
Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 175 ‒

NPV-DQN: Improving Value-based
Reinforcement Learning, by Variable Discount
Factor, with Control Applications

Gabor Paczolay, Istvan Harmati
Department of Control Engineering, Budapest University of Technology and
Economics, Magyar tudósok krt. 2, I building, H-1117 Budapest, Hungary,
paczolay@iit.bme.hu; harmati@iit.bme.hu

Abstract: Discount factor plays an important role in reinforcement learning algorithms. It
decides how much future rewards are valued for the present time-step. In this paper, a system
with a Q value estimation, based on two distinct discount factors are utilized. These
estimations can later be merged into one network, to make the computations more efficient.
The decision of which network to use, is based on the relative value of the maximum value of
the short-term network, the more unambiguous the maximum is, the more probability is
rendered to the selection of that network. The system is then benchmarked, on a cartpole and
a gridworld environment.

Keywords: reinforcement learning; DQN; NPV; NPV-DQN

1 Introduction

Reinforcement learning is becoming a highly researched field in the domain of
artificial intelligence, as more and more problems can be solved using it, due to
increases of available computing power.

In this paper, an economical, theory-based idea, is visited utilizing discounted
rewards. The discounted rewards are considered to be similar to the Net Present
Value, with a steeper discount meaning a more risk-evading policy. Two networks
with different discount factors are applied, where the short-term network is
exploited when the long-term system is indecisive, to ensure that the system gets
rewards easier. This method can speed up or even improve learning, as it will be
seen from the results herein.

The first mentionable and the most well-known reinforcement algorithm was
invented by Watkins [23]. However, in those days, reinforcement learning
algorithms did not see a lot of real-world usage. This abundance was due to the
requirement of the state space table, which required that all state-action value pairs

mailto:paczolay@iit.bme.hu

G. Paczolay et al. NPV-DQN: Improving Value-based Reinforcement Learning
 by Variable Discount Factor, with Control Applications

‒ 176 ‒

had to be stored in memory, leading to an explosion of memory usage when the
method is used for problems with large state spaces. This problem was remedied by
the utilization of artificial neural networks: Mnih et al. created the DQN algorithm
and have beaten human players in Atari games [10]. As convergence was a problem
in previous, not well-performing trials of neural networks, this system also has some
tricks to ensure convergence. First, to process motion, it used a couple of
consequential frames together, it utilized an experience replay buffer to hold
previous memories, and it utilized a target network. Van Hasselt et al. created the
Double Q-learning algorithm, where two value functions are utilized, and each
experience updates one of the value estimators, and the estimators then update the
another one [21]. Wang et al. introduced the Dueling DQN architecture, where one
estimator approximated the value of the state, while the other estimated the action
advantage [22]. These two pieces of information were then aggregated to receive
the Q values. Schaul et al. modified the experience replay buffer to hold also loss
values, and the system prioritized the samples with higher loss values [19].
Bellemare et al. used the value approximation distribution as an output, and while
only using the expected values gained from the distributions, it vastly outperformed
the original DQN algorithm [1]. While the previous method had the disadvantage
of giving a lower and upper bound to the processable Q values, this was corrected
by Dabney at al. with Quantile Regression [2]. Hessel et al. combined many of the
previously mentioned researches, leading to even better results, the name of this
new version is called Rainbow-DQN [6]. Lavet et al. progressively increased the
discount factor to reduce learning steps [3].

The full state is not always possible to observe, for example due to the imperfection
of the sensors. In this case, the Markov Decision Process becomes a Partially
Observable Markov Decision Process, and the solution of these systems requires
memory. Hausknecht et al. created a solution to this problem by utilizing a Long
Short-Term Memory (LSTM) on the inputs [5]. Li et al. merged Supervised
Learning with Reinforcement Learning, with the former containing recurrent
components, to deal with POMDPs [8].

Research on control can also be mentioned regarding the research as the proposed
algorithm is also intended to solve control problems. Reda et al. designed a hybrid
supervised- and reinforcement learning algorithm for vehicle automation [17].
Unguritu et al. modeled an anti-lock braking system mathematically and then
designed a controller for that [20]. Zamfirache et al. combined an actor-critic
algorithm with the Grey Wolf Optimizer algorithm, to eliminate the main
drawbacks of the gradient descent algorithm [24]. Preitl et al. applied Iterative
Feedback Tuning algorithms in the design of fuzzy control systems [16]. Haidegger
et al. modeled a telesurgery system and suggested several control options for that
[4]. Precup et al. presented a new framework for 2DOF controllers for integral
processes of servo systems [15]. Németh created an enhanced cruise control system
with Linear Parameter-Varying control and an optimization-based supervisor [11].

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 177 ‒

The algorithm that we propose relies on having two action-value functions with
different discount factors to introduce a conditional greediness to the DQN
algorithm. This modification made it possible to improve upon the original
algorithm, making our proposed algorithm favorable. In which our system is
different from other systems is the economical background of the discount factor
and the switching algorithm.

The novelty of this work, is a double discount factor, with a specific action selector.
The algorithm can be utilized for any reinforcement learning tasks that use discrete
actions, such as control tasks, like high-level control of Unmanned Aerial Vehicles
(UAV) or quantized exploration or patrol tasks, where it has the advantage with
respect to non-learning control tasks that the a priori environment knowledge is not
required. Otherwise, reinforcement learning is now widely utilized for Large
Language Model (LLM) fine-tuning.

