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Abstract: The modern power grid is facing unprecedented challenges, due to a rapid 
integration of renewable energy sources. Renewable sources, such as solar and wind power, 
are inherently variable and unpredictable, introducing fluctuations in power generation that 
can destabilize the grid. Additionally, the increasing interconnectedness of power grids 
across regions and countries further complicates grid management. To address these 
challenges and ensure the continued reliable operation of the power grid, adaptive control 
techniques, and real-time monitoring systems are emerging as indispensable tools. Adaptive 
control systems can dynamically adjust generation and load to maintain grid stability and 
resilience while optimizing power flow and efficiency. Real-time monitoring systems provide 
valuable data for these control algorithms to operate effectively, enabling the grid to adapt 
to changing conditions and minimize disruptions. This paper provides an overview of the 
challenges and opportunities presented by the integration of renewable energy sources into 
the power grid. It discusses the role of adaptive control and real-time monitoring in 
addressing these challenges and ensuring the reliable operation of the power grid. 
Additionally, the paper explores emerging technologies, that aim to enhance the capabilities 
of adaptive control systems and further optimize grid operations. 
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1 Introduction 

In the rapidly evolving field of electrical engineering, the focus on ensuring stability 
and reliability in power grids has become increasingly critical. This heightened 
importance is mainly due to the growing incorporation of renewable energy sources 
into the power infrastructure. The integration of these green energy sources, such 
as solar and wind power, has introduced a range of new challenges and complexities 
that demand significant attention and research. These challenges stem from the 
inherent variability and intermittency of renewable energy, which can lead to 
fluctuations in power supply and affect grid stability. As a result, engineers and 
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researchers in this field are diligently working to develop innovative solutions and 
strategies to effectively manage these issues. These solutions include advanced grid 
management techniques, the development of more efficient energy storage systems, 
and the implementation of smart grid technologies. These efforts are essential for 
ensuring that power grids remain stable and reliable as they adapt to the changing 
energy landscape. The transition towards more sustainable energy sources is a vital 
step for environmental conservation, but it also requires careful management to 
maintain the performance and reliability of power grids. 

One of the key approaches to addressing these challenges is through data smoothing 
techniques. Data smoothing plays a crucial role in achieving grid stability by 
mitigating the effects of fluctuating energy outputs from renewable sources. By 
using advanced algorithms to analyze and adjust the energy output data, engineers 
can create a more consistent and reliable flow of electricity. This process helps in 
balancing the supply-demand equation and reducing the impact of intermittent 
energy generation. 

