
Acta Polytechnica Hungarica Vol. 21, No. 2, 2024

 – 271 –

Adaptive Hybrid Application Protocol for IoT

Erdal ÖZDOĞAN1, Osman Ayhan ERDEM2 and Ahmet Nusret
ÖZALP3
1 IT Department, Gazi University, 06560 Ankara, Turkey,
erdal.ozdogan@gazi.edu.tr
2 Department of Computer Engineering, Gazi University, 06560 Ankara, Turkey,
ayerdem@gazi.edu.tr
3 Republic of Turkey Ministry Education, 06640 Ankara, Turkey,
ahmetnusretozalp@karabuk.edu.tr

Abstract: The Internet of Things (IoT) solutions are demonstrating a significant impact in
various sectors. These solutions encompass diverse applications, ranging from machine-to-
machine communication to human-to-machine interaction within the same system. Various
types of IoT application protocols have been developed to address these needs. While some
IoT protocols enable direct communication between devices, others rely on server-based
communication. Both forms of communication can coexist within the same IoT solution.
However, utilizing multiple protocols in low-capacity IoT nodes can result in performance
degradation. In this study, an adaptive protocol is proposed, which combines server-based
and direct access protocols. This study also explains the working principle of the proposed
protocol and compares its functionality with MQTT using OPNET and real environment.
It was observed that the proposed protocol remained functional even in the event of a
server failure. Furthermore, the protocol was found to be efficient in terms of bandwidth
usage. Conversely, it exhibited lower latency in the direct communication method.
Although the proposed protocol had slightly higher latency in server-based communication,
it remained operational.

Keywords: Adaptive IoT Protocol; Application Layer IoT Protocols; IoT Messaging
Protocols; IoT Protocol Design; Protocol Simulation

1 Introduction

Internet of Things (IoT) environments are becoming more and more common
every day and are used in many areas such as smart cities, smart campuses, smart
homes and smart buildings. Developments in sensor and communication
technologies and low cost of hardware have caused many segments, from
amateurs to professionals, to use IoT applications. The heterogeneous nature of
IoT and the diversity of applications have caused to complex solutions.

E. ÖZDOĞAN et al. Adaptive Hybrid Application Protocol for IoT

 – 272 –

The existence of multiple IoT hardware types, especially in environments such as
smart factories and smart campuses, has also led to the diversity of
communications. Some communications are established directly between
machines (M2M), while others occur through servers or the cloud. It is possible to
see both types of communication in a complex IoT solution. On the other hand,
the hardware used in IoT applications are generally have limited resources. It is
obvious that low-capacity IoT nodes cannot provide adequate support in
environments where too much data is produced, transferred and processed.
Therefore, new application protocols have been developed for IoT environments
Application protocols such as MQTT, CoAP, and AMQP have been developed for
this purpose and can run on low-resource devices in IoT environments.
Considering the communications in IoT solutions, it is possible to divide them into
two categories: directly communication protocols and server-based protocols [1]
MQTT and AMQP need a server (broker) for communication. CoAP, on the other
hand, is capable of communicating directly between two nodes. In a complex IoT
solution, both direct communication and server-based communication can be seen
in the same environment. Direct communication method can be used especially in
automation applications, M2M communications and applications that require high
speed and low latency [2]. Both methods have their pros and cons[3]. Server-
based communication may cause single point of failure (SPoF - Single Point of
Failure[4]. In addition, the use of a central server in data transmission is against
the distributed nature of IoT, where resources are distributed to things [5] [6].
Also, the presence of an additional device between source and destination can
cause additional delay [7]. There may be performance degradation such as
exponential increase in processor consumption in direct communication method.
In addition, the direct communication method is inadequate, especially when data
needs to be stored or analysed, and when decision-making mechanisms are needed
[8]. Despite their pros and cons, we may see more IoT applications in the near
future where both approaches are required in the same solution. But constrained
devices in IoT environments are a major challenge for running two different
protocols in the same solution [9]. Adding an additional protocol, to a complex
solution, creates more complexity. It also requires an intermediary translator for
the two protocols to communicate with each other, which also means additional
complexity.

Choosing the most appropriate application layer protocol depends on the purpose
of the solution and the changing states of the network. These states include
bandwidth usage, packet loss probability, end-to-end delay, throughput and the
size of the transmitted packet [10]. However, these parameters change frequently
in the network environment [11]. When the state of the network changes, the
selected protocol may then experience performance issues. Therefore, there is a
need for a protocol that can adaptively switch between communication methods
according to the changing state of the network. In this study, a new adaptive
application layer protocol has been developed that can support both
communication approaches. It is possible to see many performance comparisons

Acta Polytechnica Hungarica Vol. 21, No. 2, 2024

 – 273 –

of IoT application protocols in the literature. The protocol developed in this study
has not been compared with all IoT protocols. But to evaluate the performance of
the developed protocol, it is compared with the MQTT protocol as benchmark
[12]. In this study, a new protocol is proposed that combines both direct
communication and server-based communication into a single approach. Thus, a
single protocol can be used instead of two different protocols that support
different approaches in the same environment. The contribution of the article can
be summarized as follows:

