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Abstract: Using digital microscope scanners, gigapixel-scale images for tissue samples are 
scanned in a minute, which provides an opportunity for quantitative evaluation at the 
cellular or gene level. However, to make an accurate diagnosis for clinical or research 
cases, it is necessary to make serial sections and stain them using different reagents. Since 
digital scanning and processing are preceded by manual workflows, the orientations 
between the images are lost. In the absence of adjustment, we cannot compare them to each 
other, for colocalization or correlation analysis. A registration method is needed that 
organizes the samples in the same orientation. The proposed method is inspired by the 
traditional and deep-learning based registration methods (SURF, SIFT, ORB, SuperPoint, 
SuperGlue) and further developed to manage the tearing, creasing and other deformations 
between the samples. Based on the validation results, the basic methods give moderate 
results, however, by utilizing a grid-based approach and by choosing the appropriate 
number of recursive iterations and resolution, the methods can be improved. The proposed 
stain-independent, iterative, non-rigid registration method can manage not only tears, 
creases and deformations, but also correct structural changes between series sections. 

Keywords: digital pathology; digital microscope; stain-independent; image registration; 
iterative; recursive; non-rigid; elastic; deep-learning; convolutional neural network 

1 Introduction 
The integration of digital imaging in medical diagnostics first began in radiology, 
and due to the benefits of the digital file, such as the ability to share, integrate, and 
archive, the same request has emerged in routine histopathology. The digital 
revolution began with the introduction of whole slide imaging (WSI) technology 
in pathology. Various scanner devices creating large files have been introduced, 
presenting tissue structures in an appropriate resolution with a high color fidelity 
[1] [2]. 
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In digital pathology, sections stained with different reagents are used. To examine 
these sections together, it is necessary to register them with each other. Since the 
sectioning and floating up are manual and mechanical processes, the tissue sample 
can be deformed to a great extent by the time it is placed on the slide (Figure 1). 
Furthermore, if the physical distance between the sections was too large, they may 
not have the same structure visually. Similarly, different reagents may stain 
different tissue structures. Because of all this, we need a method that is flexible 
enough to register visually slightly different and deformed tissue sections. 

 
Figure 1 

Illustration of deformations resulting from sample preparation and the required registration for 
correction: (a) source sample (MSH2 stained); (b) target sample (H&E stained); (c) difference of input 
samples; (d) Subdivided target sample; (e) registered target sample; (f) difference of registered samples 

A fundamental problem with many computer vision tasks is finding visual 
correspondence between similar images. Stereo vision [3], object recognition [4], 
image stitching [5], visual odometry [6] are tasks which need a method for the 
registration problem. The feature extraction, description, matching and 
correspondence estimator methods were highly researched areas during the last 
three decades, many methods have been proposed that have sought a solution to 
these. Basically, the registration methods can be divided into three main 
categories: traditional feature-based approaches, deep-learning feature-based 
methods and homography learning. 

Traditional feature-based algorithms, like Scale Invariant Feature Transform 
(SIFT) [7] and Speeded Up Robust Features (SURF) [8] methods are excellent 
feature detection, description, and matching algorithms, but even when an 
advanced matching process is applied, a considerable number of incorrect matches 
remains and needs to be eliminated. Random Sample Consensus (RANSAC) [9] is 
a widely used algorithm for removing false matches. 

Nowadays, state-of-the-art methods in the field of image registration concern the 
use of deep learning. The Generic Feature Learning method [10] and SuperPoint 
approach [11] are using a training step of a convolutional neural network using 
only unlabeled public image datasets. SuperGlue network [12] is based on the 
SuperPoint “keypoint” detector and descriptor, which matches two pointset with a 
combination of Graph Neural Network and Optimal Matching layer. These 
methods can outperform the traditional methods; by resulting less outliers during 
the feature matching, the homography estimation can be more accurate. 
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Homography learning methods tries to solve the tasks of the previous methods in 
one step. They use a neural network to directly learn the transformation between 
an image pair. Deep Image Homography Estimation method [13] describes a 
regression homography network, a Visual Geometry Group (VGG) style model 
which is able to learn the homography by two images. 

