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Abstract: Artificial Intelligence-assisted radiology has shown to offer significant benefits in
clinical care. Physicians often face challenges in identifying the underlying causes of acute
respiratory failure. One method employed by experts is the utilization of bedside lung ultra-
sound, although it has a significant learning curve. In our study, we explore the potential of
a Machine Learning-based automated decision-support system to assist inexperienced prac-
titioners in interpreting lung ultrasound scans. This system incorporates medical ultrasound,
advanced data processing techniques, and a neural network implementation to achieve its
objective. The article provides a comprehensive overview of the steps involved in data prepa-
ration and the implementation of the neural network. The accuracy and error rate of the most
effective model are presented, accompanied by illustrative examples of their predictions. Fur-
thermore, the paper concludes with an evaluation of the results, identification of limitations,
and recommendations for future enhancements.

Keywords: AI-based image processing; Surgical Data Science; Applied medical imaging;
Deep neural networks; Lung ultrasound

1 Introduction
Over the past decade, lung ultrasound has emerged as a widely utilized diagnos-
tic tool [1–6], particularly in bedside examinations [7, 8], owing to the advent

– 69 –



G. Orosz et al. et al. Lung Ultrasound Imaging and Image Processing with AI Methods

of portable and handheld devices, and even supporting robotic surgery applica-
tions [9–12]. Critical care [13], anesthesia [14], and emergency medicine [15] are
among the primary medical specialties that have embraced this technique. Profi-
ciency in recognizing lung ultrasound artifacts is essential for practitioners in these
fields [16]. The critical care perspective played a pivotal role in demonstrating the
utility of this technique to the medical community [17–19]. Unlike general ultra-
sonography, lung ultrasound examinations focus on identifying and analyzing pat-
terns of artifacts [20]. Therefore, lung ultrasonography has become a distinct clini-
cal modality within acute care specialties.

1.1 Sustainable Radiology
Ultrasound is also seen as an affordable, wide-spread diagnostic tool, subject to
continuous innovation, able to bring sustainability to the imaging domain of modern
medicine [21, 22].

Emergency ultrasonography has emerged as a widely researched application, sup-
porting euqal access to care. This is aligned with the United Nations’ Sustain-
able Development Goals (SDG) – especially with SDG 3 for promoting well-being
across all age groups [23].

Notably, lung emergency ultrasound offers an eco-friendly and non-ionizing imag-
ing option, particularly valuable in resource-limited regions and during pandemics
like COVID-19.

In low- and middle-income countries (LMICs), diagnostic imaging is often inad-
equate [24], but clinician-performed, hand-carried, bedside ultrasound has gained
popularity globally. Affordable, portable, and user-friendly machines have expanded
its reach, bolstering diagnostic capabilities in rural hospitals.

The use of ultrasound in LMICs has gained recognition from health ministries, non-
governmental organizations, and the World Health Organization (WHO). It sig-
nificantly improves patient diagnosis and management, particularly in remote re-
gions [25].

1.2 Automating Ultrasound Diagnostics
Our research aims to develop an automated ultrasound system, conserving resources
and aiding in training and diagnostics [26]. This innovation holds the potential to
transform healthcare delivery in resource-limited settings, empowering local prac-
titioners and enhancing patient care. Emergency lung ultrasonography represents
a powerful tool in achieving sustainable healthcare goals in underserved regions.
Through our efforts to create an automated solution, we hope to strengthen health-
care infrastructure and reduce disparities, fostering improved health outcomes for
all.

The utilization of ultrasound imaging in lung examinations presents distinct chal-
lenges. These difficulties arise from the presence of the rigid chest structure and the
unsuitability of air as an ultrasound medium. As a result, the emergence of acoustic
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shadows, a common occurrence due to the transducer’s orientation perpendicular to
the ribs, becomes noteworthy. Nevertheless, adept manipulation and positioning of
the transducer can mitigate this artifact.

In the context of air-filled lungs, the ultrasound beam experiences complete reflec-
tion at the boundary between soft tissue and air or fluid. This interaction yields a
tangible image of the chest’s soft tissues and pleural layers, accompanied by dis-
tinctive artifact patterns. The crux of lung ultrasound examinations revolves around
the detection and analysis of these artifacts. Among the array of artifacts, reverber-
ation artifacts are prominent. In physiological conditions, they are referred to as A-
lines, while in pathological contexts, they are predominantly known as B-lines. [14].
The nomenclature of these artifacts originates from the work of Lichtenstein et
al. [19, 27], and consensus has been reached regarding their application [28, 29]. An
atelectatic lung appears as a true tissue image, and the description of each significant
pathological phenomenon is provided within its respective field of application.