• Introduction of a new hybrid protocol that supports different IoT approaches

• Development of a light protocol that can work in complex IoT solutions

• Introduction of a new adaptive mechanism that combines the advantages of
server-based operating protocols with the advantages of directly
communicating protocols into a single protocol

Some limitations were taken into account in the design of the protocol.
Accordingly, the environment in which the protocol will work is assumed to be
safe, therefore security principles are out of scope. Another limitation is related to
the size of the data. In IoT environments, especially considering the small size of
the data produced from the sensors, environments where the amount of data
carried in a single package is at most 1024 Bytes. It is designed to be used in the
transfer process of data obtained from sensors, especially in environments such as
campus networks. The other parts of this article are organized as follows: In the
second part, related work on this subject, is included in Chapter 2. The working
phases, components, diagrams, and packet structures of the protocol are explained
in the Chapter 3. In Chapter 4, the behaviors of the protocol in OPNET simulation
and its performances in real-world scenarios have been evaluated. In Chapter 5,
results and discussions focus on the academic contributions made by the study and
evaluations that will provide insights for the future are presented. Chapter 6
provides related conclusions.

2 Related Work

In studies on existing IoT application protocols, these protocols can be superior in
different scenarios and under different conditions. In the study of Thangavel et al.
[13], MQTT and CoAP protocols is examined in terms of packet loss, message
delays and data transferred per message through middleware implementation.
In the study, it is stated that MQTT has a lower delay in low packet losses and
COAP has a lower delay in high packet losses. Çorak et al. [10] evaluate the well-
known IoT protocols in real world testbed. In this study where packet creation
time and packet delivery time were evaluated as metrics, it was stated that XMPP
performed worst, while CoAP and MQTT performed approximately the same.

E. ÖZDOĞAN et al. Adaptive Hybrid Application Protocol for IoT

 – 274 –

Moraes et al. [14] compare AMQP, CoAP and MQTT protocols for throughput,
message size and packet loss, and the authors state that CoAP showed the best
results. In the study of Maksymyuk et al. [15], payload transmission of MQTT and
CoAP is examined in NB-IoT environment. The results show that MQTT
performs better for in-band deployment, while CoAP shows higher throughput. In
Naik's study [16], IoT protocols are examined from various aspects. It is stated in
the research that AMQP is applied more successfully in big projects and MQTT is
used by many organizations. De Caro et al. [17] perform a qualitative and
quantitative comparison between MQTT and CoAP in their study. The authors
state that performance may vary depending on the circumstances. For example,
CoAP is successful in terms of bandwidth usage, whereas MQTT is successful in
20% packet losses. Chen and Kunz [18] evaluate the MQTT, CoAP, DDS and
Custom UDP protocols in the medical environment using a network emulator.
In the study, the observed performance of the protocols is reported, and it is stated
that DDS uses higher bandwidth than MQTT. Mijovic et al. [19] compare the
performance of CoAP, webSocket and MQTT protocols. Study shows that CoAP
achieves the highest protocol efficiency and the lowest average RTT. Collina et al.
[20], provide a quantitative analysis of MQTT and CoAP for various traffic
conditions. The results show that MQTT provides the smallest delays, but CoAP
performs better in heavy traffic. In Bandyopadhyay and Bhattacharyya study [21],
it is demonstrated that DDS and MQTT protocols do not experience any packet
loss in networks with an average 25% packet loss and 400 ms delay.

The heterogeneous nature of IoT environments has also revealed the need for
multiple protocols to work together in the same environment. For this reason,
studies involving various hybrid approaches are also conducted. In the study [9],
conducted by Bellavista and Zanni to support the scenarios of having multiple IoT
application protocols in the same environment, an architecture is developed in
order to enable CoAP and MQTT protocol to work together. In the study, it is
state that the architecture offers high scalability in network environments with
high traffic and device density. In the study of Derhamy et al. [22], It is state that
using middleware software creates a scaling problem, alternatively, SOA-based
protocol transformation is proposed. The authors stated that the method they
developed showed low delays. Lee et al. [23], designed SDN based hybrid IoT
communication framework to achieve bi-directional data exchange without further
modification on existing protocols. In the study of Desai et al. [24], conversion of
XMPP, CoAP, and MQTT messages is achieved through the multi-protocol proxy
architecture. Khaled et all. [6], introduce “Atlas Framework” for the interaction of
different communication protocols. The results show the feasibility of enabling
seamless heterogeneous communication between things with an acceptable energy
cost.

As can be seen from the studies, the performances of the protocols that show
different approaches according to the dynamic variables in the network also
change. Considering that using multiple protocols in the same environment causes

Acta Polytechnica Hungarica Vol. 21, No. 2, 2024

 – 275 –

additional delays and scalability problems, protocols that act differently according
to the dynamic variables in the network are needed.

