n) not reported O(8n) 

Based on the presented results, it could be stated that our algorithm achieves better 

values of the correlation coefficients ρ than the two other algorithms. Values of 

entropy H are also higher. NPCR and UACI are slightly over the critical values 

and they are also considerably better than the results obtained by other algorithms. 

The smallest difference between algorithms is present for NPCR value of the 

image lenaG. Also, the values of all mentioned parameters are quite similar for 

two tested keys. However, the advantages of our proposal are balanced by its 

slower performance – it is approx. 2.5 times slower than the approach from [8] 

and it has two times the computational complexity of the algorithm presented 

in [10]. However, the computational complexity of the scheme [10] depends on 

length of used feedback, which was chosen as 4 by the authors of algorithm [10]. 

Conclusions and Future Work 

In this paper, we describe a modification of a chaotic logistic map, which was also 

employs in an image encryption algorithm. Image encryption can be used in 

various applications, such as an improvement of data security in steganographic 

systems [16] [17] or for secure transmission and storage of features in biometric 

systems which utilize images [18]. Because the modified version of the logistic 

map is more robust, to phase space reconstruction attacks, the encryption 

algorithm also holds this property. Other required properties of the algorithm are 

achieved by a combination of several techniques, such as key diffusion, ciphertext 

chaining or four step diffusion method. However, the number of these techniques 

causes slower performance of the proposed algorithm. 

The proposed image encryption algorithm reaches correlation coefficients, with 

values < 0.01 for all planes of true color image lena and also for grayscale image 

lenaG. The computed results of entropy are close to the theoretical bound of 8 bits 

per pixel. Also, the arithmetic means of 100 repeated measurements of NPCR and 

UACI are equal to or higher than the required values reported by Wu et al. [15]. 



J. Oravec et al. Chaotic Image Encryption Algorithm Robust against Phase Space Reconstruction Attacks 

 – 56 – 

Therefore, the proposed algorithm is robust against all types of attacks commonly 

used for cryptanalysis of image encryption algorithms. 

In the future, we plan to explore other possible techniques which would provide 

similar properties, with a smaller computational complexity. This goal may 

involve other modifications of the equation of the logistic map. The solution 

proposed in this paper multiplies iterates of the logistic map by a constant. This 

operation and the fact that the following iterate needs to be from an interval (0; 1) 

cause usage of modular arithmetic. Other operations, which do not change the 

interval of iterates (e. g. rearrangement of decimal places of iterates or 

combinations of multiple iterates), could be faster than the two operations utilized 

in this paper, nonetheless, the properties of other operations regarding phase space 

reconstruction attacks, needs further investigation. 
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