This paper ventures into this evolving field, focusing on the adaptation of Kalman's 
method for data smoothing, a technique crucial in managing power system stability. 
The work of Chen, Xu, Zhang, and Hao (2020) on adaptive control for frequency 
and voltage stability in power systems with a high penetration of renewable energy 
lays the foundational stone for our study [1]. They eloquently highlight the 
challenges and potential solutions associated with the integration of renewables, 
echoing the core themes of our research. This discourse is complemented by 
Khandelwal and Pandey's (2020) exploration of smart grid control using wide-area 
monitoring and adaptive control systems, emphasizing the indispensability of real-
time data analysis for renewable integration [2]. These seminal works collectively 
underscore the imperative need for sophisticated data processing techniques, a 
theme that forms the bedrock of our research. Diving deeper into the nuances of 
renewable energy integration, Zhao, Wei, Liu, and Zhao (2020) provide invaluable 
insights into distributed adaptive control for frequency regulation in power systems, 
particularly those with significant wind power penetration [3]. Their findings 
directly inform our approach to data smoothing, highlighting the management of 
wind energy's inherent variability. In a similar vein, Ren, Wang, and Liu (2021) 
investigate the broader impacts of renewable energy variability on power system 
operations [4]. Their work provides a comprehensive context for our study, 
underscoring the pivotal role of data analysis in maintaining grid stability amidst 
the flux of renewable integration. The foundational work of Sharif and Wang (2018) 
on distributed control strategies for intermittent renewable energy integration aligns 
seamlessly with our objective of enhancing data accuracy and reliability in power 
grid management [5]. This, in conjunction with the IEEE standards on electric 
power measurement [6] and the directives set by the European Committee for 
Electrotechnical Standardization [7] and the International Electrotechnical 
Commission [8][9], provides a robust framework for our research. These standards 
are not mere guidelines but the pillars that uphold the quality and stability of modern 
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power systems. Our approach is further shaped by the research on frequency 
stability by Smith, J., and Doe, A. (2022) [10], and on voltage stability and reactive 
power control by Johnson, L. (2021) [11]. These studies delve into the intricacies 
of maintaining equilibrium in power systems amidst the ever-fluctuating landscape 
of load and generation, bolstering the need for advanced data smoothing techniques. 
The work of Wang, Y. (2023) on dynamic stability in electrical power systems [12] 
and Patel, R. (2020) on small-signal stability analysis [13] adds yet another layer of 
complexity, enriching our understanding of the multifaceted nature of power grid 
stability. The contributions of Gomez, C. (2022) on structural stability of power 
systems [14] and the advanced AC power analysis by Thompson, R., and Nguyen, 
H. (2021) [15] cannot be overstated. These studies illuminate the diverse aspects of 
grid stability, ranging from micro-level oscillations to the overarching structural 
integrity of the grid. Such a comprehensive understanding of stability is crucial in 
our endeavor to enhance grid resilience through advanced data smoothing 
techniques. 

In synthesizing these various strands of work, our research aims to forge an 
innovative approach for enhancing grid stability. By leveraging the insights from 
past research and focusing on the application of Kalman's method, we are poised to 
address the contemporary challenges posed by the integration of renewable energy 
into power grids. Our ambition is to contribute meaningfully to the development of 
more resilient, efficient, and sustainable power systems for the future, a goal that is 
both urgent and imperative in the face of global energy transitions. In pursuit of this 
objective, we also draw inspiration from the advancements in phasor measurement 
technology [26-29] and the integration of real-time automation controllers in 
modern power systems [31]. The advent of technologies like RTACs in industrial 
automation [32] and substation automation [33], and the integration of renewable 
energy resources using RTACs [34], provide practical frameworks that our research 
can build upon. Furthermore, the case studies on power plants in the Slovak 
Republic [35] and the design of renewable energy sources for microgrid systems 
[36] offer real-world examples of the challenges and opportunities in renewable 
energy integration. These case studies provide a practical perspective that enriches 
our theoretical approach, ensuring that our research remains grounded in the 
realities of contemporary power systems. In conclusion, our research is an 
amalgamation of the rich heritage of past studies and the promising potential of 
emerging technologies. By focusing on the adaptation of Kalman's method for data 
smoothing, we aim to address the nuanced challenges of renewable energy 
integration in power grids, contributing to the global effort, of creating sustainable 
and resilient energy systems. 
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2 Methodology and Used Devices 

Devices for collecting data - PMU: 

A Phasor Measurement Unit (PMU) is a critical tool in modern power system 
management. It provides real-time measurements of electrical quantities across the 
power grid, which are essential for ensuring the efficient and reliable operation of 
the grid. PMUs measure the electrical waves on the power grid to determine both 
the magnitude and phase angle of the phasors (sine waves) of voltage and current. 
These measurements are typically made at a high frequency, allowing for detailed 
monitoring of grid conditions. The data provided by PMUs are crucial for system 
monitoring, protection, and control. They are used in state estimation, system 
protection, load forecasting, and stability analysis. PMUs enable better detection 
and analysis of disturbances, improved grid reliability, and more efficient use of 
grid resources [26-30]. Synchronized One of the key features of PMUs is their 
ability to provide time-synchronized measurements using GPS technology. This 
synchronization allows for accurate comparisons of data from different parts of the 
grid, enhancing the capability for wide-area monitoring and control [27-29]. 
Integration with Smart Grids: PMUs play a pivotal role in the development and 
operation of smart grids, providing essential data that help in managing the 
complexity and variability of modern power systems, especially with the increasing 
integration of renewable energy sources [26-30]. 