3 Adaptive Hybrid IoT Protocol

As a new approach to the Internet of Things, we designed an adaptive IoT
protocol (hIoT). This section summarizes the quick overview of the developed
protocol. There are three components in the adaptive IoT Protocol: IoT
Coordinator, Client and IoT Gateway (IoTGW).

The IoT Gateway undertakes the task of presenting the data, which is the source of
the data and obtained from the sensors to the network environment. The client
component represents the user, hardware or application that wants to access the
data. The coordinator component, on the other hand, acts as an intermediary server
(broker) for data transfer in server-based communication. Likewise, the records of
the services offered in the network through the IoT Gateway components are also
kept in the coordinator component. The services offered by IoTGW have been
developed in a “topic” format to comply with the MQTT protocol.

Figure 1

Hybrid IoT protocol has three phases: Service register, Service query and Data transfer

The working principle of the protocol is examined in three phases (Service
Register, Service Query and Data Transfer) as shown in Figure 1. In the Service
Registration phase, the IoT Gateway component performs the task of registering
the services (temperature, humidity, motion, light intensity, etc.) provided by the
directly connected objects (sensors) to the coordinator component. The queries
made by client applications about how to access the services, and the response by
the coordinator, which includes the access information to the service, constitutes
the service query phase of the architecture. At this phase, the server can respond to
the access method, that is, direct access or access through the server. The data

E. ÖZDOĞAN et al. Adaptive Hybrid Application Protocol for IoT

 – 276 –

exchange between the client and the gateway that provides the service, either
directly or through the server constitutes the data transfer or data transmission
phase.

3.1 Packet Header

The packet header specifies the types of packets used in the hybrid application
protocol, encompassing flags, addressing, and additional payload for
communication. The header details of the developed protocol are illustrated in
Figure 2.

Figure 2

The packet header of the developed protocol

The header consists of 4 fixed bytes (32 bits) and data fields. The first field in the
header is the "Type" field, which consists of 3 bits. Various bit sequences in this
field represent values that indicate the packet type. The "Flags” is composed of a
total of 5 bits. These flags store information that is necessary for communication
to occur. The 24-bits "Packet Identifier" field, which ensures the uniqueness of
each packet. 32-byte "Data Field" in the packet header used for transporting data
in the protocol. The "Extended Data Field" has been developed to carry larger data
sizes when needed. This field can carry additional payload of up to 1024 bytes,
and its usage is determined based on the state of the "EX" bit (flag), which is
optional.

The first bit in the 5-bit flag field is the "ACK" flag. This one-bit field is used to
identify acknowledgment packets during the process of responding to packets.
The second flag is used in the reset packet to change the access type of the service
provided through the IoT Gateway. If this flag is marked as "1," the Gateway
hardware that receives the packet loses the direct access feature provided for the
service. In this case, the IoT Gateway hardware will not consider any packets sent
from devices other than the coordinator. Therefore, to access the relevant service,
communication through the server is mandatory. This allows for instant changes
in access methods based on the network's status, as the access method is
determined by the DC flag. If this flag is set, direct access to the service is

Acta Polytechnica Hungarica Vol. 21, No. 2, 2024

 – 277 –

possible. The SRV bit within the flags indicates that the traffic consists of packets
originating from the server. In other words, the SRV bit is set to "1" in every
packet generated by the server. The use of the additional data-carrying field in the
packet (Extended Data Field) is determined based on the EX-bit.

3.2 Packet Types

In the developed model, there are different types of communication occurring at
each phase. These communication types are determined by the packet types of the
hybrid application protocol. Each packet type corresponds to different steps in the
communication process. To fulfill these steps in the protocol, there are eight
packet types. The names and functions of these packets are specified in Table 1.

Table 1
Types of packets and their descriptions

Type Value Description
Control 0 It is used to verify whether the IoT Coordinator and IoT

Gateway are accessible.
Reset 1 It is used to reset the access type of the service provided

through the IoT Gateway.
Register 2 It is used during the registration process of services provided

through the IoT Gateway to the IoT Coordinator server and in
the response given to this registration process.

Error 3 It is the packet sent in various error situations during
communication and contains an error code.

Query 4 It is the packet used by the client wishing to access data during
the service discovery process, requesting access information for
the service.

Reply 5 It is the response provided by the coordinator to the service
query packet.

Request 6 It is the packet sent by the client to request information about
the service provided at the IoT Gateway.

Response 7 It contains the data requested by the client and is sent by the IoT
Gateway in response to the request packet

These types are defined in the Type field of the packet header.

3.3 Diagrams of Components

In IoT applications, the M2M (Machine-to-Machine) and M2P (Machine-to-
Person) connectivity approaches involve either humans or machines as the
requesting party for data. In the context of this study, the term "Client" is used to
refer to the application, software, or hardware that makes data requests and can be
used in both types of connections.

