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Abstract: Discount factor plays an important role in reinforcement learning algorithms. It 
decides how much future rewards are valued for the present time-step. In this paper, a system 
with a Q value estimation, based on two distinct discount factors are utilized. These 
estimations can later be merged into one network, to make the computations more efficient. 
The decision of which network to use, is based on the relative value of the maximum value of 
the short-term network, the more unambiguous the maximum is, the more probability is 
rendered to the selection of that network. The system is then benchmarked, on a cartpole and 
a gridworld environment. 
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1 Introduction 

Reinforcement learning is becoming a highly researched field in the domain of 
artificial intelligence, as more and more problems can be solved using it, due to 
increases of available computing power. 

In this paper, an economical, theory-based idea, is visited utilizing discounted 
rewards. The discounted rewards are considered to be similar to the Net Present 
Value, with a steeper discount meaning a more risk-evading policy. Two networks 
with different discount factors are applied, where the short-term network is 
exploited when the long-term system is indecisive, to ensure that the system gets 
rewards easier. This method can speed up or even improve learning, as it will be 
seen from the results herein. 

The first mentionable and the most well-known reinforcement algorithm was 
invented by Watkins [23]. However, in those days, reinforcement learning 
algorithms did not see a lot of real-world usage. This abundance was due to the 
requirement of the state space table, which required that all state-action value pairs 

mailto:paczolay@iit.bme.hu


G. Paczolay et al. NPV-DQN: Improving Value-based Reinforcement Learning 
  by Variable Discount Factor, with Control Applications 

‒ 176 ‒ 

had to be stored in memory, leading to an explosion of memory usage when the 
method is used for problems with large state spaces. This problem was remedied by 
the utilization of artificial neural networks: Mnih et al. created the DQN algorithm 
and have beaten human players in Atari games [10]. As convergence was a problem 
in previous, not well-performing trials of neural networks, this system also has some 
tricks to ensure convergence. First, to process motion, it used a couple of 
consequential frames together, it utilized an experience replay buffer to hold 
previous memories, and it utilized a target network. Van Hasselt et al. created the 
Double Q-learning algorithm, where two value functions are utilized, and each 
experience updates one of the value estimators, and the estimators then update the 
another one [21]. Wang et al. introduced the Dueling DQN architecture, where one 
estimator approximated the value of the state, while the other estimated the action 
advantage [22]. These two pieces of information were then aggregated to receive 
the Q values. Schaul et al. modified the experience replay buffer to hold also loss 
values, and the system prioritized the samples with higher loss values [19]. 
Bellemare et al. used the value approximation distribution as an output, and while 
only using the expected values gained from the distributions, it vastly outperformed 
the original DQN algorithm [1]. While the previous method had the disadvantage 
of giving a lower and upper bound to the processable Q values, this was corrected 
by Dabney at al. with Quantile Regression [2]. Hessel et al. combined many of the 
previously mentioned researches, leading to even better results, the name of this 
new version is called Rainbow-DQN [6]. Lavet et al. progressively increased the 
discount factor to reduce learning steps [3]. 

The full state is not always possible to observe, for example due to the imperfection 
of the sensors. In this case, the Markov Decision Process becomes a Partially 
Observable Markov Decision Process, and the solution of these systems requires 
memory. Hausknecht et al. created a solution to this problem by utilizing a Long 
Short-Term Memory (LSTM) on the inputs [5]. Li et al. merged Supervised 
Learning with Reinforcement Learning, with the former containing recurrent 
components, to deal with POMDPs [8]. 

Research on control can also be mentioned regarding the research as the proposed 
algorithm is also intended to solve control problems. Reda et al. designed a hybrid 
supervised- and reinforcement learning algorithm for vehicle automation [17]. 
Unguritu et al. modeled an anti-lock braking system mathematically and then 
designed a controller for that [20]. Zamfirache et al. combined an actor-critic 
algorithm with the Grey Wolf Optimizer algorithm, to eliminate the main 
drawbacks of the gradient descent algorithm [24]. Preitl et al. applied Iterative 
Feedback Tuning algorithms in the design of fuzzy control systems [16]. Haidegger 
et al. modeled a telesurgery system and suggested several control options for that 
[4]. Precup et al. presented a new framework for 2DOF controllers for integral 
processes of servo systems [15]. Németh created an enhanced cruise control system 
with Linear Parameter-Varying control and an optimization-based supervisor [11]. 
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The algorithm that we propose relies on having two action-value functions with 
different discount factors to introduce a conditional greediness to the DQN 
algorithm. This modification made it possible to improve upon the original 
algorithm, making our proposed algorithm favorable. In which our system is 
different from other systems is the economical background of the discount factor 
and the switching algorithm. 