The previous registration methods are generally formulated as an optimization 
problem that satisfies constraints, such as coordinate displacements that are affine 
or volume preserving. Non-rigid and adaptive regularization methods [14] often 
outperform the traditional approaches in cases when the image pair contain non-
linear and elastic deformations. 

Some solutions found in the current literature try to perform the registration with a 
multi-modal approach [15] [16], with the help of which the samples with different 
colors can be registered to each other, but most of them use rigid registration and 
transformation. 

We propose a novel approach, based on these traditional, deep-learning based and 
non-rigid solutions, enhanced with iterative and adaptive enhancements 
specialized for the registration of creased and torn tissue sections. The proposed 
method can also be useful in other disciplines, where it is needed to register 
samples that contain missing image parts to each other and their correct 
registration can only be solved by applying elastic transformation. 

2 Materials and Methods 

There are methods that perform registration on images, but it is exceedingly 
difficult to find a correspondence based on macrostructures in one step, which also 
gives satisfactory results in terms of microstructures. One reason for this is the 
tissue destruction [17] that occurs during sectioning, which can result in some 
regions of the sample being distorted, and another is due to the difference in 
staining [18], each reagent amplifies the tissue structures visually and differently. 

Since there are many tissue samples that occur in real life that contain a large 
amount of tissue deficiency, according to our experience, homography learning 
approaches are not or only limitedly applicable, since these solutions can work 
well primarily when all the relevant details of the images are similar to each other. 
When there are too many torn and missing parts, they give an unsuccessful 
registration result. For this reason, the proposed approach relies more on the 
classical three-step approach, which is based on feature detection, correspondence 
and homography estimation, supplemented by a grid-based iterative method that 
ensures the flexible and non-rigid transformation (Figure 2). 
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Figure 2 

Algorithm overview of proposed method 

2.1 Preparation Method 

Since serial sections are often made to stain with different reagents, it is necessary 
to use a staining-independent preparation method to register them with each other. 
The proposed method uses an operation that tries to find visually similar-looking 
components between staining and then rely on them when registering. One of the 
most common such components is the nuclear-type structures [19] [20], which are 
present in both IHC [21] [22] (Immunohistochemistry) staining, and FISH [23] 
[24] (Fluorescence in situ hybridization) staining. 

The proposed method uses a combination of two solutions for preparation of 
brightfield slides that have been extensively researched in other applications: 
staining unmixing [25-27] and staining normalization [28-31]. Staining unmixing 
or color deconvolution is a method used in brightfield microscopy to transform 
color images of multiple stained biological samples into images representing the 
stain concentrations. Staining normalization methods are designed to compensate 
the differences in intensity, saturation, and hue between samples, using a template 
image as a target image. These methods utilize color and spatial information to 
classify the image pixels into different stain components to reduce the effect of the 
variations of color and intensities which are caused by the sample preparation. 
Because the digitized image may contain significant amounts of camera noise, 
which may impair the efficiency of the recording, noise filtering, such as a median 
filter, may be required for some samples [32]. The chromatic and density 
distributions for the stain components in the hue-saturation-intensity color model 
are normalized to match with the distributions of a template image. In the case of 
a fluorescent sample, the proposed method uses the nuclei channel. 

2.2 Keypoint Detectors and Descriptors 

One of the basic ideas is to perform the registration in an iterative way in several 
steps: first detect an approximate transformation based on the larger 
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macrostructures, then further refine the registration considering the 
microstructures, trying to improve the result of the previous iteration in each 
iteration until it is possible. 

The other basic idea is not to determine a single transformation value for the 
sample, but to assign different transformations to various parts of the sample. In 
this way, not only a rigid transformation with 6 or 8 degrees of freedom is 
performed, but an elastic deformation is used. 

One of the most widely used traditional keypoint detector and descriptor algorithm 
is the scale-invariant feature transform (SIFT) [7] method. Although it is almost 
two decades old, has proven remarkably successful in several applications using 
visual features, including image stitching, object recognition, or stereo vision. 
However, the usage of it means a large computational requirement, which can be 
critical for systems which are real-time or has limited computational power. 