E. ÖZDOĞAN et al. Adaptive Hybrid Application Protocol for IoT

 – 278 –

At the initial stage, the Client generally has two main states. If access information
related to the required topic is cached in memory, it transitions directly to the send
request state where data requests can be made without the need for further queries.
Otherwise, it transitions to the send query state to proceed to the stage where the
service will be provided. In this stage, a query packet is sent to the IoT
Coordinator component, inquiring about how to access the desired service. If a
previous query has been made regarding the topic, the records related to that query
are stored in the Client's cache. In this case, the IP address of the device where the
service is provided, or more precisely, the device where a specific topic is located,
is obtained directly without the need for another query, ensuring minimal delay.
With access information now known for the device providing the service (IoT
Gateway or IoT Coordinator), it transitions to the request state. The query state
(indicated as send query in the flowchart) corresponds to the stage of requesting
access information from the IoT Coordinator and aligns with the Service query
phase of the hybrid application protocol. After sending the query packet
containing topic information, there is a waiting period for a response to the query.
During this time, if no notification is received from the IoT Coordinator, the
process is repeated two more times (for a total of three times). If, after the
maximum number of retries, there is still no response to the query, the Client is
informed that the query has not been answered, and the process comes to an end.
When a query response arrives from the Coordinator, the Client retrieves the
Service IP address (access information for the component providing the service)
from the response, and it proceeds to the request stage. Upon request, data from
the IoT Gateway or Coordinator is incorporated into the Response packets.
Similar to the query state, the request is reiterated three times, with an idle time
for each operation. Upon receiving the Response packet, information is extracted
and transmitted to the client software. If no Response packet is received, the
software is notified with a "no response" message.
The most important component in the architecture of the developed application
protocol is the IoT Coordinator component. The role of the IoT Coordinator is to
host the information that clients will need during the service discovery process,
register resources associated with the topic provided through the IoT Gateway in
the local resource directory, and ensure coordination in communication.
Additionally, the IoT Coordinator is responsible for monitoring the accessibility of
services within the IoT ecosystem and determining the method of data transfer,
whether direct or through a server. The coordinator oversees service resources and
guides the process of accessing these services. It routes client traffic to the
appropriate service resource by analyzing service discovery queries from clients.
This device serves not just as a resource for service discovery, but also operates as
an intermediary for specific service types defined during the registration process.
The IoT Gateway is one of the critical hardware components in the IoT
ecosystem. The role of the IoT Gateway component in this architecture is to
receive data from objects and transform it into a format that can be used on the
internet or in a network environment. The IoT Gateway can respond directly to

Acta Polytechnica Hungarica Vol. 21, No. 2, 2024

 – 279 –

data requests from clients and can also respond through the server (IoT
Coordinator). For each service provided through the IoT Gateway and associated
with a topic, the access method is made possible through the packets sent in the
Service Registration Phase. After this process is approved by the coordinator, the
gateway component can respond to data transfers from clients. The IoT Gateway
component uses Control packets to verify whether it is in communication with the
IoT Coordinator. In the event that the Coordinator becomes unavailable or for any
reason is unreachable, the IoT Gateway switches itself to direct access mode to be
able to respond to Request and Query packets sent by clients and to maintain
connectivity.

4 Experimental Analysis

To evaluate the performance and functionality of the protocol developed within
the scope of this study, a network topology was prepared in an environment
isolated from other network traffic. In this study, 10 Mbps Ethernet is simulated,
MQTT and our IoT protocol are evaluated from various aspects. In topology, three
different LANs are connected by a router. Devices connected to a switch act as
"Publishers" devices in MQTT, and act as "IoTGW" devices for adaptive IoT
protocol. Devices connected to the switch act as "Subscriber" and "Client" for
MQTT and hIoT, respectively. By changing the number of devices connected to
the switches, bandwidth consumption and latency values were compared for both
protocols. The server acts as “Broker” in MQTT and act as “IoT Coordinator” in
hIoT. In this experimental topology, the task of IoTGW is to capture hIoT packets.
For this reason, the IoTGW Node Model is customized to receive only UDP
messages in the OPNET simulation. In comparison, QoS-0, the fastest level of
service quality for MQTT, was considered. Payload values of the packages used in
the MQTT protocol are given in the Table 2. All packet sizes are fixed, except for
Publish as seen in Table 2. The size of publish messages has been defined to
normal distribution between 25-75 Bytes. The information of the MQTT protocol
used for performance comparison was determined according to the values of the
packets captured with the Wireshark software.

Table 2
MQTT Packets and Payloads

MQTT Packets Payload Size (Byte)
Connect 39
Connect ACK 4
Subscribe 18
Publish 25-75
Ping Request 2
Ping Response 2

E. ÖZDOĞAN et al. Adaptive Hybrid Application Protocol for IoT

 – 280 –

According to the MQTT protocol, the traffic is divided into phases and the
payload values in each phase are created in the simulation with "Task
Configuration". The payload values in the phases of the developed hIoT protocol
are shown in Table 3. These values are taken from the fixed size header
information. The transferred data size is the same size as in MQTT.