1.3 Technology Against a Pandemic
During the COVID-19 pandemic, there was a rapid development and deployment
of supporting technologies for diagnosis and treatment [30–33]. Lung ultrasound
emerged as a reliable alternative to chest X-rays, exhibiting comparable accuracy to
CT scans, which are considered the gold standard for lung imaging. According to a
Cochrane review on thoracic imaging tests for diagnosing COVID-19, chest CT and
lung ultrasound were found to be sensitive and moderately specific. Therefore, these
modalities may be more valuable in ruling out COVID-19 than in differentiating
SARS-CoV-2 infection from other respiratory illnesses [34].

1.4 Medical Background
Ultrasound stands as a preferred imaging modality in various scenarios owing to its
array of advantages over other methods. Foremost, its cost-effectiveness renders it
more accessible to patients. Furthermore, ultrasound furnishes real-time imaging
capabilities, enabling instantaneous observation of anatomical structures and phys-
iological dynamics. Distinct from alternative techniques like X-rays, ultrasound
circumvents the use of ionizing radiation, thereby ensuring patient safety during
recurrent examinations without the potential for adverse repercussions. [35].

The portability of ultrasound devices is another significant advantage, enabling their
use at the bedside. This eliminates the need to transport patients within the hospital,
reducing the risk of spreading infectious diseases and minimizing the challenges
associated with handling critically ill and unstable patients [36]. In situations where
other scanning methods may be impractical or unsafe, bedside lung ultrasound has
emerged as a viable solution. Moreover, its diagnostic accuracy is comparable to
or even superior to conventional radiographic measures, further validating its util-
ity. However, a notable challenge with lung ultrasound lies in the interpretation of
images, which demands experienced medical professionals. Diagnosis through ul-
trasound is inherently subjective and heavily reliant on the competency, experience,
and mental state of the performing physicians. Factors like stress or exhaustion can
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impact the accuracy of interpretations [20]. Given that lung ultrasound is frequently
performed on critically ill patients, prompt and accurate diagnosis is of utmost im-
portance. As not all physicians performing the examination possess expertise in
interpreting lung ultrasound, the provision of a decision support system becomes
crucial in expediting accurate diagnoses.

Moreover, despite the generally acknowledged safety and reproducibility of ultra-
sound assessments, the fundamental ”ALARA” (As Low As Reasonably Achiev-
able) principle remains pivotal in curtailing ultrasonography exposure. Hence, ex-
pediting the diagnostic process assumes significance from a safety standpoint. Re-
grettably, the absence of uniform standards hinders the seamless comparison of ul-
trasound investigations and their outcomes. Acknowledging this concern, author-
ities within the realm of lung ultrasound have advocated for the establishment of
standardization guidelines encompassing machine configurations and scanned re-
gions. [5, 31].

In addition to machine settings, the selection of the optimal scanning technique
(such as longitudinal or transverse) remains a topic of ongoing discourse. This de-
bate can give rise to potential misinterpretations or misdiagnoses in routine clinical
settings. Such ambiguity may lead to uncertainty among medical personnel and
elongate the duration of lung ultrasound assessments, ultimately extending patient
contact time. It becomes imperative to address these challenges pertaining to stan-
dardization and scanning techniques, as doing so holds the key to enhancing the
efficiency and dependability of lung ultrasound procedures. [37].

1.5 The BLUE protocol
The BLUE (Bedside Lung Ultrasound in Emergency) protocol, developed by Daniel
Liechtenstein [19], is a clinical procedure commonly used in intensive care medicine
to rapidly diagnose the underlying causes of acute respiratory failure (Fig. ??).
When administered by skilled practitioners, the BLUE protocol has demonstrated
its efficacy and potency as a tool for assessing lung conditions in critically ill in-
dividuals. Furthermore, it is noteworthy to emphasize the exceptional adaptability
of the BLUE protocol, which readily lends itself to a seamless evolution into the
advanced semi-quantitative framework named BLUE-LUSS (Bedside Lung Ultra-
sound in Emergency-Lung UltraSound Score). This innovative concept, previously
expounded upon by the authors in a prior publication, signifies a testament to the
protocol’s progressive potential.n [37]. This remarkable evolution empowers med-
ical professionals to leverage the capabilities of numerical scoring, ushering in a
paradigm shift towards enhanced precision and objectivity within the domain of
diagnostic assessment.