The novelty of this work, is a double discount factor, with a specific action selector. 
The algorithm can be utilized for any reinforcement learning tasks that use discrete 
actions, such as control tasks, like high-level control of Unmanned Aerial Vehicles 
(UAV) or quantized exploration or patrol tasks, where it has the advantage with 
respect to non-learning control tasks that the a priori environment knowledge is not 
required. Otherwise, reinforcement learning is now widely utilized for Large 
Language Model (LLM) fine-tuning. 

In this paper, first the theoretical background is mentioned. Then, the theory of the 
proposed idea is mentioned, followed by the experiments conducted. In the end, the 
results are discussed and the conclusions of the research are made with the future 
work to be conducted later. 

2 Theoretical Background 

2.1 Markov Decision Processes 

Markov Decision process is a discrete-time framework for decision making 
optimization problems, also applicable for reinforcement learning. Figure 1 shows 
the basics of this framework [12]. In an MDP the following elements are defined: 
states that the environment can hold, actions the agent can choose, transition 
probabilities describing which the agent will be in when selecting a specific action 
in a specific state, and rewards to be optimized [7]. At each timestep, the agent starts 
at a specific state 𝑠𝑠, selects an action 𝑎𝑎 from the available action space, and based 
on the former two and the transition probability 𝑃𝑃, it gets into a new state 𝑠𝑠′ and 
receives a reward 𝑟𝑟. The Markov property is defined on the stochastic process if the 
following holds: 

𝑃𝑃(𝒂𝒂𝒕𝒕 = 𝒂𝒂|𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕−𝟏𝟏, . . . , 𝒔𝒔𝟎𝟎,𝒂𝒂𝟎𝟎) = 𝑃𝑃(𝒂𝒂𝒕𝒕 = 𝒂𝒂|𝒔𝒔𝒕𝒕) (1) 

This means that 𝑃𝑃, the probability of the transitions, only depend on the last state 
and the currently selected action, thus only these two are important in the decision 
of the following state [14]. This only holds for the traversal of the MDP, during 
training, other samples can also be used. 
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Policies are a mapping of each state s, to the actions a, and they are very important 
in Markov Decision Processes, as agents are trying to find the optimal policy. This 
optimality means that it minimalizes the sum of the discounted expected rewards, 
or the return. This discount means that agents tend to prefer a short-term reward to 
the longer-term ones, and a coefficient decides the discount product between each 
step. A solution of the policy would mean one that maximizes the reward reachable 
by the agent, and to find one, one has to find a fixed point of the Bellman equation 
via iterative search. The Bellman equation looks like the following: 

𝑣𝑣(𝒔𝒔,𝜋𝜋∗) = 𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎(𝑟𝑟(𝒔𝒔,𝒂𝒂) + 𝛾𝛾 ∑𝑠𝑠′ 𝒑𝒑(𝒔𝒔′|𝒔𝒔,𝒂𝒂)𝑣𝑣(𝒔𝒔′,𝜋𝜋∗)) (2) 

 
Figure 1 

Markov Decision Process 

In this equation. 𝑟𝑟(𝑠𝑠, 𝑎𝑎) is the reward rendered to the appropriate state-action pair, 
𝛾𝛾 is the discount factor favoring short-term rewards, and 𝑝𝑝(𝑠𝑠′|𝑠𝑠, 𝑎𝑎) is the transition 
probability function. It can be seen that if the agent knows 𝑃𝑃 and 𝑟𝑟, thus it is familiar 
enough with the environment, it can find the optimal values. 

2.2 Reinforcement Learning 

Reinforcement learning is one of the three subtypes of machine learning, next to 
supervised and unsupervised learning. It is one subtype of Markov Decision Process 
when the state transition probabilities or the payoff function is not known, thus, the 
Bellman optimality equation is not enough for a solution. In the reinforcement 
learning case, the agent interacts with the environment to get more familiar with it, 
it selects specific (random or policy-based) actions and receives appropriate 
rewards. 