In this paper, first the theoretical background is mentioned. Then, the theory of the
proposed idea is mentioned, followed by the experiments conducted. In the end, the
results are discussed and the conclusions of the research are made with the future
work to be conducted later.

2 Theoretical Background

2.1 Markov Decision Processes

Markov Decision process is a discrete-time framework for decision making
optimization problems, also applicable for reinforcement learning. Figure 1 shows
the basics of this framework [12]. In an MDP the following elements are defined:
states that the environment can hold, actions the agent can choose, transition
probabilities describing which the agent will be in when selecting a specific action
in a specific state, and rewards to be optimized [7]. At each timestep, the agent starts
at a specific state 𝑠𝑠, selects an action 𝑎𝑎 from the available action space, and based
on the former two and the transition probability 𝑃𝑃, it gets into a new state 𝑠𝑠′ and
receives a reward 𝑟𝑟. The Markov property is defined on the stochastic process if the
following holds:

𝑃𝑃(𝒂𝒂𝒕𝒕 = 𝒂𝒂|𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕−𝟏𝟏, . . . , 𝒔𝒔𝟎𝟎,𝒂𝒂𝟎𝟎) = 𝑃𝑃(𝒂𝒂𝒕𝒕 = 𝒂𝒂|𝒔𝒔𝒕𝒕) (1)

This means that 𝑃𝑃, the probability of the transitions, only depend on the last state
and the currently selected action, thus only these two are important in the decision
of the following state [14]. This only holds for the traversal of the MDP, during
training, other samples can also be used.

G. Paczolay et al. NPV-DQN: Improving Value-based Reinforcement Learning
 by Variable Discount Factor, with Control Applications

‒ 178 ‒

Policies are a mapping of each state s, to the actions a, and they are very important
in Markov Decision Processes, as agents are trying to find the optimal policy. This
optimality means that it minimalizes the sum of the discounted expected rewards,
or the return. This discount means that agents tend to prefer a short-term reward to
the longer-term ones, and a coefficient decides the discount product between each
step. A solution of the policy would mean one that maximizes the reward reachable
by the agent, and to find one, one has to find a fixed point of the Bellman equation
via iterative search. The Bellman equation looks like the following:

𝑣𝑣(𝒔𝒔,𝜋𝜋∗) = 𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎(𝑟𝑟(𝒔𝒔,𝒂𝒂) + 𝛾𝛾 ∑𝑠𝑠′ 𝒑𝒑(𝒔𝒔′|𝒔𝒔,𝒂𝒂)𝑣𝑣(𝒔𝒔′,𝜋𝜋∗)) (2)

Figure 1

Markov Decision Process

In this equation. 𝑟𝑟(𝑠𝑠, 𝑎𝑎) is the reward rendered to the appropriate state-action pair,
𝛾𝛾 is the discount factor favoring short-term rewards, and 𝑝𝑝(𝑠𝑠′|𝑠𝑠, 𝑎𝑎) is the transition
probability function. It can be seen that if the agent knows 𝑃𝑃 and 𝑟𝑟, thus it is familiar
enough with the environment, it can find the optimal values.

2.2 Reinforcement Learning

Reinforcement learning is one of the three subtypes of machine learning, next to
supervised and unsupervised learning. It is one subtype of Markov Decision Process
when the state transition probabilities or the payoff function is not known, thus, the
Bellman optimality equation is not enough for a solution. In the reinforcement
learning case, the agent interacts with the environment to get more familiar with it,
it selects specific (random or policy-based) actions and receives appropriate
rewards.

There are two main kinds of reinforcement learning: one is called value-based and
the other is policy-based.

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 179 ‒

In the case of value-based reinforcement learning, all states or state-action pairs are
receiving a value. This value is rendered to the expected return from the state or by
selecting a specific action in a state. The well-known value-based reinforcement
learning method is Q-learning [23]. This algorithm renders values, the so-called Q-
values to all state-action pairs, which is, in fact, the expected return by selecting the
action in the state. The Q-value update works by the following equation:

𝑄𝑄(𝒔𝒔′,𝒂𝒂) ← (1 − 𝛼𝛼) ⋅ 𝑄𝑄(𝒔𝒔,𝒂𝒂) + 𝛼𝛼 ⋅ (𝑟𝑟 + 𝛾𝛾 ⋅ max
𝑎𝑎′

𝑄𝑄(𝒔𝒔′,𝒂𝒂′)) (3)

where α is the learning rate and γ is the discount for the reward. The policy of the
algorithm is to always select the action in a state that has the highest Q-value for
the state-action pair.