This limitation was the cause of intense research in the direction of replacing it 
with a computationally more favorable alternative. One of the best alternatives are 
the Speeded Up Robust Features (SURF) [8], Features from Accelerated Segment 
Test (FAST) [33], Binary Robust Independent Elementary Features (BRIEF) [34] 
and Oriented FAST and Rotated BRIEF (ORB) [35] methods. 

The ORB method has similar matching performance (Table 1) as the SIFT and 
SURF method but computationally it is more efficient. It utilizes the FAST 
method as keypoint detector and uses the BRIEF descriptor for feature 
description. These methods have superior performance and low computational 
cost. The ORB method adds a fast and accurate orientation component to the 
FAST method, optimizes the BRIEF feature computation, analyzes the variance 
and correlation of oriented BRIEF features, and to improve the performance of 
nearest-neighbor applications it has a learning method for de-correlating BRIEF 
features under rotational invariance. 

Regarding the feature extraction and description, SuperPoint is one of the most 
state-of-the-art methods, which offers a fully convolutional model operates on 
full-sized images and computes pixel-level feature point positions together with 
their descriptions in one pass. In this study, we examine both the classical ORB 
method and the more modern SuperPoint approach as the basis of our method. 
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Table 1 
Performance of keypoint detectors and descriptors 

Method Matching Performance Computational Performance 
SIFT ���������� ���������� 
SURF ���������� ���������� 
ORB ���������� ���������� 

SuperPoint ���������� ���������� 

2.3 Feature Matching and Transformation Estimation 

After we detected features on the image pair and calculated descriptions for all of 
them, it is needed to match them. One of the simplest feature matching algorithms 
is the brute-force method [36], which takes descriptor of a feature on the first 
image and matches with all other features on the second image using distance 
calculation. It returns the closest pairs. When we matched the feature points on the 
image pair with each other, it is needed to estimate an optimal affine 
transformation (T) for them. 

The widely used random sample consensus (RANSAC) [9] [37] method is a 
simple but effective iterative algorithm; it can estimate parameters of a 
mathematical model from a data set that contains outliers, when outliers are to be 
accorded no influence on the values of the estimates. Therefore, it also can be 
interpreted as an outlier detection method. In our case, we choose three keypoint 
matches at random and solve the T affine transformation as a system of equations. 
We count the number of matches which are inliers according to T transformation 
and distance limit. Repeat these steps for N rounds and return the T transformation 
which provided the highest inlier count. 

2.4 Simple Grid-based Registration 

The computed transformation matrix (T) can provide a good registration 
estimation for image pairs that include strictly only translational, rotational, and 
scaling differences. However, if the samples contain other types of deformations, 
the result may be inaccurate, or the result of RANSAC method may fail because 
choosing any of the three points will result too many outliers. 

The proposed method utilizes grid-based registration, where we divide the image 
into smaller regions (patches), register these patches on their own, and then apply 
the separate transformations to the whole image like a grid (Algorithm 1). 
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Algorithm 1: Simple grid-based registration 
Input: matches, patches 
Output: G grid with affine transformation matrices 
1. G = patches × patches empty grid 
2. Forall i in 0..patches: 

2.1. Forall j in 0..patches: 
2.1.1. roi = Calculate ROI(i, j, patches) 
2.1.2. matches’ = Collect matches in ROI(roi) 
2.1.3. G[i, j] = Estimate transformation(matches’) 

3. Return G 

2.5 Iterative Registration 

One of the weaknesses of simple grid-based registration is that it can manage the 
non-linearity characteristics of the sample, but if we choose too large a grid size, 
there will be too little information available in a cell to perform the registration. In 
this case, we can only transform the cells by considering the local environment, so 
there may be many cells that you may not match properly or at all. If we choose a 
grid size that is too small, we will lose the ability to register nonlinear. In these 
cases, an iterative approach can help: the sample is first registered without a grid, 
in a rigid manner, considering all key points and the whole image (Figure 3). 