Previously, the protocol relied on still frames of ultrasound images captured from
standardized locations. However, recent advancements in the field have demon-
strated the superiority of utilizing short ultrasound loops, typically ranging from 3
to 10 seconds in duration [31]. These dynamic ultrasound loops provide a more
comprehensive view of the lung, allowing for a more accurate assessment of lung
artifacts and abnormalities.
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Figure 1
The core objective of the BLUE protocol revolves around streamlining the diagnostic timeline. This is
achieved through the utilization of predefined points of analysis for ultrasound loop recording, coupled

with a straightforward decision tree catering to the primary causes of acute respiratory failure. The
protocol’s design focuses on expediting the diagnostic process and enhancing its efficiency. Adopted

from Lichtenstein et al.

The main objective of the BLUE protocol is to categorize lung artifacts into a dis-
tinct ”lung profile” based on anatomical signs and visual artifacts observed on the
ultrasound images. By following a predefined decision tree outlined in the protocol,
physicians can make on-the-spot diagnoses and identify the underlying causes of
acute respiratory failure. The protocol has shown remarkable diagnostic accuracy,
successfully identifying the six most common diseases associated with acute respi-
ratory failure in 97 percent of cases, with an overall accuracy of 90.5 percent [35].

The profiling of the lung involves detecting specific signs in the ultrasound loops.
The protocol defines ten basic signs, which can be further categorized into primary
and secondary signs. Primary signs, such as the pleural line, A-line, quad sign,
fractal sign, tissue-like sign, and B-lines or lung rockets, can be observed on single
still frames without considering the entire ultrasound loop [19]. These signs serve
as important indicators of lung pathology and assist in the diagnostic process.

In contrast, secondary signs, including lung sliding, sinusoid sign, and lung point,
require a comprehensive analysis of the entire video loop. These signs often exhibit
movement or dynamic patterns that are not discernible on still frames alone. De-
tecting these secondary signs necessitates a thorough examination of the ultrasound
loop as a whole, considering the temporal progression of lung artifacts.

To streamline the identification of initial indicators, we’ve examined different meth-
ods, such as the utilization of 2D multiclass semantic segmentation methodologies.
Through the segmentation of static frames, it becomes feasible to train deep learning

– 73 –



G. Orosz et al. et al. Lung Ultrasound Imaging and Image Processing with AI Methods

algorithms in precisely recognizing and categorizing various pulmonary anomalies.
This automatic identification of primary indicators shows potential in accelerating
and establishing a uniform diagnostic procedure, especially for medical practition-
ers with limited experience or within scenarios requiring prompt decisions.

Concurrently, we’ve undertaken the development of a classification framework that
is specifically concentrated on discerning the presence or absence of lung sliding.
This secondary indicator holds pivotal importance in distinguishing among diverse
pulmonary conditions. Leveraging an extensive, custom-designed clinical dataset,
we’ve educated convolutional neural networks (CNNs) to scrutinize B-mode (2D
mode) image sequences and transform them into M-mode (”motion” mode) images.
These M-mode images facilitate the extraction of sample lines by proficient annota-
tors, thus facilitating the training and assessment of the CNNs. The most proficient
CNN achieved an impressive precision rate of 93.0

In summary, the BLUE protocol has risen as a valuable instrument for swiftly diag-
nosing acute respiratory failure, especially within intensive care environments. The
transition from static images to brief ultrasound sequences has notably elevated the
precision and effectiveness of lung assessments. The continuous endeavors in au-
tomating the identification of initial indicators using deep learning methodologies
demonstrate encouraging outcomes, laying the groundwork for more consistent and
easily accessible diagnostic procedures. Furthermore, the creation of a classification
network dedicated to identifying lung sliding enhances the comprehensive diagnos-
tic prowess of the BLUE protocol. These innovations hold the capacity to transform
the landscape of lung ultrasound analysis, empowering timelier and more precise
diagnoses for critically unwell patients.

2 Methods
2.1 Deep Neural Networks

In the past few years, there has been a growing trend in employing deep neural
networks for enhancing the precision and effectiveness of medical procedures within
the realm of medical imaging. These sophisticated neural networks have found
application across a range of medical imaging assignments, encompassing tasks
like object identification, segmentation, and the reconstruction of images [38, 39].