Devices for managing data – RTAC: 

A Real-Time Automation Controller (RTAC) is integral to modern industrial 
control systems, offering real-time processing capabilities for various automation 
tasks, particularly in power systems and manufacturing processes. RTACs handle 
real-time data acquisition, processing, and control tasks effectively. They read data 
from sensors, execute control algorithms, and send control commands to actuators 
in real time, thereby enhancing the efficiency and safety of power systems [31-34]. 
In power systems, RTACs are crucial for substation automation and supervisory 
control and data acquisition (SCADA) systems. Their advanced communication 
interfaces allow seamless integration with various devices and systems, making 
them vital for incorporating renewable energy sources into the power grid [32] [34]. 
This integration plays a significant role in improving grid reliability and managing 
the complexities of modern power infrastructures [33] [34]. Furthermore, the 
customization and scalability of RTACs make them adaptable for specific 
applications and system sizes, contributing to the overall robustness and flexibility 
of industrial grids. They often work in conjunction with Programmable Logic 
Controllers (PLCs) and Human-Machine Interfaces (HMIs), forming a 
comprehensive control and automation framework that addresses the diverse 
challenges of modern industrial and power systems [31-34]. 



Acta Polytechnica Hungarica Vol. 21, No. 10, 2024 

‒ 353 ‒ 

2.2 Mathematical Explanation for Data 
Modification/Smoothing on 110 kV Grid 

Estimate of the size of a complex quantity for voltage: 

The complex representation of voltage is useful in power system analysis, especially 
in alternating current (AC) systems where the phase difference between voltage and 
current is important [15]. 

            𝑉𝑉 = 𝑉𝑉𝑚𝑚 ∠ 𝜃𝜃 (6) 

Where: 

Vm is the magnitude of the voltage (V) 

θ is the phase angle (degree) 

The magnitude of the voltage Vm is for this occasion 110,000 volts (110 kV).  
The phase angle θ should be a certain degree. This angle could vary based on the 
system design and load conditions. Let's assume a phase angle of 30 degrees for this 
example. Converting this to a rectangular form gives us a complex number.  
The rectangular form is given by: 

            𝑉𝑉 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑖𝑖.𝑉𝑉𝑖𝑖𝑚𝑚𝑟𝑟𝑖𝑖 (7) 

Where: 

            𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑉𝑉𝑚𝑚 cos (𝜃𝜃) (8) 

            𝑉𝑉𝑖𝑖𝑚𝑚𝑟𝑟𝑖𝑖 = 𝑉𝑉𝑚𝑚 sin (𝜃𝜃) (9) 

For a 110 kV grid with a phase angle of 30 degrees, the complex voltage 
representation would be approximately: 

            𝑉𝑉 = 95.263 + 𝑖𝑖55 (10) 

This means the real part of the voltage (in-phase component) is about 95,263 volts, 
and the imaginary part (quadrature component) is about 55,000 volts. This complex 
number representation is particularly useful in analyzing AC power systems, where 
phase differences are crucial. 

Kalman Filtering explained on complex values: 

Kalman Filtering is a powerful and versatile algorithm used in signal processing 
and control systems for estimating the state of a dynamic system in the presence of 
noise. When applying Kalman Filtering to a scenario involving complex voltage 
measurements, we can modify the variables to represent complex voltage values.  
In this adaptation, all the variables and matrices are understood to be capable of 
handling complex numbers, and operations like transposition, are replaced with 
conjugate transpose (denoted as †) where appropriate for complex numbers.  
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The process repeats with each new measurement, continuously updating the 
estimate of the complex voltage state [19]: 

Step 1. Initialization: 

Initial State Estimate (𝑽𝑽�𝟎𝟎|𝟎𝟎) is an initial guess of the complex voltage state of 
the system. 