 
Figure 3 

Illustration of iterative grid-based method 
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We assume that we can calculate globally the best possible rigid affine 
transformation. In the next iteration, the plane is divided into four equal parts, and 
the refined transformation matrices are calculated based only on the key points 
there but using the result of the previous iteration: only key pairs are considered 
whose transformed distance is less than a certain threshold. In the second iteration, 
we redistribute the previous four subdivided regions, so we will have a total of 16 
regions, and we will also reduce the threshold used for the distance of the key 
points (Algorithm 2). 
 

Algorithm 2: Recursive registration sub-method 
Input: matches, region, depth 
Output: G grid with affine transformation matrices 
4. Filter the keypoints in the cell by their positions (region) 
5. Filter the keypoints in the cell by their distances 
6. T = Estimate transformations 
7. If T is not valid: 

7.1. Return Unit Matrix 
8. Decrease the distance limit 
9. Apply T for matches 
10. G = 2 × 2 empty subgrid 
11. Forall i, j, region’ in subdivide(region): 

11.1. G[i, j] = Recursive call with depth’ and depth+1 
12. Return G 

Utilizing the recursive sub-method, we can calculate the elastic, non-rigid, grid-
based registration (Algorithm 3). 
 

Algorithm 3: Iterative grid-based registration method 
Input: img1, img2, depth 
Output: G grid with affine transformation matrices 
1. kp1 and kp2 = Keypoint detection on img1 and img2 
2. km = Keypoint matching on kp1 and kp2 
3. G = Call the first iterative step 
Return G 

3 Validation 

Routine anonymized slides were used from the archive of the 1st Department of 
Pathology and Experimental Cancer Research of the Semmelweis University, 
Budapest, Hungary. Digital slides in digital pathology are primarily identified by 
two key data: the inscription/barcode/QR code on the label area of the glass slide 
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and the name of the slide, often serving as a unique identifier. Using either of 
these, the patient can be traced back using the hospital information system. In case 
of research samples, both of these data are always removed right after (or before) 
scanning the samples. The samples providing the basis of this study were also de-
identified and did not contain any details of the patient. The samples were used for 
a retrospective study without impacting patient care. 

The study was conducted in accordance with the Declaration of Helsinki, 
approved by the Ethics Committee of the Institutional Review Board and Regional 
Ethics Committee of Semmelweis University (permit no. 14383-2/2017/EKU 
Semmelweis University, Budapest, Hungary). 

Among the available samples, we collected cases in which there were at least 3 
serial sections. It was important that these serial sections were not too far from 
each other in terms of distance, because that would make registration impossible 
(they cannot even be reconciled by humans in this case). Another aspect was that 
they should be stained with different reagents and that they should also have 
fluorescent sections. 

A total of 268 slide pairs (53 slides from 12 cases) were selected for the validation 
and for each slide it was extracted only the scanned area in a size of 4000×4000 
pixels (16 megapixels). This image size corresponds to a resolution of 4.185 
µm/pixel on average. Images of this size clearly show larger and smaller tissue 
structures, but this resolution is too small to see cell compartments. The slides in 
the validation set were stained with 29 types of reagents. 

Experts have placed five keypoints on each slide, in the middle of relevant regions 
or a well-defined part of slides. In the images belonging to the same cases, the 
same regions were marked. These regions were defined in such a way that both 
colleagues with biological and with bioengineering experience working in the 
field could mark them. Such areas were, for example, the center of a tumor area, 
the center of glands or border of a larger tissue region. The marking was 
performed at native resolution, and compared to the accuracy of the algorithm, the 
accuracy of the marking was an order of magnitude higher, so the consistency of 
the ground truth marking was not examined separately. Altogether it means 268×5 
=1340 keypoint-pairs, they were used as a ground through during the validation. 

Since the registration of slide pairs in the sample set is strongly influenced by 
whether they are pairs with the same staining and how they are prepared, we 
divided the image pairs into four categories (Figure 4): 

a) Same staining and well prepared: Slide-pairs prepared with the same 
reagent, and they do not contain major creasing or tearing. It is usually 
easiest to register these samples together. 

b) Same staining and creased/torn: The stainings are the same but the slide-
pairs contain major tearing or creasing. With these samples, the need for an 
iterative approach can emerge. 
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c) Different staining and well prepared: The samples prepared correctly but 
the stainings are different. 

d) Different staining and creased/torn: Samples with different stainings and 
contain major creases or tears. In general, these pairs are the most difficult 
to register with each other. 