There are two main kinds of reinforcement learning: one is called value-based and 
the other is policy-based. 
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In the case of value-based reinforcement learning, all states or state-action pairs are 
receiving a value. This value is rendered to the expected return from the state or by 
selecting a specific action in a state. The well-known value-based reinforcement 
learning method is Q-learning [23]. This algorithm renders values, the so-called Q-
values to all state-action pairs, which is, in fact, the expected return by selecting the 
action in the state. The Q-value update works by the following equation: 

𝑄𝑄(𝒔𝒔′,𝒂𝒂) ← (1 − 𝛼𝛼) ⋅ 𝑄𝑄(𝒔𝒔,𝒂𝒂) + 𝛼𝛼 ⋅ (𝑟𝑟 + 𝛾𝛾 ⋅ max
𝑎𝑎′

𝑄𝑄(𝒔𝒔′,𝒂𝒂′)) (3) 

where α is the learning rate and γ is the discount for the reward. The policy of the 
algorithm is to always select the action in a state that has the highest Q-value for 
the state-action pair. 

In policy-based reinforcement learning, the policy is a parametrized function, which 
has the states as inputs and the actions, or the distribution of the actions as output. 
The most utilized policy-based method is policy gradient, where a set of θ 
parameters characterize a policy π_θ, and the agent seeks to obtain the maximal 
expected reward for a specific trajectory, marked here by r(τ). We obtain the 
following payoff function: 

 𝐽𝐽(𝜽𝜽) = 𝐸𝐸𝜋𝜋𝜃𝜃[𝑟𝑟(𝜏𝜏)] (4) 

The process of tuning the parameters is performed with respect to the gradient of 
the payoff function: 

𝜽𝜽𝑘𝑘+1 = 𝜃𝜃𝑡𝑡 + 𝛼𝛼Δ𝐽𝐽(𝜽𝜽𝒕𝒕) (5) 

It is worth mentioning the advantages and disadvantages of policy-based 
reinforcement learning. They have smaller bias but higher variance compared to 
value-based algorithms. Due to this reason, policy-gradient methods find local 
optima better, but they find it harder to arrive in global optima. Due to the 
parametrization, they can also map action spaces that have action spaces that have 
high dimension count or are even continuous, and stochasticity is better handled. 

2.3 Deep Reinforcement Learning 

Whenever the decision making of a reinforcement learning agent is aided by a 
neural network, the problem domain becomes a deep reinforcement learning 
problem [13]. 

Neural networks are function approximators that consist of biologically-inspired 
building blocks, the neurons. They can be described by the following equation: 

𝑦𝑦 = 𝐴𝐴𝐴𝐴𝑡𝑡(∑ 𝒘𝒘𝒘𝒘 + 𝒃𝒃) (6) 

In this equation, x is the input vector, w contains the weights of the neural network, 
and the dot product is taken from the aforementioned two. b is the bias scalar, which 
ensures that the result of the block can be different from zero in the case of having 
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zero as an input. The bias element can also be described as a weight that is connected 
to the constant one scalar. The Act function is the activation function, that 
introduces nonlinearity to the system, without this, the system would only be able 
to solve linear problems. The selection of the activation function strongly depends 
on the problem type, the depth of the network and the precision-computing 
efficiency tradeoff. The w and b variables are trained by backpropagation, where 
the partial derivative errors of the inputs are calculated starting by a forward-
propagation to get the final error, then backpropagating the errors through the layers 
up until the input vector. 

The difference between traditional and deep reinforcement learning systems should 
also be mentioned. They have the advantage of the omission of the state space table, 
thus environments of huge, continuous or image-based action spaces can all be 
solved with them. However, deep reinforcement learning algorithms have worse 
convergence than traditional learning algorithms due to the fact that the output 
values are only approximations. This disadvantage is being solved by several tricks 
that makes these systems converge. 

2.4 DQN Algorithm 

The architecture of the traditional Q-learning method is not suitable for neural 
systems, due to the fact that all Q-value estimations need a forward pass on the 
neural network, making the system slow. This disadvantage is cured by the 
architecture of Deep Q-Network, where the output dimension is equal to the number 
of the available actions (making it only suitable for systems with discrete action 
spaces), and they each represent a Q-value estimation for the input state, making 
the system calculate all Q-values of the state in one forward inference.  
The pseudocode for the algorithm can be seen in Algorithm 1. 

As mentioned during the theoretical background introduction, deep reinforcement 
learning methods do not converge as easily as traditional ones, and several 
improvements has to be made for the algorithms to ensure convergence. One of 
these improvements is called the experience replay, which is a buffer that holds the 
last batch of tuples of states, selected actions, received rewards, the terminal state 
Booleans and the ’next states’, the states where the agent have transitioned after 
taking the action in the previous state, marked as (s, a, r, d, s'). During training, 
which can take place after either a specific number of episode steps of after an 
episode has ended, a batch of these tuples are sampled from the buffer, and this 
batch is used for the training. With this technique, earlier memories also appear in 
the training samples, making the samples more diverse and making the algorithm 
converge with higher probability. 