Table 3
Adaptive Hybrid IoT Packets and Payloads

Hybrid Application Protocol Phase Payload Size (Byte)
Service Register 32
Service Query 32
Data Transfer -75

4.1 Ethernet LAN Delay

The results of the Ethernet LAN delay performed in the environment of 100 nodes
are shown in Figure 3. Direct methods of the hIoT protocol and the MQTT-QoS0
are compared.

Figure 3

MQTT and hIoT Ethernet delay comparison

Compared to the delays in Ethernet, the difference between MQTT and hIoT was
higher at the beginning, while the difference between this delay decreased in the
following phases. There are significant differences between the delays at the
beginning, because the MQTT's additional payload in the Connect phase and the
response from the server also have a relatively high load amount. However, in the
later stages (MQTT Publish, Subscribe and Ping), the difference between the lags
has closed as these overhead values fall to an average of 2 Bytes.

Acta Polytechnica Hungarica Vol. 21, No. 2, 2024

 – 281 –

4.2 Server Traffic Comparison

Performance results regarding the traffic on the servers in the topology proposed
with the MQTT server are shown in Figure 4. Since the server is the center of
communication in MQTT, its delay continues at a fixed value. However, in the
proposed protocol, when the direct access method is used, the server only plays a
role in the service discovery process. Therefore, it exhibits lower latency in the
direct access method.

Figure 4

Server traffic comparison for MQTT and hIoT

Since the payload of the hIoT protocol is less, the number of packets received per
second decreases over time. When the number of packets received by the server
and the number of packets on the network is compared, it appears that the server
does not receive traffic on the network after its task is completed.

Figure 5

IoT Gateway traffic (above) and IoT Coordinator traffic (below)

E. ÖZDOĞAN et al. Adaptive Hybrid Application Protocol for IoT

 – 282 –

A comparison of the messages received by the server and IoTGW nodes is given
in Figure 5. In the simulation, one hIoT packets were sent every 5 minutes. It is
seen that data transfer between IoTGW and Clients continues but the server does
not have an active role in data transfer phase. Thus, the SPoF problem is reduced
in the data transfer process.

4.3 Bandwidth Consumption and Functionality

Another performance comparison in the simulation is the total bandwidth usage in
the campus network where the IoT Gateways, Clients and Server are modelled.
The comparison results of the total throughput values in the IoTGW network with
10 nodes are shown in Figure 6.

Figure 6

Bandwidth usage comparison in Publisher LAN

Bandwidth usage for MQTT and hIoT protocols decreases over time in the
ethernet network where the publishers (IoTGW) are located. When looking at the
total bandwidth usage in both the server network and the publisher network, it is
seen that the recommended protocol consumes lower average bandwidth. Low
bandwidth usage affects not only network performance but also low power
consumption and extends sensor lifetime. One of the performance evaluations is
related to the total bandwidth consumption by the number of devices. In a scenario
with 100 Clients (MQTT Subscriber) and 100 IoT Gateways (MQTT Publisher),
(all clients communicate with all gateways) 50±25 bytes of data were sent and the
hIoT protocol and MQTT protocols were compared.

Acta Polytechnica Hungarica Vol. 21, No. 2, 2024

 – 283 –

Figure 7

The number of packets to be transmitted increases in hIoT, while there is no change in MQTT

As the number of devices increases, the number of end-to-end hIoT
communications increases (Figure 7). Therefore, Pub / Sub communications such
as MQTT perform better in terms of bandwidth consumption. However, the risk of
SPoF in server-based communication reduces functionality. To evaluate the
functionality of the developed protocol, the server-based communication of the
hIoT protocol and the communications of MQTT were compared. In this scenario,
each client is connected with only one IoTGW. In the hIoT server-based approach,
MQTT has higher performance in terms of bandwidth usage. However, in the use
of the MQTT protocol, the data flow between publishers and subscribers will be
interrupted in case of server failure. In the simulation, it is assumed that the server
was disabled for 50 seconds.

Figure 8

Comparison of packet flows per second in the event of server failure

In the scenario where the functionality of the hIoT is evaluated, it is shown in
Figure 8 that the network where MQTT subscribers cannot receive any packets
when the server fails. However, although it consumes higher bandwidth in direct
communication, there is no packet receiving problem in the network where the
hIoT protocol is used, and data transfer still occurs.

E. ÖZDOĞAN et al. Adaptive Hybrid Application Protocol for IoT

 – 284 –

Figure 9

CPU Usage comparison

In the publisher network with 10 nodes, the evaluation of CPU usage is shown in
Figure 9. Although the Adaptive Application Protocol shows less CPU usage,
there is no big difference between MQTT and hIoT.