 
Figure 4 

Illustration of the four sample categories: (a) same staining and well prepared; (b) same staining and 
creased/torn; (c) different staining and well prepared; (d) different staining and creased/torn 

During validation, we examined the ideal resolution value and how the quality of 
the registration improves during the iterations. For scaling values, 1:1 resolution 
means the resolution of the input image (4.185 µm/pixel), 1:2 means half 
resolution (8.37 µm/pixel), until the 1:20 resolution (83.7 µm/pixel). Patch sizes 1, 
2, 4, 8, 16, and 32 were examined for number of iterations. For optimal iteration 
number, 1, 2, 3, 4, and 5 iterations were examined, corresponding to 1×1, 2×2, 
4×4, 8×8, 16×16, and 32×32 patches. 

By validating the proposed method with each parameter, we compared the 
position of the keypoints marked by the experts with the positions transformed by 
the registration algorithm. From the distances, an error was calculated for each 
slide-pair using root mean squared error (RMSE(c)) method, and then an average 
was calculated from them (ARMSE). 

Once the mean error (ARMSE) has been calculated for each number of scaling and 
iteration, we can determine their optimal values for our sample set. Both the mean 
error and standard deviation values are calculated back to µm/pixel. 

Knowing the ideal parameters for the sample set, the proposed method is 
compared using the classic ORB keypoint detector and descriptor, the more 
modern SuperPoint algorithm and executing the SuperGlue approach. 
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4 Results 

4.1 Optimal Number of Patches and Scale Factors 

Table 2 shows the average root mean squared errors (ARMSE) of the registration 
using different patch numbers and scale factors. The lower value means the more 
precise registration. We can see that minimal value (137.12 μm) is reached using 
the parameters patches = 16 and scale = 1:6. Without iterative method (patches = 
1) the error numbers are everywhere worse than with utilizing iterations.  
The average error (ARMSE) is the highest at 1:1 magnification without iterations 
(284.35 μm). 

Table 2 
Heatmap colorized table about the average root mean squared errors (ARMSE) using different scale 

factors and patch sizes. Lower and greener value means the more accurate registration. 
Values are in μm. 

1 2 4 8 16 32 Avg.:
1 1:1 284.35 244.05 237.55 233.11 233.34 235.34 236.68
2 1:2 233.75 195.87 187.04 184.26 181.38 169.59 183.63
3 1:3 215.32 176.27 165.27 163.02 162.99 154.67 164.44
4 1:4 196.24 159.99 150.11 148.05 147.49 142.09 149.55
6 1:6 179.83 149.22 139.19 138.70 137.12 147.50 142.35
8 1:8 179.47 152.84 141.25 141.07 139.81 147.89 144.57

10 1:10 177.67 151.22 144.31 143.05 141.41 149.37 145.87
12 1:12 180.46 157.09 145.39 144.66 146.65 144.89 147.74
14 1:14 179.80 152.63 143.38 140.37 140.19 156.43 146.60
20 1:20 182.92 161.73 152.43 153.24 154.12 153.68 155.04

Avg.: 200.98 170.09 160.59 158.95 158.45 160.14

Patches

Sc
al

e

 
As can be seen, the proposed method provides the lowest error value using patch-
size 16×16 and scale factor 1:6. It corresponds to 5 iterations and 25.11 µm/pixel 
resolution. 