Another trick to make the system converge is called target model. During the 
learning phase, this is utilized for inference of the next states, and this model is 
similar to the original model but is updated with less frequency (called hard update) 
or with smaller steps (called soft update). 
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The algorithm works in the following way: first, the replay memory and the models 
are initialized. Then, the algorithm receives a state, for which it selects the action 
with the maximal Q-value of the state with an ϵ-greedy strategy. After taking that 
action and observing the reward and the next state, the corresponding elements are 
saved to the replay buffer. During training, a batch is sampled from the replay 
buffer, and the target Q-value is calculated based on (7), for which a gradient 
descent step is done. The target model is updated every C steps. 

 
Initialize replay memory 𝐷𝐷 to capacity 𝑁𝑁 
Initialize action-value function 𝑄𝑄 with random weights 𝜽𝜽 
Initialize target model 𝑄𝑄� with weights 𝜽𝜽− = 𝜽𝜽 
for episode = 1, 𝑀𝑀 do 

Initialize sequence 𝑠𝑠1 = {𝑥𝑥1} and preprocessed sequence Φ1 = Φ(𝑠𝑠1)   
for 𝑡𝑡 = 1, T do 

With probability 𝜖𝜖 select a random action 𝑎𝑎𝑡𝑡 
otherwise select 𝒂𝒂𝒕𝒕 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎𝑄𝑄(Φ(𝑠𝑠𝑡𝑡),𝒂𝒂;𝜽𝜽) 
Execute action 𝒂𝒂𝒕𝒕 and observe reward 𝑟𝑟𝑡𝑡  and image 𝒘𝒘𝒕𝒕+𝟏𝟏 
Set 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕,𝒘𝒘𝒕𝒕+𝟏𝟏 and preprocess Φ𝑡𝑡+1 = Φ(𝒔𝒔𝒕𝒕+𝟏𝟏) 
Store transition (Φ𝑡𝑡,𝒂𝒂𝒕𝒕, 𝑟𝑟𝑡𝑡 ,Φ𝑡𝑡+1) in D 

end for  
Sample random minibatch of transitions (Φ𝑗𝑗 ,𝒂𝒂𝒋𝒋, 𝑟𝑟𝑗𝑗 ,Φ𝑗𝑗+1) from 𝐷𝐷   

Set 𝑦𝑦 = �
𝑟𝑟𝑗𝑗 if episode terminates at step j + 1
𝑟𝑟𝑗𝑗 + 𝛾𝛾max

𝑑𝑑
𝑄𝑄�(Φ𝑗𝑗+1,𝒂𝒂′;𝜽𝜽−) otherwise,      (1) 

Perform a gradient descent step on (𝑦𝑦𝑗𝑗 − 𝑄𝑄(Φ𝑗𝑗 ,𝒂𝒂𝑗𝑗 ;𝜃𝜃))2 with respect to the network parameters 𝜽𝜽   
Every C steps reset target model 𝑄𝑄� = 𝑄𝑄 

end for  

Algorithm 1 
DQN 

3 The Proposed NPV-DQN Algorithm 

The idea for the proposed method of the paper comes from an economical 
background. In economy, the Net Present Value gives the value of an investment 
discounted to the money amount it would be valued today. The formula looks like 
the following:  

𝑁𝑁𝑃𝑃𝑁𝑁 = ∑∞
𝑖𝑖=0

𝐹𝐹𝑖𝑖
(1+𝑟𝑟𝑖𝑖)𝑖𝑖

 (8) 

where 𝐹𝐹𝑖𝑖 is the expense or return for the i-th time segment, and 𝑟𝑟𝑖𝑖 is the capital cost, 
which generally means the yearly cost (usually given in a percentage) of investing 
it in the investment given in the calculation instead of investing it in the stock market 
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(as an alternative that is always available) with risk equal to the risk of the 
aforementioned investment. Higher risk means higher capital cost; thus, the 
discount factor will be greater, leading to smaller values in the NPV. Thus, higher 
risk favors investments that have a high return in the first-time segments. 