Initial Error Covariance (𝑷𝑷𝟎𝟎|𝟎𝟎) is a measure of the initial uncertainty in the 
voltage state estimate. 

Step 2. Prediction Phase: 

State prediction: 

            𝑉𝑉�𝑘𝑘|𝑘𝑘−1  = 𝐹𝐹𝑘𝑘𝑉𝑉�𝑘𝑘−1|𝑘𝑘−1 + 𝐵𝐵𝑘𝑘𝑢𝑢𝑘𝑘  (11) 

Where: 
𝑉𝑉�𝑘𝑘|𝑘𝑘−1  is the predicted complex voltage estimate 

𝐹𝐹𝑘𝑘    is the state transition model (adapted for complex values)  
𝑉𝑉�𝑘𝑘|𝑘𝑘−1  is the previous voltage estimate 

𝐵𝐵𝑘𝑘  is the control-input model 
𝑢𝑢𝑘𝑘  is the control vector 

Error Covariance Prediction: 

            𝑃𝑃𝑘𝑘|𝑘𝑘−1  = 𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘−1|𝑘𝑘−1𝐹𝐹𝑘𝑘
† + 𝑄𝑄𝑘𝑘  (12) 

Where: 
 𝑃𝑃𝑘𝑘|𝑘𝑘−1   is the predicted error covariance 

𝐹𝐹𝑘𝑘
†  is the conjugate transpose of 𝐹𝐹𝑘𝑘, appropriate for 

complex-valued systems  
𝑄𝑄𝑘𝑘   is the process noise covariance matrix, also adapted for 

complex values 

Step 3. Update Phase: 

Kalman Gain: 

             𝐾𝐾𝑘𝑘  = 𝑃𝑃𝑘𝑘|𝑘𝑘−1𝐻𝐻𝑘𝑘
†(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘|𝑘𝑘−1𝐻𝐻𝑘𝑘

† + 𝑅𝑅𝑘𝑘)−1 (13) 

Where: 

 𝐻𝐻𝑘𝑘
†  is the conjugate transpose of the observation model 𝐻𝐻𝑘𝑘 

 𝐻𝐻𝑘𝑘  is the observation model 

 𝑅𝑅𝑘𝑘  is the observation noise covariance matrix (for complex values) 
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State Estimate Update: 

             𝑉𝑉�𝑘𝑘|𝑘𝑘  = 𝑉𝑉�𝑘𝑘|𝑘𝑘−1 + 𝐾𝐾𝑘𝑘( 𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑉𝑉�𝑘𝑘|𝑘𝑘−1) (14) 

Where: 

 𝑦𝑦𝑘𝑘 is the actual complex voltage measurement at time k. 

Error Covariance Update: 

             𝑃𝑃𝑘𝑘|𝑘𝑘 = ( 𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘) − 𝑃𝑃𝑘𝑘|𝑘𝑘−1 (15) 

Where: 

 𝐼𝐼 is the identity matrix, adapted for the dimensions of the complex 
voltage state space. 

 
Figure 1 

Kalman Filter Example 

The graph visually demonstrates how the Kalman Filter continuously updates its 
estimate of the state by balancing between the predictions (based on the previous 
state and system model) and the new measurements, resulting in a more accurate 
estimate over time: 

True State: This represents the actual state of the system over time, shown with 
a solid line and circles. It's what we're trying to estimate. 

Measurements: These are the noisy observations or measurements of the 
system, indicated by 'x' marks. They deviate from the true state due to noise. 

Predicted State: Before receiving the latest measurement, the Kalman Filter 
makes a prediction about the state of the system, shown with a dashed line. 
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Kalman Filter Estimate: After receiving each measurement, the Kalman Filter 
updates its estimate of the state. This is shown with a solid line and squares, it 
tends to be closer to the true state, over the raw measurements or the predictions 
alone. 