A distance of 137.12 μm in terms of the error value means that there is an average 
difference of 137.12 μm between the ground truth manual alignment and the 
algorithmic result. This is a distance of approximately 10-15 nuclei. At the level of 
the cell compartment, it is therefore not possible to register the different sections 
using the method, but this is not the purpose of the registration; since there is a 
depth distance of 10-50 μm between the serial sections anyway, they will not have 
common nuclei anyway. In terms of macrostructures, however, it may be 
appropriate; their size is above this error value (e.g., glands), so they can be 
matched and examined together. 
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4.2 Optimal Number of Keypoints 

Since the parameters scale = 1:6 and patches = 16 parameters proved to be the 
best, we examined the ideal keypoints number (Figure 5) with these parameters. 
The lowest number of keypoints examined was 200, while approaching a keypoint 
number of 10,000, the algorithm achieved the lowest error value: 137.12 μm. 
Using a higher keypoint count, the efficiency deteriorated again. There was no 
notable improvement in error value above 50,000 keypoints, suggesting that the 
sample contains an average of this number of usable key points. 

 
Figure 5 

Average root mean squared error values (ARMSE) of using different number of keypoints. 
Values are in μm. 

4.3 Average Error Values 

Figure 6 shows the comparison of the average error values in each sample 
category applying the ORB based keypoint detection and description, the 
SuperGlue method, and the proposed method. 

Analyzing the average error values, it can be concluded that the SuperGlue 
solution proves to be more effective in the case of well-prepared samples. 
However, in the case of samples that are not well prepared, i.e., contain creases or 
tears, the iterative nature of the proposed method can provide better results.  
The classic ORB key point detector always falls short of the results of the 
proposed method, it can only give similar results in the case of samples with same 
staining and well prepared. 
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Figure 6 

Average root mean squared error values (ARMSE) applying different methods on sample categories. 
Values are in μm. 

Looking at the results, it can be said that the proposed solution can bring better 
results mostly in the case of poorly prepared samples, under ideal conditions the 
SuperGlue solution may be sufficient. 

4.4 Results Illustrations 

To verify the robustness of image registration methods we compared the proposed 
method with the ORB keypoint detection using RANSAC matching algorithm, 
and with the SuperGlue registration method. Since the efficiency of the 
registration methods depends greatly on the quality of the sample preparation and 
staining, we separately analyzed the algorithms for identically stained and 
tear/crease-free samples and for differently stained and poorly prepared image-
pairs. For demonstration purposes, the algorithm was also executed on high-
resolution image pairs cut from whole slides. 

Figure 7 shows the matching results in the case of five well-prepared and 
identically stained sections. It can be observed that usually the ORB+RANSAC 
based method provides 10-20 percent worse results than the proposed and 
SuperGlue approaches. Since these samples do not contain major tears or creases 
and visually look the same, the iterative nature of our method could not help, so 
the proposed method and SuperGlue approach provide similar results. 
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Figure 7 

Matching results of five well-prepared and identically stained samples using the ORB+RANSAC, 
SuperGlue and proposed approaches 

Figure 8 shows five examples, where the methods are executed on smaller parts of 
a whole slide image. The magnifications of these images are ten times larger than 
in Figure 7. These samples are also well-prepared and have the same staining. It 
can be observed that all three models provide similar results, this is due to the fact 
that the reference and target images are visually very similar. 

In Figure 9, we can see the real differences between the analyzed models. In this 
picture we can see five samples, which are poorly prepared, containing tears and 
creases, and they are stained using different reagents. Since the image-pairs 
contain different tissue structures or have different colorizations, the classical 
ORB based method finds common feature points extremely hard and it matches 
them incorrectly. Compared to the proposed approach, the ORB method can 
achieve two-three times worse results on these samples than the proposed one. 
The iterative nature of the proposed approach can help these samples to a great 
extent, as in the first iteration it tries to find and match features on a low-
resolution image that can be found on both images regardless of staining and 
tissue structure, and then this found similarity is further refined by further 
iterations. Using this approach, for image pairs that are difficult to register, the 
proposed approach mostly achieved better results than the SuperGlue solution. 
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Figure 8 

Matching results of five well-prepared and identically stained high-resolution samples using the 
ORB+RANSAC, SuperGlue and proposed approaches 

 

 
Figure 9 

Matching results of five differently stained or poorly prepared samples using the ORB+RANSAC, 
SuperGlue and proposed approaches 
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From the illustration of results in Figure 10, it can be observed that the registration 
of high-resolution whole-slide parts are often unsuccessful, while the proposed 
method mostly can provide acceptable results. The reason for this is that ORB and 
SuperGlue methods do not have prior information about the approximate 
orientation of image parts and its key points, considering the whole-slide. In 
contrast to that the proposed method can know the rough position from the 
previous iterations, and it can consider the positions during the matching of 
keypoints. 