The reason of the economical introduction in this section is due to the similarities 
with the discount factor utilized in the return of the value calculation for 
reinforcement learning. A state value is given by the following formula: 

𝑁𝑁𝑖𝑖 = ∑𝑖𝑖 𝛾𝛾
𝑖𝑖𝑅𝑅𝑖𝑖 (9) 

where γ is the discount factor, and 𝑅𝑅𝑖𝑖 is the reward for the i th step. 

The proposed idea is based on the fact that when the values of the long-term 
outcomes of a state based on the actions are undecided (meaning that there are 
multiple highest action-values) or close to each other, but the short-term outcomes 
are clearer, greediness can be introduced. This means that the agent favors actions 
that yield higher return on the short-term time span instead of the uncertain long-
term one. 

The idea can be realized by creating two similar action-value functions, and training 
them similarly (even on the same batch) but utilizing different γ discount factors 
during training. This will mean that the system will have a Q action-value function 
with higher γ, and a new Q' with a lower γ' discount rate. Based on the simulations, 
the best rate of γ' to choose is 0.7 to 0.8. Then, the system selects an action from 
either Q or Q', where the probability of selecting from Q' is equal to:  

𝑃𝑃 = (1 − 𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑟𝑟(𝑄𝑄)
𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑟𝑟(𝑄𝑄)+𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑟𝑟(𝑄𝑄′)

)𝑘𝑘 (10) 

where k is a variable positive coefficient (taken to be 2 in the simulations) and ratio 
is given by the following formula (M is just a function argument):  

𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑟𝑟(𝑀𝑀) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑑𝑑(𝑀𝑀)−𝑚𝑚𝑖𝑖𝑠𝑠(𝑀𝑀)
𝑚𝑚𝑎𝑎𝑚𝑚(𝑀𝑀)−𝑚𝑚𝑖𝑖𝑠𝑠(𝑀𝑀)

 (11) 

where second yields the second highest value in a list (in this case, the second 
highest action value). 

As the usage and the training takes place at the same time elements of the system, 
the two action-value functions can be realized even with one network, saving the 
time of a second inference. Note that due to benchmarking reasons this was not done 
in the simulations of the paper, as in that case, the neuron count would not match 
the original DQN algorithm. 

Finally, let us look at the proposition that in some cases, the system with a lower-
valued discount rate converges faster than higher-valued one. First, define the 
contraction operator H for 𝑞𝑞:𝒳𝒳 × 𝒜𝒜 ⟶ ℝ, as in [9] and [18]: 

(𝐻𝐻𝑞𝑞)(𝒘𝒘,𝒂𝒂) = ∑𝑦𝑦∈𝒳𝒳 𝑃𝑃𝛼𝛼(𝑥𝑥, 𝑦𝑦)[𝑟𝑟(𝒘𝒘,𝒂𝒂,𝒚𝒚) + 𝛾𝛾 max
𝑏𝑏∈𝒜𝒜

 𝑞𝑞(𝒚𝒚,𝒃𝒃) (12) 

And H’ as H in (12), just γ' instead of γ. 
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Proposition 1. If 0 < 𝛾𝛾′ < 𝛾𝛾 ≤ 1, and the reward function is greater or equal to 0, 
then the variance of the system with γ' is smaller that the one with γ , that is, 

𝑣𝑣𝑎𝑎𝑟𝑟[𝐹𝐹′𝑡𝑡(𝒘𝒘)|ℱ] ≤ 𝑣𝑣𝑎𝑎𝑟𝑟[𝐹𝐹𝑡𝑡(𝒘𝒘)|ℱ] (13) 

Proof.  

𝑣𝑣𝑎𝑎𝑟𝑟[𝐹𝐹𝑡𝑡(𝒘𝒘)|ℱ] =  

= 𝔼𝔼[(𝑟𝑟(𝒘𝒘,𝒂𝒂,𝑋𝑋(𝒘𝒘.𝒂𝒂)) + 𝛾𝛾 max
𝑏𝑏∈𝒜𝒜

𝑄𝑄𝑡𝑡(𝒚𝒚,𝒃𝒃) − 𝑄𝑄∗(𝒘𝒘,𝒂𝒂) −𝐻𝐻𝑄𝑄𝑡𝑡(𝒘𝒘,𝒂𝒂) + 𝑄𝑄∗(𝒘𝒘,𝒂𝒂))2] =  

= 𝔼𝔼[((𝑟𝑟(𝒘𝒘,𝒂𝒂,𝑋𝑋(𝒘𝒘,𝒂𝒂)) + 𝛾𝛾 max
𝑏𝑏∈𝒜𝒜

𝑄𝑄𝑡𝑡(𝒘𝒘,𝒃𝒃) −𝐻𝐻𝑄𝑄𝑡𝑡(𝒘𝒘,𝒂𝒂))2] =  

= 𝑣𝑣𝑎𝑎𝑟𝑟[𝑟𝑟(𝒘𝒘,𝒂𝒂,𝑋𝑋(𝒘𝒘,𝒂𝒂)) + 𝛾𝛾 max 
𝑏𝑏∈𝒜𝒜

𝑄𝑄𝑡𝑡(𝒘𝒘,𝒃𝒃)|ℱ𝑡𝑡]  