Illustratively, convolutional neural networks have found utility in discerning and
categorizing diverse irregularities present in radiological images. Noteworthy in-
stances encompass the detection of tumors within MRI scans or the identification
of lesions in dermatological images. As an illustration, a study conducted in 2020
focused on utilizing a convolutional neural network to classify chest X-ray images.
The network was primed for binary categorization and successfully achieved a com-
mendable accuracy rate of 94.6

In addition to its advantages, it’s crucial to acknowledge the challenges associated
with the application of deep learning networks in medical image analysis. Among
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the foremost hurdles is the establishment of a dataset containing a requisite quantity
and caliber of annotated medical data. The task of annotation involves the exper-
tise of medical professionals, who furnish the reference truth necessary for training
and appraising the network’s performance. Given that annotation demands the in-
volvement of these specialized medical experts, procuring a substantial volume of
annotated medical images often proves to be arduous and complex.

Deep neural networks have demonstrated their effectiveness in the scrutiny of lung
ultrasound images as well. Over the past years, a plethora of research findings
have emerged in this domain, examining the efficacy of deep neural networks in
identifying various irregularities within lung ultrasound images.

An additional instance is found in a study authored by Cheng and Lam in 2021.
In this research, a customized U-Net architecture was employed for the binary seg-
mentation of lung ultrasound images. Notably, the encoder component of the U-Net
was substituted with a VGG16 network that had been pre-trained on the ImageNet
database. This hybrid architecture was subsequently trained on a dataset compris-
ing 400 ultrasound images tailored to the specific challenge. The outcome was a
Dice score of 0.86, underscoring the success achieved in accurate binary segmenta-
tion.6 [40–42].

In a separate investigation documented in 2020, Roy et al. explored the segmenta-
tion of COVID biomarkers within lung ultrasound images. Their approach hinged
on a U-Net-based model, which underwent training using a comprehensive set of
277 annotated ultrasound loops. This concerted effort yielded a noteworthy 96

These studies unequivocally showcase the practicality and relevance of employing
deep neural networks for the realm of medical image processing.

2.2 U-Net
U-Net constitutes a fully convolutional neural network architecture that was initially
devised specifically to address medical image segmentation assignments [42]. Since
its original introduction in 2015, U-Net has persisted as the foundational frame-
work for numerous cutting-edge neural network architectures, particularly within
the sphere of medical image analysis, up until the present day. [43, 44]. The
architecture of the network employs an encoder-decoder design, enriched by skip
connections. The network’s initial segment is the encoder, often referred to as the
”contracting path,” where each stage progressively diminishes the dimensions of
the input image in terms of width and height, while simultaneously amplifying the
extracted features. Subsequently, the decoder component (termed the ”expanding
path”) methodically upscales the input and carries out additional convolutions.

A significant aspect of this architecture is the incorporation of skip connections.
These connections link the output activation map of convolutional layers in the en-
coder segment to the input of convolutional layers in the decoder segment, preserv-
ing a match in the width and height dimensions between the encoder’s output and
the decoder’s input. This strategic linkage allows the network to retain and integrate
more information from preceding layers. This encompasses retaining the original
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spatial characteristics of the input image, a pivotal attribute for segmentation under-
takings.

3 Implementation
Although the present implementation is a considerable distance from direct clinical
utilization, the chosen methodologies for its development and prototyping hold the
potential to pave the way for a more robust and diagnosis-focused decision support
system.

3.1 Approach
The central objective addressed within this paper revolves around the identification
of fundamental indicators present in lung ultrasound images, bearing significance
to the BLUE protocol. To address this objective, we employ a deep neural network
tailored for multi-class semantic segmentation. This process is executed on every
annotated frame contained within the captured ultrasound sequences. Essentially,
this undertaking can be deconstructed into two primary components, each of which
can be further subdivided into smaller constituent subtasks:

• Data Conditioning – in this step, we prepare and arrange our raw data into a
format that is suitable for network training;

• Network Implementation – the actual implementation, training, and fine tun-
ing of the neural network.

In the following sections we discuss both stages in detail.