In policy-based reinforcement learning, the policy is a parametrized function, which
has the states as inputs and the actions, or the distribution of the actions as output.
The most utilized policy-based method is policy gradient, where a set of θ
parameters characterize a policy π_θ, and the agent seeks to obtain the maximal
expected reward for a specific trajectory, marked here by r(τ). We obtain the
following payoff function:

 𝐽𝐽(𝜽𝜽) = 𝐸𝐸𝜋𝜋𝜃𝜃[𝑟𝑟(𝜏𝜏)] (4)

The process of tuning the parameters is performed with respect to the gradient of
the payoff function:

𝜽𝜽𝑘𝑘+1 = 𝜃𝜃𝑡𝑡 + 𝛼𝛼Δ𝐽𝐽(𝜽𝜽𝒕𝒕) (5)

It is worth mentioning the advantages and disadvantages of policy-based
reinforcement learning. They have smaller bias but higher variance compared to
value-based algorithms. Due to this reason, policy-gradient methods find local
optima better, but they find it harder to arrive in global optima. Due to the
parametrization, they can also map action spaces that have action spaces that have
high dimension count or are even continuous, and stochasticity is better handled.

2.3 Deep Reinforcement Learning

Whenever the decision making of a reinforcement learning agent is aided by a
neural network, the problem domain becomes a deep reinforcement learning
problem [13].

Neural networks are function approximators that consist of biologically-inspired
building blocks, the neurons. They can be described by the following equation:

𝑦𝑦 = 𝐴𝐴𝐴𝐴𝑡𝑡(∑ 𝒘𝒘𝒘𝒘 + 𝒃𝒃) (6)

In this equation, x is the input vector, w contains the weights of the neural network,
and the dot product is taken from the aforementioned two. b is the bias scalar, which
ensures that the result of the block can be different from zero in the case of having

G. Paczolay et al. NPV-DQN: Improving Value-based Reinforcement Learning
 by Variable Discount Factor, with Control Applications

‒ 180 ‒

zero as an input. The bias element can also be described as a weight that is connected
to the constant one scalar. The Act function is the activation function, that
introduces nonlinearity to the system, without this, the system would only be able
to solve linear problems. The selection of the activation function strongly depends
on the problem type, the depth of the network and the precision-computing
efficiency tradeoff. The w and b variables are trained by backpropagation, where
the partial derivative errors of the inputs are calculated starting by a forward-
propagation to get the final error, then backpropagating the errors through the layers
up until the input vector.

The difference between traditional and deep reinforcement learning systems should
also be mentioned. They have the advantage of the omission of the state space table,
thus environments of huge, continuous or image-based action spaces can all be
solved with them. However, deep reinforcement learning algorithms have worse
convergence than traditional learning algorithms due to the fact that the output
values are only approximations. This disadvantage is being solved by several tricks
that makes these systems converge.

2.4 DQN Algorithm

The architecture of the traditional Q-learning method is not suitable for neural
systems, due to the fact that all Q-value estimations need a forward pass on the
neural network, making the system slow. This disadvantage is cured by the
architecture of Deep Q-Network, where the output dimension is equal to the number
of the available actions (making it only suitable for systems with discrete action
spaces), and they each represent a Q-value estimation for the input state, making
the system calculate all Q-values of the state in one forward inference.
The pseudocode for the algorithm can be seen in Algorithm 1.

As mentioned during the theoretical background introduction, deep reinforcement
learning methods do not converge as easily as traditional ones, and several
improvements has to be made for the algorithms to ensure convergence. One of
these improvements is called the experience replay, which is a buffer that holds the
last batch of tuples of states, selected actions, received rewards, the terminal state
Booleans and the ’next states’, the states where the agent have transitioned after
taking the action in the previous state, marked as (s, a, r, d, s'). During training,
which can take place after either a specific number of episode steps of after an
episode has ended, a batch of these tuples are sampled from the buffer, and this
batch is used for the training. With this technique, earlier memories also appear in
the training samples, making the samples more diverse and making the algorithm
converge with higher probability.

Another trick to make the system converge is called target model. During the
learning phase, this is utilized for inference of the next states, and this model is
similar to the original model but is updated with less frequency (called hard update)
or with smaller steps (called soft update).

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 181 ‒

The algorithm works in the following way: first, the replay memory and the models
are initialized. Then, the algorithm receives a state, for which it selects the action
with the maximal Q-value of the state with an ϵ-greedy strategy. After taking that
action and observing the reward and the next state, the corresponding elements are
saved to the replay buffer. During training, a batch is sampled from the replay
buffer, and the target Q-value is calculated based on (7), for which a gradient
descent step is done. The target model is updated every C steps.

Initialize replay memory 𝐷𝐷 to capacity 𝑁𝑁
Initialize action-value function 𝑄𝑄 with random weights 𝜽𝜽
Initialize target model 𝑄𝑄� with weights 𝜽𝜽− = 𝜽𝜽
for episode = 1, 𝑀𝑀 do

Initialize sequence 𝑠𝑠1 = {𝑥𝑥1} and preprocessed sequence Φ1 = Φ(𝑠𝑠1)
for 𝑡𝑡 = 1, T do