Similarly,  

𝑣𝑣𝑎𝑎𝑟𝑟[𝐹𝐹′𝑡𝑡(𝑥𝑥)|ℱ] = 𝑣𝑣𝑎𝑎𝑟𝑟[𝑟𝑟(𝒘𝒘,𝒂𝒂,𝑋𝑋(𝒘𝒘,𝒂𝒂)) + 𝛾𝛾′ max
𝑏𝑏∈𝒜𝒜

𝑄𝑄𝑡𝑡(𝒘𝒘,𝒃𝒃)|ℱ𝑡𝑡]  

The optimal value function is like the following:  

𝑁𝑁∗(𝑥𝑥) = max
𝒜𝒜𝑡𝑡

𝔼𝔼[∑∞
𝑡𝑡=0 𝛾𝛾𝑡𝑡(𝑅𝑅(𝑋𝑋𝑡𝑡 ,𝐴𝐴𝑡𝑡))|𝑋𝑋0 = 𝑥𝑥] (2) 

Due to the limitation we put in that limits the reward function to be 𝑟𝑟 ≥ 0, or in  
(14), 𝑅𝑅(𝑋𝑋𝑡𝑡 ,𝐴𝐴𝑡𝑡) ≥ 0, we get that the value function 𝑁𝑁∗(𝑥𝑥) ≥ 0 

As the optimal Q-function is defined as the following:  

𝑄𝑄∗(𝒘𝒘,𝒂𝒂) = ∑𝑦𝑦∈𝒳𝒳 𝑃𝑃𝛼𝛼(𝒘𝒘,𝒚𝒚)[𝑟𝑟(𝒘𝒘,𝒂𝒂,𝒚𝒚) + 𝛾𝛾(𝑁𝑁∗(𝑦𝑦)]  

and 𝑃𝑃 is a probability, it can be seen that 𝑄𝑄∗(𝑥𝑥, 𝑎𝑎) ≥ 0. 

It can be concluded that if arrays 𝑌𝑌 ≥ 0 and 𝑍𝑍 ≥ 0 and the scalar 0 ≤ 𝛽𝛽 ≤ 1, then  

𝑣𝑣𝑎𝑎𝑟𝑟[𝑌𝑌 + 𝛽𝛽𝑍𝑍] ≤ 𝑣𝑣𝑎𝑎𝑟𝑟[𝑌𝑌 + 𝑍𝑍] (3) 

 and from that: 

𝑣𝑣𝑎𝑎𝑟𝑟 �𝑟𝑟�𝒘𝒘,𝒂𝒂,𝑋𝑋(𝒘𝒘,𝒂𝒂)� + 𝛾𝛾′maxQt
𝑏𝑏∈𝒜𝒜

(𝒘𝒘,𝒃𝒃)�ℱ𝑡𝑡� ≤  

≤ 𝑣𝑣𝑎𝑎𝑟𝑟[𝑟𝑟(𝒘𝒘,𝒂𝒂,𝑋𝑋(𝒘𝒘,𝒂𝒂)) + 𝛾𝛾max
𝑏𝑏∈𝒜𝒜

𝑄𝑄𝑡𝑡(𝒘𝒘,𝒃𝒃)|ℱ𝑡𝑡] (4) 

which means that our initial statement is true, so: 

𝑣𝑣𝑎𝑎𝑟𝑟[𝐹𝐹′𝑡𝑡(𝑥𝑥)|ℱ] ≤ 𝑣𝑣𝑎𝑎𝑟𝑟[𝐹𝐹𝑡𝑡(𝑥𝑥)|ℱ] (5) 

□ 

Proposition 2. If 0 < 𝛾𝛾′ < 𝛾𝛾 ≤ 1, and the reward function is less or equal to 0, then 
(13) holds.  
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Proof. In this case, the reward function and the optimal Q-function are both less or 
equal to 0. The variance of the negated array is equal to the variance of the original 
array, so: 