3.2 Imaging protocol
Following the method developed by Daniel Lichtenstein, the creator of the BLUE
and PINK protocols, we adhered to his specified approach of using three designated
points on each side of the chest to gather imaging data. The imaging was integrated
into the daily medical routine. Informed by prior expert analyses and considering
the uneven and sporadic nature of COVID-19 pneumonia, we captured video loops
in both longitudinal and transverse orientations. The specific locations and orienta-
tions were systematically labeled using predetermined codes. Our protocol enabled
a single operator to conduct the assessments without the need for additional assis-
tance. Given that all the examinations were carried out by lung ultrasound (LUS)
specialists with over seven years of experience, we didn’t document the precise du-
ration of each examination, as it wasn’t deemed significant. The assessment of the
loops was generally done off-line. However, if the operator identified an urgent
situation during the analysis, such as an emergency equivalent, they immediately
communicated this to the clinical team. An example of this occurred during one
examination when an acute pneumothorax on the right side was unexpectedly de-
tected, leading to a timely intervention that ultimately saved the patient’s life.
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Basic Settings Obligatory value/range

Depth Pleural line + 3–8 cm

Focus Multifocus: OFF; Single focus: at pleural line

Gain Optimized for main artifacts (A-lines, B-lines, consolidation)

Image-processing features THI: OFF, XRes: OFF, CrossXBeam: OFF, SRI: OFF

MI < 0.7

TIs < 0.1

Table 1
Abbreviations: MI: mechanical index; TI: soft tissue thermal index; THI: tissue harmonic imaging;

XRes: speckle noise reduction; CrossXBeam: spatial compounding; SRI: speckle reduction

3.3 Ultrasound settings, data collection protocol
Our objective was to establish a consistent and comprehensive US examination pro-
cedure. Utilizing specific settings on our equipment, we successfully gathered a
collection of images that effectively depicted the pleura and underlying artifacts,
ensuring no critical observations were overlooked. Prioritizing patient safety, we
carefully regulated the thermal index (TI) and mechanical index (MI) to adhere
to global safety norms. The devices employed included a Philips CX50 (Philips
Healthcare, The Netherlands) with a Philips C5-1 convex probe (1-5 MHz) and a
GE Venue GO (GE Healthcare, IL, USA) with a C1-5-RS convex probe (1.4-5.7
MHz). Essential default settings are detailed in Table 1. Drawing from our clinical
experience and aligning with global practices in lung ultrasound (LUS), we opted
to capture video loops lasting 4–6 seconds instead of single images, for enhanced
accuracy. The operator of the equipment was not informed about the patient’s clini-
cal progress, and did not participate in their care. These loops were recorded under
a pseudo-anonymized system (using a unique patient code) and stored on the hard
drive in DICOM (Digital Imaging and Communication in Medicine) format, fully
compliant with GDPR (EU General Data Protection Regulation) guidelines. Subse-
quently, patient information was transferred to an encrypted, Microsoft Excel-based
database, through a triple-layered security protocol.

3.4 Imaging protocol
Following the method developed by Lichtenstein, the creator of the BLUE and
PINK protocols, we adhered to his specified approach of using three designated
points on each side of the chest to gather imaging data. The imaging was integrated
into the daily medical routine. Informed by prior expert analyses, and consider-
ing the uneven and sporadic nature of COVID-19 pneumonia, we captured video
loops in both longitudinal and transverse orientations. The specific locations and
orientations were systematically labeled using predetermined codes.

Our protocol enabled a single operator to conduct the assessments without the need
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for additional assistance. Given that all the examinations were carried out by LUS
specialists with over seven years of experience, we did not document the precise
duration of each examination, as it was not deemed significant. The assessment of
the loops was generally done off-line. However, if the operator identified an urgent
situation during the analysis, such as an emergency equivalent, they immediately
communicated this to the clinical team. An example of this occurred during one
examination when an acute pneumothorax on the right side was unexpectedly de-
tected, leading to a timely intervention that ultimately saved the patient’s life.

3.5 Data Conditioning
The dataset harnessed for this endeavor has been meticulously curated by medical
professionals affiliated with Semmelweis University, Budapest. In addition to sup-
plying the requisite data, these experts contributed their invaluable medical acumen
to the project. This encompassed the meticulous annotation of raw data and ensuring
that the project’s trajectory was aligned with a clinically coherent perspective.