With probability 𝜖𝜖 select a random action 𝑎𝑎𝑡𝑡
otherwise select 𝒂𝒂𝒕𝒕 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎𝑄𝑄(Φ(𝑠𝑠𝑡𝑡),𝒂𝒂;𝜽𝜽)
Execute action 𝒂𝒂𝒕𝒕 and observe reward 𝑟𝑟𝑡𝑡 and image 𝒘𝒘𝒕𝒕+𝟏𝟏
Set 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕,𝒘𝒘𝒕𝒕+𝟏𝟏 and preprocess Φ𝑡𝑡+1 = Φ(𝒔𝒔𝒕𝒕+𝟏𝟏)
Store transition (Φ𝑡𝑡,𝒂𝒂𝒕𝒕, 𝑟𝑟𝑡𝑡 ,Φ𝑡𝑡+1) in D

end for
Sample random minibatch of transitions (Φ𝑗𝑗 ,𝒂𝒂𝒋𝒋, 𝑟𝑟𝑗𝑗 ,Φ𝑗𝑗+1) from 𝐷𝐷

Set 𝑦𝑦 = �
𝑟𝑟𝑗𝑗 if episode terminates at step j + 1
𝑟𝑟𝑗𝑗 + 𝛾𝛾max

𝑑𝑑
𝑄𝑄�(Φ𝑗𝑗+1,𝒂𝒂′;𝜽𝜽−) otherwise, (1)

Perform a gradient descent step on (𝑦𝑦𝑗𝑗 − 𝑄𝑄(Φ𝑗𝑗 ,𝒂𝒂𝑗𝑗 ;𝜃𝜃))2 with respect to the network parameters 𝜽𝜽
Every C steps reset target model 𝑄𝑄� = 𝑄𝑄

end for

Algorithm 1
DQN

3 The Proposed NPV-DQN Algorithm

The idea for the proposed method of the paper comes from an economical
background. In economy, the Net Present Value gives the value of an investment
discounted to the money amount it would be valued today. The formula looks like
the following:

𝑁𝑁𝑃𝑃𝑁𝑁 = ∑∞
𝑖𝑖=0

𝐹𝐹𝑖𝑖
(1+𝑟𝑟𝑖𝑖)𝑖𝑖

 (8)

where 𝐹𝐹𝑖𝑖 is the expense or return for the i-th time segment, and 𝑟𝑟𝑖𝑖 is the capital cost,
which generally means the yearly cost (usually given in a percentage) of investing
it in the investment given in the calculation instead of investing it in the stock market

G. Paczolay et al. NPV-DQN: Improving Value-based Reinforcement Learning
 by Variable Discount Factor, with Control Applications

‒ 182 ‒

(as an alternative that is always available) with risk equal to the risk of the
aforementioned investment. Higher risk means higher capital cost; thus, the
discount factor will be greater, leading to smaller values in the NPV. Thus, higher
risk favors investments that have a high return in the first-time segments.

The reason of the economical introduction in this section is due to the similarities
with the discount factor utilized in the return of the value calculation for
reinforcement learning. A state value is given by the following formula:

𝑁𝑁𝑖𝑖 = ∑𝑖𝑖 𝛾𝛾
𝑖𝑖𝑅𝑅𝑖𝑖 (9)

where γ is the discount factor, and 𝑅𝑅𝑖𝑖 is the reward for the i th step.

The proposed idea is based on the fact that when the values of the long-term
outcomes of a state based on the actions are undecided (meaning that there are
multiple highest action-values) or close to each other, but the short-term outcomes
are clearer, greediness can be introduced. This means that the agent favors actions
that yield higher return on the short-term time span instead of the uncertain long-
term one.

The idea can be realized by creating two similar action-value functions, and training
them similarly (even on the same batch) but utilizing different γ discount factors
during training. This will mean that the system will have a Q action-value function
with higher γ, and a new Q' with a lower γ' discount rate. Based on the simulations,
the best rate of γ' to choose is 0.7 to 0.8. Then, the system selects an action from
either Q or Q', where the probability of selecting from Q' is equal to:

𝑃𝑃 = (1 − 𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑟𝑟(𝑄𝑄)
𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑟𝑟(𝑄𝑄)+𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑟𝑟(𝑄𝑄′)

)𝑘𝑘 (10)

where k is a variable positive coefficient (taken to be 2 in the simulations) and ratio
is given by the following formula (M is just a function argument):

𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑟𝑟(𝑀𝑀) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑑𝑑(𝑀𝑀)−𝑚𝑚𝑖𝑖𝑠𝑠(𝑀𝑀)
𝑚𝑚𝑎𝑎𝑚𝑚(𝑀𝑀)−𝑚𝑚𝑖𝑖𝑠𝑠(𝑀𝑀)

 (11)

where second yields the second highest value in a list (in this case, the second
highest action value).

As the usage and the training takes place at the same time elements of the system,
the two action-value functions can be realized even with one network, saving the
time of a second inference. Note that due to benchmarking reasons this was not done
in the simulations of the paper, as in that case, the neuron count would not match
the original DQN algorithm.

Finally, let us look at the proposition that in some cases, the system with a lower-
valued discount rate converges faster than higher-valued one. First, define the
contraction operator H for 𝑞𝑞:𝒳𝒳 × 𝒜𝒜 ⟶ ℝ, as in [9] and [18]:

(𝐻𝐻𝑞𝑞)(𝒘𝒘,𝒂𝒂) = ∑𝑦𝑦∈𝒳𝒳 𝑃𝑃𝛼𝛼(𝑥𝑥, 𝑦𝑦)[𝑟𝑟(𝒘𝒘,𝒂𝒂,𝒚𝒚) + 𝛾𝛾 max
𝑏𝑏∈𝒜𝒜

 𝑞𝑞(𝒚𝒚,𝒃𝒃) (12)

And H’ as H in (12), just γ' instead of γ.