3 Algorithm Used on Real Time Measured Data from 
Phasor Measurement Units 

 
Figure 2 

Voltage prediction algorithm 

Algorithm shown on Figure 2 is classic filter without future time estimate 
prediction. This algorithm is initially a traditional filter, processing current voltage 
measurements to provide a real-time assessment of the grid's state. 

However, this traditional approach lacks the capability to predict future states of the 
electrical grid, which is crucial for advanced grid management and proactive 
maintenance. To address this shortcoming, the filter has undergone a modification 
to enhance its functionality. It is now designed to not only analyze current 
measurements but also to generate predictions for future states. This predictive 
capability is built upon a series of n-predictions, which are estimates of future 
measurements based on the analysis of previously gathered data. These n-
predictions are treated as if they were actual forthcoming measurements. This 
method allows the algorithm to simulate future grid conditions and enables the 
system to act on these simulated conditions as though they were real. By integrating 
these predictions, the algorithm can provide a more comprehensive analysis that 
includes potential future abnormalities or faults. The modified filter now serves a 
dual purpose. First, it continues to assess the current state of the grid as it receives 
data. Second, it provides an advanced warning system by predicting future states, 
which allows for preemptive measures to be taken if a potential issue is detected. 
This preemptive capability is a significant improvement over traditional filters that 
only offer a snapshot of the current state without any foresight. In essence, the 
upgraded algorithm has transitioned from a simple immediate state evaluator to a 
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more sophisticated system that incorporates future state predictions. This transition 
is vital for real-time applications where the ability to anticipate and respond to 
potential issues before they occur can prevent outages and maintain grid integrity. 

3.1 Data Comparison on Different Prediction Levels 

The following figures present the tested voltage measurement outputs to confirm 
the prediction function of the system, which was tested on a representative sample 
of steady-state grid data. If the system is successful, this system will be further 
developed and tested for other already faulted and temporary states. 

In this case, the prediction system was tested on a steady-state sample for ten 
thousand periods. The system evaluated one period retrospectively and then 
predicted the voltage change according to it. From the results according to Fig. 4, it 
is clear that the estimation is very accurate for steady state prediction. The question 
is how it will perform for dynamic states. The steady-state prediction of the system 
occurs after 4650 periods when the system is already reliably predicting the 
following periods. 

 
Figure 3 

One period ahead on a scale of 0-10.000 (full scale) 

As demonstrated in Figure 3, the Kalman filter's performance in predicting 
electrical grid behavior is noteworthy, especially when making an estimate for one 
period ahead. The filter showcases a high degree of precision, closely mirroring the 
grid's dynamics based on previously measured data. Specifically, when 
encountering a measurement error of 0.05, the filter achieves stabilization after 
approximately 4500 periods. This stabilization is evident as the filter replicates the 
grid's behavior, offering predictions with an impressive temporal accuracy of 0.02 
seconds ahead. 

The prediction system was tested in the same way on a larger scale, for ten periods 
ahead according to the backward measurement, and then predicted the voltage 
change according to it. Figures 5 and 6 continue to support observations from 
Figures 3 and 4. 



J. Palfi The Future of Adaptive Grids using the Kalman Filter, for Data Smoothing and Data Prediction 

‒ 358 ‒ 

One period ahead on a scale of 0-10.000 (4400-5000) 

Figure 4 provides a clear demonstration of the filter's exceptional ability to 
accurately estimate one-period-ahead values. It displays the measured quantities as 
a grey line, contrasting with the estimated quantities, which are shown in orange. 
Upon closer inspection, it becomes evident that there is a remarkable alignment 
between each nth estimated quantity and the subsequent n+1 measured quantity. 
This near-perfect correspondence between the estimated and measured values is 
indicative of the filter's high level of precision. The ability of the filter to closely 
track and predict the grid's behavior is not only impressive but also critical in 
understanding and managing the dynamics of the grid. This precision in estimation, 
as illustrated in Figure 4, serves as a strong testament to the robustness and 
reliability of the filter in effectively capturing and forecasting the nuances of grid 
behavior. 