As of the time of composing this article, our repository comprises data sourced from
22 RT-PCR confirmed SARS-CoV-2 infected patients, in addition to data extracted
from 18 RT-PCR confirmed SARS-CoV-2 negative (”non-COVID”) patients. This
data has been meticulously gathered by Semmelweis University’s Department of
Anaesthesiology and Intensive Therapy. Notably, all the data acquisition procedures
adhere rigorously to the BLUE protocol, a universally recognized and adopted stan-
dardized methodology. This meticulous adherence ensures the replicability of the
procedure and the coherence of our data.

Each patient’s dataset comprises multiple ultrasound loops, with each loop spanning
5 to 6 seconds in duration. These loops are captured from distinct points as delin-
eated by the BLUE protocol. Given the aggregate of 40 patients, the dataset encom-
passes a cumulative count of approximately 630 loops, encompassing over 200,000
individual frames. Our efforts to augment this dataset are ongoing, involving the
collaboration of additional hospitals and research establishments. To uphold the
ethical considerations, all our data is pseudonymized, and we have procured explicit
authorization from Semmelweis University’s Research Ethics Committee to utilize
this dataset. In general, most recent ethically aligned engineering design principles
(IEEE 7000, IEEE 70007 standards) were followed during the project [45].

In the process of data preparation, we extensively leverage the capabilities of the 3D
Slicer tool. [46]. Certainly, 3D Slicer stands out as an open-source, research-centric
image processing tool, primarily geared towards medical imaging tasks. While its
scope is not limited solely to medical imaging, it excels in this domain. A notable at-
tribute of 3D Slicer is its robust segmentation capabilities. Moreover, the tool offers
programmable extension capabilities and a conveniently embedded Python com-
mand line, which significantly facilitates data transformation and extraction pro-
cedures. These inherent functionalities align seamlessly with our objectives. We
adeptly harness the built-in segmentation module to annotate our raw ultrasound
loops, and the Python interface expedites the automated extraction of this annotated
data, rendering 3D Slicer an ideal fit for our requirements.
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Figure 2
A manually segmented ultrasound frame. Visible segmented classes are: thoracic wall (pale yellow), rib

(yellow), rib shadow (purple), B-line (blue), septal rockets (red), unhealthy pleural line (pale orange)

In the initial step, the raw data undergoes annotation under the supervision of med-
ical experts within the 3D Slicer platform. This process involves the manual delin-
eation of segments pertinent to our particular scenario. These encompass the pri-
mary indicators outlined earlier, accompanied by a select few supplementary land-
mark segments. The segmentation occurs on a frame-by-frame basis, with every
fifth frame within each loop being subjected to this procedure. It’s noteworthy that
the entirety of the loop doesn’t necessarily require annotation, as capturing a com-
plete breathing cycle suffices for our purposes.

Upon completion of annotation, the subsequent phase involves the extraction of data
from 3D Slicer. As not every individual frame undergoes segmentation, identifica-
tion of frames with attached segmentation data becomes imperative. Moreover, a
series of standardization and cleanup steps are necessary for each relevant frame.
Certain extraneous details, originating from the ultrasound machine itself (such as
machine settings and brand), are irrelevant to our analysis. To address this, a mask
is applied to retain solely the pertinent ultrasound image, effectively eliminating the
extraneous information. Additionally, the images are transformed into a uniform
quadratic format, specifically 256x256 pixels.

To achieve this quadratic format, an initial resizing is performed, such that the larger
dimension of the original image matches the desired 256 pixels, while maintaining
the original aspect ratio. During this resizing, linear interpolation is employed for
the ultrasound images, while nearest neighbor interpolation is used for the segmen-
tation masks. Subsequently, the smaller dimension is extended to reach 256 pixels
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using zero values, while preserving the central segment of the image.

Post-cleanup and extraction, these relevant frames are integrated to constitute a com-
prehensive dataset. This dataset is structured on a patient-specific basis, ensuring
that data from a given patient remains exclusive either to the training or validation
set. This segregation mimics real-world application scenarios, where the trained
model is applied to new, unknown patients’ BLUE ultrasound loops. This setup
ensures more realistic outcomes in model evaluation.

At present, our dataset encompasses a total of 1097 manually segmented ultrasound
frames, derived from the data of four patients.

3.6 Network Training
Our approach involved implementing a standard U-Net model, enhanced by the
incorporation of zero-padding within the convolutional layers. This modification
was strategically employed to preserve the original dimensions of the image. In
the testing phase, our network was configured with an input size of 256 by 256
pixels, and each convolutional layer was equipped with 16 filters, contributing to
the model’s feature extraction capabilities.