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 183 ‒

Proposition 1. If 0 < 𝛾𝛾′ < 𝛾𝛾 ≤ 1, and the reward function is greater or equal to 0,
then the variance of the system with γ' is smaller that the one with γ , that is,

𝑣𝑣𝑎𝑎𝑟𝑟[𝐹𝐹′𝑡𝑡(𝒘𝒘)|ℱ] ≤ 𝑣𝑣𝑎𝑎𝑟𝑟[𝐹𝐹𝑡𝑡(𝒘𝒘)|ℱ] (13)

Proof.

𝑣𝑣𝑎𝑎𝑟𝑟[𝐹𝐹𝑡𝑡(𝒘𝒘)|ℱ] =

= 𝔼𝔼[(𝑟𝑟(𝒘𝒘,𝒂𝒂,𝑋𝑋(𝒘𝒘.𝒂𝒂)) + 𝛾𝛾 max
𝑏𝑏∈𝒜𝒜

𝑄𝑄𝑡𝑡(𝒚𝒚,𝒃𝒃) − 𝑄𝑄∗(𝒘𝒘,𝒂𝒂) −𝐻𝐻𝑄𝑄𝑡𝑡(𝒘𝒘,𝒂𝒂) + 𝑄𝑄∗(𝒘𝒘,𝒂𝒂))2] =

= 𝔼𝔼[((𝑟𝑟(𝒘𝒘,𝒂𝒂,𝑋𝑋(𝒘𝒘,𝒂𝒂)) + 𝛾𝛾 max
𝑏𝑏∈𝒜𝒜

𝑄𝑄𝑡𝑡(𝒘𝒘,𝒃𝒃) −𝐻𝐻𝑄𝑄𝑡𝑡(𝒘𝒘,𝒂𝒂))2] =

= 𝑣𝑣𝑎𝑎𝑟𝑟[𝑟𝑟(𝒘𝒘,𝒂𝒂,𝑋𝑋(𝒘𝒘,𝒂𝒂)) + 𝛾𝛾 max
𝑏𝑏∈𝒜𝒜

𝑄𝑄𝑡𝑡(𝒘𝒘,𝒃𝒃)|ℱ𝑡𝑡]

Similarly,

𝑣𝑣𝑎𝑎𝑟𝑟[𝐹𝐹′𝑡𝑡(𝑥𝑥)|ℱ] = 𝑣𝑣𝑎𝑎𝑟𝑟[𝑟𝑟(𝒘𝒘,𝒂𝒂,𝑋𝑋(𝒘𝒘,𝒂𝒂)) + 𝛾𝛾′ max
𝑏𝑏∈𝒜𝒜

𝑄𝑄𝑡𝑡(𝒘𝒘,𝒃𝒃)|ℱ𝑡𝑡]

The optimal value function is like the following:

𝑁𝑁∗(𝑥𝑥) = max
𝒜𝒜𝑡𝑡

𝔼𝔼[∑∞
𝑡𝑡=0 𝛾𝛾𝑡𝑡(𝑅𝑅(𝑋𝑋𝑡𝑡 ,𝐴𝐴𝑡𝑡))|𝑋𝑋0 = 𝑥𝑥] (2)

Due to the limitation we put in that limits the reward function to be 𝑟𝑟 ≥ 0, or in
(14), 𝑅𝑅(𝑋𝑋𝑡𝑡 ,𝐴𝐴𝑡𝑡) ≥ 0, we get that the value function 𝑁𝑁∗(𝑥𝑥) ≥ 0

As the optimal Q-function is defined as the following:

𝑄𝑄∗(𝒘𝒘,𝒂𝒂) = ∑𝑦𝑦∈𝒳𝒳 𝑃𝑃𝛼𝛼(𝒘𝒘,𝒚𝒚)[𝑟𝑟(𝒘𝒘,𝒂𝒂,𝒚𝒚) + 𝛾𝛾(𝑁𝑁∗(𝑦𝑦)]

and 𝑃𝑃 is a probability, it can be seen that 𝑄𝑄∗(𝑥𝑥, 𝑎𝑎) ≥ 0.

It can be concluded that if arrays 𝑌𝑌 ≥ 0 and 𝑍𝑍 ≥ 0 and the scalar 0 ≤ 𝛽𝛽 ≤ 1, then

𝑣𝑣𝑎𝑎𝑟𝑟[𝑌𝑌 + 𝛽𝛽𝑍𝑍] ≤ 𝑣𝑣𝑎𝑎𝑟𝑟[𝑌𝑌 + 𝑍𝑍] (3)

 and from that:

𝑣𝑣𝑎𝑎𝑟𝑟 �𝑟𝑟�𝒘𝒘,𝒂𝒂,𝑋𝑋(𝒘𝒘,𝒂𝒂)� + 𝛾𝛾′maxQt
𝑏𝑏∈𝒜𝒜

(𝒘𝒘,𝒃𝒃)�ℱ𝑡𝑡� ≤

≤ 𝑣𝑣𝑎𝑎𝑟𝑟[𝑟𝑟(𝒘𝒘,𝒂𝒂,𝑋𝑋(𝒘𝒘,𝒂𝒂)) + 𝛾𝛾max
𝑏𝑏∈𝒜𝒜

𝑄𝑄𝑡𝑡(𝒘𝒘,𝒃𝒃)|ℱ𝑡𝑡] (4)

which means that our initial statement is true, so:

𝑣𝑣𝑎𝑎𝑟𝑟[𝐹𝐹′𝑡𝑡(𝑥𝑥)|ℱ] ≤ 𝑣𝑣𝑎𝑎𝑟𝑟[𝐹𝐹𝑡𝑡(𝑥𝑥)|ℱ] (5)

□

Proposition 2. If 0 < 𝛾𝛾′ < 𝛾𝛾 ≤ 1, and the reward function is less or equal to 0, then
(13) holds.

G. Paczolay et al. NPV-DQN: Improving Value-based Reinforcement Learning
 by Variable Discount Factor, with Control Applications

‒ 184 ‒

Proof. In this case, the reward function and the optimal Q-function are both less or
equal to 0. The variance of the negated array is equal to the variance of the original
array, so:

𝑣𝑣𝑎𝑎𝑟𝑟[−𝑌𝑌 − 𝛽𝛽𝑍𝑍] = 𝑣𝑣𝑎𝑎𝑟𝑟[𝑌𝑌 + 𝛽𝛽𝑍𝑍] ≤ 𝑣𝑣𝑎𝑎𝑟𝑟[𝑌𝑌 + 𝑍𝑍] = 𝑣𝑣𝑎𝑎𝑟𝑟[−𝑌𝑌 − 𝑍𝑍] (18)

and from this:

𝑣𝑣𝑎𝑎𝑟𝑟[𝐹𝐹′𝑡𝑡(𝑥𝑥)|ℱ] ≤ 𝑣𝑣𝑎𝑎𝑟𝑟[𝐹𝐹𝑡𝑡(𝑥𝑥)|ℱ] (19)

holds.

4 Tests and Results

To check the usability in different conditions, the system was benchmarked on two
distinct testbeds. The pseudocode of the proposed algorithm can be seen in
Algorithm 2. The computational complexity of the algorithm, just like for regular
neural networks, is 𝑂𝑂(𝑛𝑛4), where n is the number of neurons of the network.

The stability of the proposed algorithm is the same as the stability of DQN, which
is stable but not in all situations. The optimality is also the same as for DQN
algorithms, which are converging to an optimal solution.

The first testbed was a cartpole environment with discrete action space. Its
observation space holds four elements: a position and a velocity element of the cart,
and the angle and angular velocity of the pole. The action space has two elements,
moving the cart to the two ways along the x axis. The reward is +1 for each step
when the pole is in an acceptable region (such that it does not fall), which is when
the pole angle is smaller than ±12^∘ and the cart position did not leave the ±2.4
region. Given this, the goal is to maximize the time of the episodes. The termination
step is the 500th step of the episode. Figure 2 shows the cartpole experiment.

Figure 2

The cartpole environment

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 185 ‒

The second testbed was a gridworld environment. In this setting, the agent always
starts at the [0,0] position, and the goal’s position is at [±3,±3] (so, it can also be 4
places), starting at [+3,+3]. Then, if reached, it moves clockwise to the next
position. The reward is the negative of the Euclidean norm between the agent and

the current goal, that is −��𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑔𝑔�
2 + �𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑔𝑔�

2
, where a means agent and g

means goal. This negative reward should be maximized. The agent’s action space
consists of the four directions of going up, left, down and right. The episode is
terminated after 1000 steps or after 20 "goals" are collected. This environment can
be thought of as it would be a control problem for patrol.

For both tests, the system was run for 100,000 steps and it was restarted 10 times.
The replay memory had the size of 10,000, the higher gamma value was taken to be
0.99. The learning rate was 1e-4, the activation function was ReLU and the batch
size was 32. The lower gamma value of the proposed network was selected to be
0.7 in the first experiment, and it was 0.7 and 0.8 for the second one. All the
hyperparameters are selected to provide a good balance between convergence and
learning speed.

Figure 3

The gridworld environment

Initialize replay memory 𝐷𝐷 to capacity 𝑁𝑁
Initialize action-value function 𝑄𝑄 with random weights 𝜽𝜽
Initialize target model 𝑄𝑄� with weights 𝜽𝜽− = 𝜽𝜽
Initialize action-value function 𝑄𝑄′ with random weights 𝜽𝜽′
Initialize target model 𝑄𝑄′� with weights 𝜽𝜽′− = 𝜽𝜽′
for episode = 1, 𝑀𝑀 do

Initialize sequence 𝑠𝑠1 = {𝑥𝑥1} and preprocessed sequence Φ1 = Φ(𝑠𝑠1)
for 𝑡𝑡 = 1, T do

With probability 𝜖𝜖 select a random action 𝑎𝑎𝑡𝑡
otherwise:
if 𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑟𝑟(𝑄𝑄′) < 𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑟𝑟(𝑄𝑄) (based on (11)) then

calculate:

G. Paczolay et al. NPV-DQN: Improving Value-based Reinforcement Learning
 by Variable Discount Factor, with Control Applications