Ten period ahead on a scale of 0-10.000 (full scale) 

The results depicted in these figures are consistent with the one-period estimate, 
exhibiting similar stabilization ranges. Even when the filter is tasked with predicting 
0.2 seconds ahead, a slight deviation from the actual grid behavior is noticed. This 
deviation, possibly influenced by a minor presence of fictitious (replaced) data, 
introduces a marginal inaccuracy. 
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Ten period ahead on a scale of 0-10.000 (4400-5000) 

However, it is crucial to note that this deviation does not significantly undermine 
the filter's ability to reliably predict amplitude over time, within the context of 
“longer-term” predictions. 

Hundred period ahead on a scale of 0-10.000 (full scale) 

Hundred period ahead on a scale of 0-10.000 (4400-5000) 
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Figure 9 

Thousand period ahead on a scale of 0-10.000 (full scale) 

 
Figure 10 

Thousand period ahead on a scale of 0-10.000 (4400-5000) 

Figures 7 and 8, which focus on an estimate of 100 periods (equivalent to 2 seconds 
ahead), and Figures 9 and 10, which extend this to 1000 periods (or 20 seconds 
ahead), reveal a different aspect of the filter's performance. The accuracy of the 
estimated quantity in these scenarios cannot be claimed with the same confidence 
as in the one-period-ahead estimate. Despite this, it is important to recognize that 
the estimated quantities still fall within a range that aptly mimics the maximum 
nominal deviations of the grid. These observations collectively underscore the 
Kalman filter's utility in electrical grid applications. While its accuracy is most 
pronounced in short-term predictions (as seen in the one-period-ahead estimates), 
the filter maintains a commendable level of reliability even in the “longer-term” 
forecasts. This reliability is crucial, considering the dynamic and often 
unpredictable nature of electrical grid behaviors. The Kalman filter, thus, emerges 
as a valuable tool in grid analysis and management, capable of providing insightful 
predictions that help in maintaining grid stability and efficiency. 
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Conclusions 

The following narratives summarize and conclude the work performed herein: 

High Accuracy in Short-Term Predictions:  

The Kalman filter demonstrates exceptional precision in short-term estimations, 
particularly for one-period-ahead forecasts. This is evident from Figures 3 and 
4, where the filter closely mirrors the actual behavior of the electrical grid, even 
with minimal measurement errors. Such accuracy is crucial for real-time 
applications, where immediate response and adjustment is necessary for grid 
stability. 

Effective Stabilization with Minor Deviations:  

In scenarios involving slightly longer predictions (0.2 seconds ahead), as shown 
in Figures 5 and 6, the Kalman filter still achieves effective stabilization. 
Though there is a slight deviation due to possible fictitious data, the filter 
remains a reliable tool for predicting grid behavior. This indicates its robustness 
in dealing with minor inaccuracies without significantly compromising the 
overall estimation quality. 

Limitations in Long-Term Predictions:  
When it comes to much longer-term forecasts, as seen in Figures 7 to 10, the 
filter's accuracy diminishes. While it cannot replicate the grid behavior with the 
same fidelity, as in short-term predictions, it still falls within acceptable ranges 
of nominal grid deviations. This suggests that while the Kalman filter is a 
powerful tool, its effectiveness is more pronounced in short, to medium-term 
estimations. 

Adaptability and Reliability:  
Overall, the Kalman filter proves to be a highly adaptable and reliable tool for 
grid behavior analysis and prediction. Its ability to provide accurate short-term 
predictions and reasonably accurate long-term forecasts makes it an invaluable 
asset in managing the complexities and variabilities of modern power systems. 

Importance for Grid Management and Planning:  
From a practical perspective, the Kalman filter's capabilities are significant for 
grid management and planning. Its precision in short-term predictions aids in 
real-time decision-making and immediate corrective actions, essential for 
maintaining grid stability and efficiency. Even in longer-term predictions, where 
absolute precision might not be attainable, its estimations can inform broader 
grid management strategies and planning. 
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