Determining the application layer protocol to be used in IoT ecosystems
consisting of complex solutions is an extremely important issue in order to benefit
from the advantages that the Internet of Things promises to offer. Although the
applications in which IoT devices are used are similar to each other in terms of
basic concepts, they may have different characteristics.

Within the scope of this study, the protocol developed in the evaluations in the
simulation environment was compared with the MQTT protocol. When examined
in terms of latency, it is seen that hIoT has a lower latency value than MQTT in
end-to-end direct access method. However, it has been observed that server-based
communications have higher latency than MQTT. In the tests carried out in the
simulation environment, it is seen that the bandwidth consumption increases in the
direct accesses that a hundred users want to make at random times to one hundred
IoT Gateways. This can be seen as a disadvantage of hIoT. To overcome this
disadvantage, it is a good practice to change access methods according to the type
of services gateways provide.

One of the performance evaluations of the developed protocol is the delay times
depending on the amount of load carried and the bandwidth consumed depending
on the amount of load. Evaluations show that hIoT performs better at low
overheads. Since it is designed to transfer data from hardware that is expected to
produce data at low dimensions, such as sensors, the data transport area is limited
to 1024 bytes in hIoT and the package structure has been developed accordingly.

Acta Polytechnica Hungarica Vol. 21, No. 2, 2024

 – 285 –

4.4 Empirical Experiment Results

In the scope of this study, to evaluate the performance and functionality of the
developed protocol, a closed network topology, as shown in Figure 10, has been
set up in an environment isolated from other network traffic.

Figure 10

The topology of the experiment conducted in a real-world environment

In this study, a closed network topology as shown in Figure 9 has been designed
to evaluate the performance of the developed protocol with real hardware.
The Hybrid Application Protocol is compared to the MQTT protocol, commonly
used in IoT applications, in terms of functionality, bandwidth usage, latency, and
various other aspects. The topology includes two Arduinos, a PC, a laptop and a
Raspberry PI. Additionally, a laptop computer with Wireshark software installed
is used to capture and analyze all generated traffic. In the MQTT protocol, a
Raspberry Pi acts as the broker server. Arduino devices function as MQTT
publishers, while the PC serves as an MQTT subscriber. In the developed
protocol, the Raspberry Pi device acts as the IoT Coordinator, the PC as the client
component, and the Arduino as the IoT Gateway. In both scenarios, the PC and
Arduino devices are connected to each other through a standard Ethernet switch
that provides IEEE 802.3 Ethernet connectivity. Furthermore, two routers are
connected to analyze the impact of various bandwidths. The effects are studied by
altering the bandwidths between the routers. Each action performed in the real
environment is repeated 30 times to obtain average latency values. The values
obtained for different bandwidths are presented in the Figure 11.

E. ÖZDOĞAN et al. Adaptive Hybrid Application Protocol for IoT

 – 286 –

Figure 11

End-to-end delay values at different bandwidths

According to this graph, the Hybrid Application Protocol exhibits lower latency
when the bandwidth used is relatively low. To assess the behavior of the
developed protocol in carrying different payload sizes, latency times were
evaluated based on payload sizes in the topology mentioned in Figure 9.
The comparisons of average latency times obtained in the experimental study
based on the transmitted data size is shown in Figure 12.

Figure 12

Latency based on different payloads on data transmission

It is observed that in the direct access method of the developed protocol, where
there are no additional devices in between, the latency times are lower for each
amount of data transmitted. However, in server-based data communication,
additional delays occur due to the presence of the IoT Coordinator component,
resulting in higher latencies compared to the MQTT protocol. In IoT ecosystems,
when access time to data is critical, it appears that the direct access method would
be more suitable. In applications where a certain amount of latency is acceptable

Acta Polytechnica Hungarica Vol. 21, No. 2, 2024

 – 287 –

and direct access to the IoT Gateway is not desired or access control is required,
server-based communication is recommended. Additionally, adaptive switching
based on real-time network conditions can also be implemented. The average
latency values experienced depending on bandwidths are provided in Table 5.

Table 5
Average latency values on service query

Band width (bps) Average discovery time (msec)
1200 890
2400 384
9600 99

14400 67
64000 18

125000 15

As can be seen from the table, the average discovery time is inversely proportional
to the bandwidth. In high bandwidths, this time is very short, around 15 msec,
while it increases when the bandwidth decreases.

5 Results and Discussion

In Internet of Things (IoT) solutions, various protocols are used, each with their
advantages in various aspects. In the scope of this study, the proposed hybrid
protocol stands out due to its ability to perform both server-based and direct
communication. Furthermore, in empirical and simulation experiments, it is
observed that the direct access feature consumes lower bandwidth. Accordingly,
in the comparison between the hIoT protocol and MQTT, it can be seen that hIoT
requires lower bandwidth. The features of the protocol we have developed are
summarized comparatively in the table below. The table includes a comparison
with the most used MQTT and CoAP protocols.