‒ 186 ‒

𝑃𝑃 = (1 − 𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑟𝑟(𝑄𝑄)
𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑟𝑟(𝑄𝑄)+𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑟𝑟(𝑄𝑄′)

)𝑘𝑘 (6)

with probability 𝑃𝑃 select action 𝒂𝒂𝒕𝒕 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎𝑄𝑄′(Φ(𝒔𝒔𝒕𝒕),𝒂𝒂;𝜽𝜽′)
otherwise select 𝒂𝒂𝒕𝒕 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎𝑄𝑄(Φ(𝒔𝒔𝒕𝒕),𝑎𝑎;𝜽𝜽)

else
select 𝒂𝒂𝒕𝒕 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎𝑄𝑄(Φ(𝑠𝑠𝑡𝑡),𝑎𝑎;𝜽𝜽)

end if
Execute action 𝒂𝒂𝒕𝒕 and observe reward 𝑟𝑟𝑡𝑡 and image 𝒘𝒘𝒕𝒕+𝟏𝟏
Set 𝑠𝑠𝑡𝑡+1 = 𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕,𝒘𝒘𝒕𝒕+𝟏𝟏 and preprocess Φ𝑡𝑡+1 = Φ(𝒔𝒔𝒕𝒕+𝟏𝟏)
Store transition (Φ𝑡𝑡,𝒂𝒂𝒕𝒕, 𝑟𝑟𝑡𝑡 ,Φ𝑡𝑡+1) in D

end for
Sample random minibatch of transitions (Φ𝑗𝑗 ,𝒂𝒂𝒋𝒋, 𝑟𝑟𝑗𝑗 ,Φ𝑗𝑗+1) from 𝐷𝐷

Set 𝑦𝑦 = �
𝑟𝑟𝑗𝑗 if episode terminates at step j + 1
𝑟𝑟𝑗𝑗 + 𝛾𝛾max

𝑑𝑑
𝑄𝑄�(Φ𝑗𝑗+1,𝒂𝒂′;𝜽𝜽−) otherwise

 Perform a gradient descent step on (𝑦𝑦𝑗𝑗 − 𝑄𝑄(Φ𝑗𝑗 ,𝒂𝒂𝒋𝒋;𝜽𝜽))2 with respect to the network parameters 𝜽𝜽

Set 𝑦𝑦′ = �
𝑟𝑟𝑗𝑗 if episode terminates at step j + 1
𝑟𝑟𝑗𝑗 + 𝛾𝛾′max

𝑑𝑑
𝑄𝑄′� (Φ𝑗𝑗+1,𝒂𝒂′;𝜽𝜽′−) otherwise

Perform a gradient descent step on (𝑦𝑦′𝑗𝑗 − 𝑄𝑄′(Φ𝑗𝑗 ,𝒂𝒂𝒋𝒋;𝜽𝜽′))2 with respect to the network parameters
𝜽𝜽′
Every C steps reset target model 𝑄𝑄� = 𝑄𝑄
Every C steps reset target model 𝑄𝑄′� = 𝑄𝑄′

end for

Algorithm 2
NPV-DQN

Now let us discuss the results of the previous tests. Figure 4 shows the results of the
cartpole experiment. It can be seen that the sum of the rewards is getting gradually
higher after the 60th episode, leading to a 60% increase over the original DQN
algorithm, even despite a little performance decrease after the 150th episode. Figures
5 and 6, show the results for the gridworld experiment, the former showing the first
15 episodes, while the latter showing the episodes from the 15th to the 50th. It is seen
that the proposed algorithm is a faster learner, leading to higher reward values from
earlier episodes, and reaching the final state 10 episodes earlier than the original
DQN algorithm, after 35 episodes instead of 45. It also shows that the γ selected at
0.7 and 0.8 performs good enough as a second discount factor. However, at the 15th
episode, the gamma of 0.8 is a bit behind the original one, but before and after that
episode it is clearly better.

Conclusions

As it can be seen from the results, the proposed algorithm surpasses the original
DQN algorithm, by a mentionable margin and also in regards of learning speed.
Due to this, it is a worthwhile addition to the previous action-value based system
variants and the proposed idea can be mixed with other augmentations of the DQN
system.

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 187 ‒

There are, however, some ways to continue this research. As mentioned earlier, the
mixing of the proposed method and other DQN variants should be considered.
Methodologies to reduce computing power, by using one network, instead of two,
can also be implemented. In addition, multiagent settings and utilizing short-term
rewards should be explored. It could also be valuable to research how well this idea
fits with actor-critic methods.

Figure 4

Results for the cartpole environment

Figure 5

Results of the first 15 episodes of the gridworld environment

G. Paczolay et al. NPV-DQN: Improving Value-based Reinforcement Learning
 by Variable Discount Factor, with Control Applications

‒ 188 ‒

Figure 6

Results of the 15th to the 50th episodes of the gridworld environment

The research reported in this paper is part of project no. BME-NVA-02,
implemented with the support provided by the Ministry of Innovation and
Technology of Hungary from the National Research, Development and Innovation
Fund, financed under the TKP2021 funding scheme. Support by the European
Union project RRF-2.3.1-21-2022-00004 within the framework of the Artificial
Intelligence National Laboratory.