During the training process, we adopted a leave-one-out cross-validation technique
rooted in patient-centric segmentation. This methodology entails setting aside the
data from a single patient as the validation set in each round, while the model is
simultaneously trained on the remaining dataset. This cross-validation scheme en-
sures comprehensive validation and helps mitigate potential overfitting.

In evaluating the performance of our model, we focused on two key metrics: val-
idation accuracy and validation loss. To quantify the model’s predictive accuracy
and assess the fidelity of its output, we computed the validation accuracy. Mean-
while, the validation loss, measured using the sparse categorical cross-entropy loss
function, provides insight into the dissimilarity between predicted and actual seg-
mentation outcomes. This comprehensive approach offers a robust framework for
effectively gauging the model’s proficiency in the context of medical image analysis.

4 Results and Discussion
By employing the method outlined in the preceding section, we attained an average
validation accuracy of 87.53

At this juncture, the most pronounced challenge lies in the scarcity of available an-
notated data. With the present dataset size, the model exhibits signs of overfitting
within only a few training epochs, necessitating premature training termination. Our
forthcoming efforts will be directed towards addressing this limitation. We intend
to bolster our annotated data reservoir and explore diverse data augmentation tech-
niques to alleviate this challenge effectively.
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(a)
Ground truth

(b)
Model prediction

Figure 3
Illustrative Prediction Outcome of the Model: Noteworthy Segmentation Classes include the Thoracic
Wall (highlighted in yellow), Ribs (displayed in orange), Rib Shadows (rendered in pale orange), and

B-lines (depicted in purple).
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Once a substantial annotated dataset is amassed, our focus will shift towards con-
ducting a comprehensive hyperparameter sweep to determine the optimal config-
uration. While we’ve engaged in some level of hyperparameter optimization, the
relatively modest dataset size has somewhat limited its impact. Once segmentation
attains a satisfactory level of performance, our endeavors will extend towards iden-
tifying the secondary signs elucidated in the second chapter. Subsequently, we will
be poised to embark on the comprehensive implementation of the entire decision
tree integral to the BLUE protocol.

Another avenue for potential enhancement lies in revisiting the roster of segmenta-
tion classes currently utilized for model training. Streamlining the model by omit-
ting or consolidating specific classes that do not contribute to relevant diagnostic
insight could potentially simplify training and expedite the annotation process. An
associated adjustment could involve modifying the loss function to facilitate the as-
signment of varying weights to individual segmentation classes. Notably, even in the
existing segmentation schema, the prominence of the background class outweighs
others. This concern could intensify with a reduced number of segments, and recal-
ibrating the significance of the background class might yield improved outcomes.

Fine-tuning the model architecture and experimenting with diverse model types to
facilitate performance comparison is another avenue for potential improvement.
However, the dearth of sufficiently annotated data has thus far hindered the pur-
suit of this optimization. Given the present stage, a meaningful model architecture
comparison might be elusive.

In addition to enhancing the current model, we intend to reevaluate our use case
scenario to explore alternative approaches beyond segmentation. Our foremost chal-
lenge is the time-consuming process of manual annotation, particularly the meticu-
lous contouring required for each frame. We’re actively considering the prospect of
leveraging object detection methods as an alternative. By employing this approach,
annotating would involve simply drawing bounding boxes around objects rather than
intricate contouring, thereby significantly expediting the annotation process. This
transition alone could prove advantageous, even if the new approach doesn’t yield
immediate tangible benefits.

Another avenue involves the integration of the segmentation model with a medical
ultrasound device, enabling real-time ultrasound image segmentation at the patient’s
bedside. While not directly leading to diagnosis, this real-time segmentation could
still furnish valuable information to the attending physician during the examination,
potentially aiding in timely decision-making.

These potential directions underscore our commitment to refining and innovating
upon our current framework to overcome existing challenges and enhance the clini-
cal utility of our approach.

Future research endeavors encompass the pursuit of full automation in image acqui-
sition by integrating a collaborative robotic arm. This innovative approach holds the
promise of enhancing data consistency, a crucial facet for accurate analysis. More-
over, such automation could prove particularly advantageous in pandemic scenar-
ios, mitigating the risk of human exposure and facilitating safe and efficient medical
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procedures. [33, 47].

5 Conclusion
Our research is dedicated to advancing computer-assisted support for the BLUE
protocol. In the initial phase, we have successfully implemented a U-Net based deep
neural network tailored for segmenting and identifying vital anatomical elements
within lung ultrasound images.