Table 6
Comparison of the protocol from various aspects

Feature hIoT MQTT CoAP
Access model Request/Response Pub/Sub Request/Response
Topic Usage Yes Yes No
Serive Discovery Yes No Yes
L4 Protocol UDP TCP/UDP UDP
Server based access Yes Yes No
Direct access Yes No Yes
Adaptive access Yes No No

E. ÖZDOĞAN et al. Adaptive Hybrid Application Protocol for IoT

 – 288 –

The term "adaptive access" as indicated in the table refers to the ability to switch
between direct access and server-based access. One of the performance
evaluations of the developed protocol is the latency depending on the amount of
load carried and the bandwidth consumed depending on the amount of load.
Evaluations show that hIoT performs better at low overhead. Since it is designed
to transfer data from hardware that is expected to produce data in low sizes, such
as sensors, the data transfer area is limited to 1024 bytes in hIoT and the packet
structure has been developed accordingly.

Conclusions

The protocol developed in this study provides a new approach, to the mix of
existing approaches. The protocol offers both server-based access and direct
access. The ability to determine the access method of IoT Gateway devices is
important. Bandwidth consumption is a critical issue in the IoT ecosystem.
Protocols such as MQTT operate in the Pub/Sub architecture. In most cases, the
broadcaster sends data to the subscriber periodically, even if the broadcaster does
not need the data at the moment, which is a waste of bandwidth. The "on-demand
access" method, is applied in the developed protocol and unnecessary bandwidth
consumption is reduced. The protocol developed in simulation was compared with
the MQTT protocol. When examined, in terms of latency of the two access
methods offered by adaptive application protocol, direct access method is faster
than MQTT, while server-based method is slower. When examined in terms of the
bandwidth consumed, the adaptive application protocol consumes less bandwidth.
In the evaluations carried out in the simulation environment, as the number of
nodes increases, the bandwidth consumption for the direct access method also
increases. Adaptive Application Protocol has both server-based communication
and direct communication capability. The potential to switch between these two
methods, is an important advantage.

Acknowledgement

This study was produced from the doctoral thesis titled “General Architecture and
Protocol Design For The Internet Of Things In Campus Networks”.

References

[1] A. Talaminos-Barroso, M. Estudillo-Valderrama, L. Roa, J. Reina-Tosina,
and F. Ortega-Ruiz, “A Machine-to-Machine Protocol Benchmark for
eHealth Applications - Use Case: Respiratory Rehabilitation,” Comput.
Methods Programs Biomed., Vol. 129, Sep. 2016, doi:
10.1016/j.cmpb.2016.03.004

[2] L. Šikić et al., “A Comparison of Application Layer Communication
Protocols in IoT-enabled Smart Grid,” in 2020 International Symposium
ELMAR, 2020, pp. 83-86, doi: 10.1109/ELMAR49956.2020.9219030

[3] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges of
security and privacy in distributed internet of things,” Comput. Networks,

Acta Polytechnica Hungarica Vol. 21, No. 2, 2024

 – 289 –

Vol. 57, No. 10, pp. 226-2279, 2013, doi:
https://doi.org/10.1016/j.comnet.2012.12.018

[4] J. Dizdarević, F. Carpio, A. Jukan, and X. Masip-Bruin, “A Survey of
Communication Protocols for Internet of Things and Related Challenges of
Fog and Cloud Computing Integration,” ACM Comput. Surv., Vol. 51, No.
6, Jan. 2019, doi: 10.1145/3292674

[5] M. Aziez, S. Benharzallah, and H. Bennoui, “A Comparative Analysis of
Service Discovery Approaches for the Internet of Things,” Int. Res. J.
Electron. Comput. Eng. (ISSN Online 2412-4370), Vol. 3, p. 17, Sep. 2017,
doi: 10.24178/irjece.2017.3.1.17

[6] A. E. Khaled and S. Helal, “Interoperable communication framework for
bridging RESTful and topic-based communication in IoT,” Futur. Gener.
Comput. Syst., Vol. 92, pp. 628-643, Mar. 2019, doi:
10.1016/j.future.2017.12.042

[7] B. Bendele and D. Akopian, “A study of IoT MQTT control packet
behavior and its effect on communication delays,” Electron. Imaging, vol.
2017, pp. 120-129, Sep. 2017, doi: 10.2352/ISSN.2470-
1173.2017.6.MOBMU-311

[8] N. Al-Nabhan, N. Al-Aboody, and A. B. M. Alim Al Islam, “A hybrid IoT-
based approach for emergency evacuation,” Comput. Networks, Vol. 155,
pp. 87-97, 2019, doi: https://doi.org/10.1016/j.comnet.2019.03.015

[9] P. Bellavista and A. Zanni, “Towards better scalability for IoT-cloud
interactions via combined exploitation of MQTT and CoAP,” 2016 IEEE
2nd Int. Forum Res. Technol. Soc. Ind. Leveraging a better tomorrow, pp. 1-
6, 2016 [Online] Available:
https://api.semanticscholar.org/CorpusID:635592

[10] B. H. Çorak, F. Y. Okay, M. Güzel, Ş. Murt, and S. Ozdemir,
“Comparative Analysis of IoT Communication Protocols,” in 2018
International Symposium on Networks, Computers and Communications
(ISNCC), 2018, pp. 1-6, doi: 10.1109/ISNCC.2018.8530963.