𝑣𝑣𝑎𝑎𝑟𝑟[−𝑌𝑌 − 𝛽𝛽𝑍𝑍] = 𝑣𝑣𝑎𝑎𝑟𝑟[𝑌𝑌 + 𝛽𝛽𝑍𝑍] ≤ 𝑣𝑣𝑎𝑎𝑟𝑟[𝑌𝑌 + 𝑍𝑍] = 𝑣𝑣𝑎𝑎𝑟𝑟[−𝑌𝑌 − 𝑍𝑍] (18) 

and from this: 

𝑣𝑣𝑎𝑎𝑟𝑟[𝐹𝐹′𝑡𝑡(𝑥𝑥)|ℱ] ≤ 𝑣𝑣𝑎𝑎𝑟𝑟[𝐹𝐹𝑡𝑡(𝑥𝑥)|ℱ] (19) 

holds.  

4 Tests and Results 

To check the usability in different conditions, the system was benchmarked on two 
distinct testbeds. The pseudocode of the proposed algorithm can be seen in 
Algorithm 2. The computational complexity of the algorithm, just like for regular 
neural networks, is 𝑂𝑂(𝑛𝑛4), where n is the number of neurons of the network. 

The stability of the proposed algorithm is the same as the stability of DQN, which 
is stable but not in all situations. The optimality is also the same as for DQN 
algorithms, which are converging to an optimal solution. 

The first testbed was a cartpole environment with discrete action space. Its 
observation space holds four elements: a position and a velocity element of the cart, 
and the angle and angular velocity of the pole. The action space has two elements, 
moving the cart to the two ways along the x axis. The reward is +1 for each step 
when the pole is in an acceptable region (such that it does not fall), which is when 
the pole angle is smaller than ±12^∘ and the cart position did not leave the ±2.4 
region. Given this, the goal is to maximize the time of the episodes. The termination 
step is the 500th step of the episode. Figure 2 shows the cartpole experiment. 

 
Figure 2 

The cartpole environment 
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The second testbed was a gridworld environment. In this setting, the agent always 
starts at the [0,0] position, and the goal’s position is at [±3,±3] (so, it can also be 4 
places), starting at [+3,+3]. Then, if reached, it moves clockwise to the next 
position. The reward is the negative of the Euclidean norm between the agent and 

the current goal, that is −��𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑔𝑔�
2 + �𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑔𝑔�

2
, where a means agent and g 

means goal. This negative reward should be maximized. The agent’s action space 
consists of the four directions of going up, left, down and right. The episode is 
terminated after 1000 steps or after 20 "goals" are collected. This environment can 
be thought of as it would be a control problem for patrol. 

For both tests, the system was run for 100,000 steps and it was restarted 10 times. 
The replay memory had the size of 10,000, the higher gamma value was taken to be 
0.99. The learning rate was 1e-4, the activation function was ReLU and the batch 
size was 32. The lower gamma value of the proposed network was selected to be 
0.7 in the first experiment, and it was 0.7 and 0.8 for the second one. All the 
hyperparameters are selected to provide a good balance between convergence and 
learning speed. 

 
Figure 3 

The gridworld environment 

Initialize replay memory 𝐷𝐷 to capacity 𝑁𝑁 
Initialize action-value function 𝑄𝑄 with random weights 𝜽𝜽 
Initialize target model 𝑄𝑄� with weights 𝜽𝜽− = 𝜽𝜽 
Initialize action-value function 𝑄𝑄′ with random weights 𝜽𝜽′ 
Initialize target model 𝑄𝑄′�  with weights 𝜽𝜽′− = 𝜽𝜽′ 
for  episode = 1, 𝑀𝑀 do 

Initialize sequence 𝑠𝑠1 = {𝑥𝑥1} and preprocessed sequence Φ1 = Φ(𝑠𝑠1)  
for 𝑡𝑡 = 1, T do  

With probability 𝜖𝜖 select a random action 𝑎𝑎𝑡𝑡 
otherwise:  
if 𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑟𝑟(𝑄𝑄′) < 𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑟𝑟(𝑄𝑄) (based on (11)) then 

calculate:   
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𝑃𝑃 = (1 − 𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑟𝑟(𝑄𝑄)
𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑟𝑟(𝑄𝑄)+𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑟𝑟(𝑄𝑄′)