The outcomes thus far reveal a highly promising conceptual foundation. Notwith-
standing the modest count of annotated images and the brief training duration, the
model’s predictions exhibit discernible alignment with the ground truth. This align-
ment is particularly pronounced for segments that are more prevalent in nature, such
as the thoracic wall or rib shadows. This initial progress underscores the potential
of our approach to significantly enhance the diagnostic capabilities of the BLUE
protocol through computer-assisted assistance.

Future work

Our current project is an essential component of a modular decision support system,
incorporating artificial intelligence solutions. As per our vision, this system can be
immensely beneficial to our clinical colleagues. The foundation of the system relies
on well-validated and widely used emergency lung ultrasound protocols.

Our primary objective is to implement and enhance a framework that offers real-
time support to physicians during bedside examinations. Additionally, this frame-
work aims to facilitate the acquisition of lung ultrasound skills as part of structured
medical training.

We plan to further advance the system by gathering more clinical data and expand-
ing our annotated data bank. This expansion is expected to improve the system’s
metrics, making it suitable for real testing in clinical conditions.

Looking ahead, we also consider the possibility of automating and robotizing the
system in various directions. Such advancements could lead to additional cost sav-
ings in terms of human resources for healthcare systems that operate within limited
frameworks.
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R. Szabó was supported by the MITACS Globalink Research Award.

T. Haidegger’s work is partially supported by project no. 2019-1.3.1-KK-2019-
00007, provided by the National Research, Development and Innovation Fund of

– 83 –



G. Orosz et al. et al. Lung Ultrasound Imaging and Image Processing with AI Methods

Hungary. T. Haidegger is a ”Consolidator Researcher”, supported by the Distin-
guished Researcher program of Óbuda University.
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[26] R. Z. Szabó, G. Orosz, T. Ungi, C. Barr, C. Yeung, R. Incze, G. Fichtinger,
J. Gál, and T. Haidegger. Automation of lung ultrasound imaging and image
processing for bedside diagnostic examinations. In 2023 IEEE 17th Inter-
national Symposium on Applied Computational Intelligence and Informatics
(SACI), pages 779–784. IEEE, 2023.

[27] D. A. Lichtenstein. Current misconceptions in lung ultrasound: a short guide
for experts. Chest, 156(1):21–25, 2019.

[28] S. Mongodi, E. Santangelo, D. De Luca, S. Rovida, F. Corradi, G. Volpicelli,
L. Gargani, B. Bouhemad, and F. Mojoli. Quantitative lung ultrasound: time
for a consensus? Chest, 158(2):469–470, 2020.

[29] G. Soldati, A. Smargiassi, R. Inchingolo, D. Buonsenso, T. Perrone, D. F.
Briganti, S. Perlini, E. Torri, A. Mariani, E. E. Mossolani, et al. Time for

– 85 –



G. Orosz et al. et al. Lung Ultrasound Imaging and Image Processing with AI Methods

a new international evidence-based recommendations for point-of-care lung
ultrasound. Journal of ultrasound in medicine: official journal of the American
Institute of Ultrasound in Medicine, 40(2):433–434, 2021.

[30] F. Mento, T. Perrone, V. N. Macioce, F. Tursi, D. Buonsenso, E. Torri, A. Smar-
giassi, R. Inchingolo, G. Soldati, and L. Demi. On the impact of different lung
ultrasound imaging protocols in the evaluation of patients affected by coron-
avirus disease 2019: how many acquisitions are needed? Journal of Ultra-
sound in Medicine, 40(10):2235–2238, 2021.

[31] G. Soldati, A. Smargiassi, R. Inchingolo, D. Buonsenso, T. Perrone, D. F.
Briganti, S. Perlini, E. Torri, A. Mariani, E. E. Mossolani, et al. Proposal for
international standardization of the use of lung ultrasound for patients with
covid-19: a simple, quantitative, reproducible method. Journal of Ultrasound
in Medicine, 39(7):1413–1419, 2020.

[32] L. Demi. Lung ultrasound: The future ahead and the lessons learned from
covid-19. The Journal of the Acoustical Society of America, 148(4):2146–
2150, 2020.

[33] A. Khamis, J. Meng, J. Wang, A. T. Azar, E. Prestes, Á. Takács, I. J. Rudas,
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