[11] B. Jia, L. Hao, C. Zhang, and D. Chen, “A Dynamic Estimation of Service
Level Based on Fuzzy Logic for Robustness in the Internet of Things,”
Sensors, Vol. 18, No. 7, 2018, doi: 10.3390/s18072190

[12] M. O. Al Enany, H. M. Harb, and G. Attiya, “A Comparative analysis of
MQTT and IoT application protocols,” in 2021 International Conference
on Electronic Engineering (ICEEM) 2021, pp. 1-6, doi:
10.1109/ICEEM52022.2021.9480384

[13] M. Gill and D. Singh, “A Comprehensive Study of Simulation Frameworks
and Research Directions in Fog Computing,” Comput. Sci. Rev., Vol. 40,
No. C, May 2021, doi: 10.1016/j.cosrev.2021.100391

E. ÖZDOĞAN et al. Adaptive Hybrid Application Protocol for IoT

 – 290 –

[14] T. Moraes, B. Nogueira, V. Lira, and E. Tavares, “Performance
Comparison of IoT Communication Protocols,” Sep. 2019, pp. 3249-3254,
doi: 10.1109/SMC.2019.8914552

[15] T. Maksymyuk, M. Brych, S. Dumych, and H. Al-Zayadi, “Comparison of
the IoT Transport Protocols Performance over Narrowband-IoT Networks,”
2017 [Online] Available:
https://api.semanticscholar.org/CorpusID:198233983

[16] N. Naik, “Choice of effective messaging protocols for IoT systems: MQTT,
CoAP, AMQP and HTTP,” in 2017 IEEE International Systems
Engineering Symposium (ISSE) 2017, pp. 1-7, doi:
10.1109/SysEng.2017.8088251

[17] N. Caro, W. Colitti, K. Steenhaut, G. Mangino, and G. Reali, “Comparison
of two lightweight protocols for smartphone-based sensing,” Sep. 2013, pp.
1-6, doi: 10.1109/SCVT.2013.6735994

[18] Y. Chen and T. Kunz, “Performance evaluation of IoT protocols under a
constrained wireless access network,” Sep. 2016, pp. 1-7, doi:
10.1109/MoWNet.2016.7496622

[19] S. Mijovic, E. Shehu, and C. Buratti, “Comparing application layer
protocols for the Internet of Things via experimentation,” Sep. 2016, pp. 1-
5, doi: 10.1109/RTSI.2016.7740559

[20] M. Collina, M. Bartolucci, A. Vanelli-Coralli, and G. Corazza, “Internet of
Things application layer protocol analysis over error and delay prone
links,” Sep. 2014, pp. 398-404, doi: 10.1109/ASMS-SPSC.2014.6934573

[21] A. Bhattacharyya and S. Bandyopadhyay, “Lightweight Internet Protocols
for Web Enablement of Sensors Using Constrained Gateway Devices,” in
Proceedings of the 2013 International Conference on Computing,
Networking and Communications (ICNC), 2013, pp. 334-340, doi:
10.1109/ICCNC.2013.6504105

[22] H. Derhamy, J. Eliasson, and J. Delsing, “IoT Interoperability - On-
Demand and Low Latency Transparent Multiprotocol Translator,” IEEE
Internet Things J., Vol. 4, No. 5, pp. 1754-1763, 2017, doi:
10.1109/JIOT.2017.2697718

[23] C. Lee, Y. Chang, C. Chuang, and Y. H. Lai, “Interoperability enhancement
for Internet of Things protocols based on software-defined network,” in
2016 IEEE 5th Global Conference on Consumer Electronics, 2016, pp. 1-2,
doi: 10.1109/GCCE.2016.7800510

[24] P. Desai, A. Sheth, and P. Anantharam, “Semantic Gateway as a Service
Architecture for IoT Interoperability,” in 2015 IEEE International
Conference on Mobile Services, 2015, pp. 313-319, doi:
10.1109/MobServ.2015.51

	1 Introduction
	2 Related Work
	3 Adaptive Hybrid IoT Protocol
	3.1 Packet Header
	3.2 Packet Types
	3.3 Diagrams of Components

	4 Experimental Analysis
	4.1 Ethernet LAN Delay
	4.2 Server Traffic Comparison
	4.3 Bandwidth Consumption and Functionality
	4.4 Empirical Experiment Results

	5 Results and Discussion