)𝑘𝑘 (6) 

with probability 𝑃𝑃 select action 𝒂𝒂𝒕𝒕 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎𝑄𝑄′(Φ(𝒔𝒔𝒕𝒕),𝒂𝒂;𝜽𝜽′) 
otherwise select 𝒂𝒂𝒕𝒕 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎𝑄𝑄(Φ(𝒔𝒔𝒕𝒕),𝑎𝑎;𝜽𝜽)  

else 
select 𝒂𝒂𝒕𝒕 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎𝑄𝑄(Φ(𝑠𝑠𝑡𝑡),𝑎𝑎;𝜽𝜽) 

end if  
Execute action 𝒂𝒂𝒕𝒕 and observe reward 𝑟𝑟𝑡𝑡  and image 𝒘𝒘𝒕𝒕+𝟏𝟏 
Set 𝑠𝑠𝑡𝑡+1 = 𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕,𝒘𝒘𝒕𝒕+𝟏𝟏 and preprocess Φ𝑡𝑡+1 = Φ(𝒔𝒔𝒕𝒕+𝟏𝟏) 
Store transition (Φ𝑡𝑡,𝒂𝒂𝒕𝒕, 𝑟𝑟𝑡𝑡 ,Φ𝑡𝑡+1) in D 

end for 
Sample random minibatch of transitions (Φ𝑗𝑗 ,𝒂𝒂𝒋𝒋, 𝑟𝑟𝑗𝑗 ,Φ𝑗𝑗+1) from 𝐷𝐷   

Set 𝑦𝑦 = �
𝑟𝑟𝑗𝑗 if episode terminates at step j + 1
𝑟𝑟𝑗𝑗 + 𝛾𝛾max

𝑑𝑑
𝑄𝑄�(Φ𝑗𝑗+1,𝒂𝒂′;𝜽𝜽−) otherwise  

 Perform a gradient descent step on (𝑦𝑦𝑗𝑗 − 𝑄𝑄(Φ𝑗𝑗 ,𝒂𝒂𝒋𝒋;𝜽𝜽))2 with respect to the network parameters 𝜽𝜽 

Set 𝑦𝑦′ = �
𝑟𝑟𝑗𝑗 if episode terminates at step j + 1
𝑟𝑟𝑗𝑗 + 𝛾𝛾′max

𝑑𝑑
𝑄𝑄′� (Φ𝑗𝑗+1,𝒂𝒂′;𝜽𝜽′−) otherwise  

Perform a gradient descent step on (𝑦𝑦′𝑗𝑗 − 𝑄𝑄′(Φ𝑗𝑗 ,𝒂𝒂𝒋𝒋;𝜽𝜽′))2 with respect to the network parameters 
𝜽𝜽′ 
Every C steps reset target model 𝑄𝑄� = 𝑄𝑄 
Every C steps reset target model 𝑄𝑄′� = 𝑄𝑄′ 

end for 

Algorithm 2 
NPV-DQN 

Now let us discuss the results of the previous tests. Figure 4 shows the results of the 
cartpole experiment. It can be seen that the sum of the rewards is getting gradually 
higher after the 60th episode, leading to a 60% increase over the original DQN 
algorithm, even despite a little performance decrease after the 150th episode. Figures 
5 and 6, show the results for the gridworld experiment, the former showing the first 
15 episodes, while the latter showing the episodes from the 15th to the 50th. It is seen 
that the proposed algorithm is a faster learner, leading to higher reward values from 
earlier episodes, and reaching the final state 10 episodes earlier than the original 
DQN algorithm, after 35 episodes instead of 45. It also shows that the γ selected at 
0.7 and 0.8 performs good enough as a second discount factor. However, at the 15th 
episode, the gamma of 0.8 is a bit behind the original one, but before and after that 
episode it is clearly better. 

Conclusions 

As it can be seen from the results, the proposed algorithm surpasses the original 
DQN algorithm, by a mentionable margin and also in regards of learning speed. 
Due to this, it is a worthwhile addition to the previous action-value based system 
variants and the proposed idea can be mixed with other augmentations of the DQN 
system. 



Acta Polytechnica Hungarica Vol. 21, No. 11, 2024 

‒ 187 ‒ 

There are, however, some ways to continue this research. As mentioned earlier, the 
mixing of the proposed method and other DQN variants should be considered. 
Methodologies to reduce computing power, by using one network, instead of two, 
can also be implemented. In addition, multiagent settings and utilizing short-term 
rewards should be explored. It could also be valuable to research how well this idea 
fits with actor-critic methods. 

 
Figure 4 

Results for the cartpole environment  

 
Figure 5 

Results of the first 15 episodes of the gridworld environment 
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Figure 6 

Results of the 15th to the 50th episodes of the gridworld environment 
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