References

[1] M. G. Bellemare, W. Dabney, R. Munos: A distributional perspective on
reinforcement learning, CoRR, abs/1707.06887, 2017

[2] W. Dabney, M. Rowland, M. G. Bellemare, R. Munos: Distributional
reinforcement learning with quantile regression, CoRR, abs/1710.10044,
2017

[3] V. François-Lavet, R. Fonteneau, D. Ernst : How to discount deep
reinforcement learning: Towards new dynamic strategies, CoRR,
abs/1512.02011, 2015

[4] T. Haidegger, L. Kovács, R. E. Precup, B. Benyó, Z. Benyó, S. Preitl:
Simulation and control for telerobots in space medicine, Acta Astronautica,
81(1), pp. 390-402, 2012

[5] M. Hausknecht, P. Stone: Deep recurrent q-learning for partially observable
mdps, 2015

[6] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney,
D. Horgan, B. Piot, M. G. Azar, D. Silver: Rainbow: Combining
improvements in deep reinforcement learning, CoRR, abs/1710.02298, 2017

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 189 ‒

[7] M. L. Littman: Markov games as a framework for multi-agent reinforcement
learning, In Proceedings of the Eleventh International Conference on
Machine Learning, pp. 157-163, Morgan Kaufmann, 1994

[8] X. Li, L. Li, J. Gao, X. He, J. Chen, L. Deng, J, He: Recurrent reinforcement
learning: A hybrid approach, 2015

[9] F. S Melo: Convergence of q-learning: A simple proof, Institute Of Systems
and Robotics, Tech. Rep, pp. 1-4, 2001

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, J. Antonoglou, D. Wierstra,
M. Riedmiller: Playing atari with deep reinforcement learning, arXiv
preprint arXiv:1312.5602, 2013

[11] B. Németh: Providing guaranteed performances for an enhanced cruise
control using robust lpv method, Acta Polytechnica Hungarica, 20(7), pp.
133-152, 2023

[12] G. Paczolay, I. Harmati: A new advantage actor-critic algorithm for multi-
agent environments, In 2020 23rd International Symposium on Measurement
and Control in Robotics (ISMCR), pp. 1-6, 2020

[13] G. Paczolay, I. Harmati: A2cm: a new multi-agent algorithm, ACTA
IMEKO, 10:28-35, 2021

[14] G. Paczolay, I. Harmati: A simplified pursuit-evasion game with
reinforcement learning, PERIODICA POLYTECHNICA-ELECTRICAL
ENGINEERING AND COMPUTER SCIENCE, 65: pp. 160-166, 2021

[15] R. E. Precup, S. Preitl, E. M. Petriu, J. K. Tar, M. L. Tomescu, C. Pozna:
Generic two-degree-of-freedom linear and fuzzy controllers for integral
processes, Journal of the Franklin Institute, 346(10), pp. 980-1003, 2009

[16] S. Preitl, R. E. Precup, J. Fodor, B. Bede: Iterative feedback tuning in fuzzy
control systems. Theory and applications, Acta Polytechnica Hungarica,
3(3), pp. 81-96, 2006

[17] A. Reda, R. Benotsmane, A. Bouzid, J. Vásárhelyi: A Hybrid Machine
Learning-based Control Strategy for Autonomous Driving Optimization,
Acta Polytechnica Hungarica, 20(9), pp. 165-186, 2023

[18] C. H. C. Ribeiro, Cs. Szepesvári: Q-learning combined with spreading:
Convergence and results, In Proceedings of ISRF-IEE International
Conference: Intelligent and Cognitive Systems, Neural Networks
Symposium, pp. 32-36, Tehran, Iran, 1996

[19] T. Schaul, J. Quan, I. Antonoglou, D. Silver: Prioritized experience replay,
2015, cite arxiv:1511.05952Comment: Published at ICLR 2016

[20] M. G. Unguritu, T. C. Nichitelea: Design and assessment of an anti-lock
braking system controller, Romanian Journal of Information Science and
Technology, 26(1), pp. 21-32, 2023

G. Paczolay et al. NPV-DQN: Improving Value-based Reinforcement Learning
 by Variable Discount Factor, with Control Applications

‒ 190 ‒

[21] H. van Hasselt, A. Guez, D. Silver: Deep reinforcement learning with double
q-learning, CoRR, abs/1509.06461, 2015

[22] Z. Wang, N. de Freitas, M. Lanctot : Dueling network architectures for deep
reinforcement learning, CoRR, abs/1511.06581, 2015

[23] C. J. C. H. Watkins: Learning from Delayed Rewards, Phd thesis, King’s
College, Oxford, 1989

[24] I. A. Zamfirache, R. E. Precup, R. C. Roman, E. M. Petriu,. Neural network-
based control using actor-critic reinforcement learning and grey wolf
optimizer with experimental servo system validation, Expert Systems with
Applications, 225, 120112, 2023

	1 Introduction
	2 Theoretical Background
	2.1 Markov Decision Processes
	2.2 Reinforcement Learning
	2.3 Deep Reinforcement Learning
	2.4 DQN Algorithm

	3 The Proposed NPV-DQN Algorithm
	4 Tests and Results