 
Figure 10 

Matching results of five differently stained or poorly prepared high-resolution samples using the 
ORB+RANSAC, SuperGlue and proposed approaches 

5 Discussion 

The purpose of this study was to investigate how different registration methods 
perform in the task of aligning tissue samples onto each other in a whole slide 
imaging system and what parameters are used to achieve the best results.  
The proposed method was examined based on three main aspects and compared 
with competing solutions. 

The first parameter examined was the value of the optimal patch number and scale 
factor, which was characterized by the mean squared error (ARMSE) metric, 
which gave the average accuracy of the registration expressed in microns. Based 
on our validation data set, the proposed solution achieved the best result using 
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16×16 patches (5 iterations) and a scale-factor value of 1:6, which resulted an 
error value of 137.12 μm. 

The second examined parameter was the optimal number of keypoints, which was 
determined using the previously established patch and scale factor values. We 
analyzed key-points between 200 and 200,000, and the best performing key-point 
number was 10,000, where the proposed method achieved the best error value of 
137.12 μm. It performed worse on fewer and more key-points than this. 

The third evaluation method was a comparison with competitive solutions, where 
we examined the performance of the algorithm separately for the four types of 
samples, in comparison with the ORB-based and SuperGlue solutions. The results 
showed that under good conditions (with well-prepared samples) the SuperGlue 
solution gave the best results, however, for various types of stains and in the 
overall comparison, the proposed solution outperformed the others. The ORB-
based solution fell short of the other two solutions in all categories. Overall, the 
recommended approach performs best in situations where an iterative approach is 
needed. 

Registration is essential for making diagnosis or conducting research in serial 
sections. Because we used ground truth keypoints for validation, which experts 
laid down by marking the middle of the relevant regions, examining the results, 
we found that the appropriate scaling factor and grid-based iterative approach 
helped to perform the correct registration, thus helping the doctoral work. 

However, it is important to mention that the parameters are strongly sample 
dependent. There are tissue samples that contain only a small amount of nonlinear 
distortion, either due to the thickness of the sample or due to better or more 
automated sample preparation. In this case, using a higher number of iterations is 
unnecessary. It is also important that some samples do not contain enough visual 
information to use the iterative method, and if you choose a patch number that is 
too high, there is a chance that they will be falsely registered, so the sample may 
be incorrectly deformed in those areas. 

Analyzing the results of the validation set, several ideas have been put forward to 
improve the proposed methods. One such enhancement may be when the sample 
does not visually carry enough information or when completely different 
structural elements are painted between stains. Recognition of different tissue 
structures is a well-studied research field in the literature, with many approaches 
and methods already available from traditional pattern recognition algorithms [38] 
to sophisticated, deep learning based convolutional neural network methods [39-
41]. By applying such methods on samples, we can detect features in the images 
that were not present locally at the pixel level and amplify similar areas of the 
different stained samples. By performing the proposed registration method on 
images prepared in this way, you can get better results. 
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Another improvement method is to try to use different magnifications between 
iterations. Initial iterations are often best recorded on low-resolution images, 
relying on macrostructures. However, this level of magnification no longer carries 
enough information in later iterations to calculate a more accurate transformation. 
To overcome this, we can try to use an increasingly high-resolution image as the 
basis between the iterations. A similar result can be obtained by using a key-point 
metric that carries information about a multi-resolution image, i.e., a multiscale 
feature. 

Conclusions 

The use of registration methods is critical for whole slide imaging (WSI), in the 
case of serial sections. In this study we collected a set of digital slides which 
required registration and after the implementation of registration method, we 
completed a validation study, to determine which model and which parameters 
provide the best results. According to the characteristics of the collected validation 
set, executing the methods, the following conclusions were drawn: 

(1)  For the registration of digital microscopic samples, the SuperPoint 
method is excellent for keypoint detection and description, supplemented 
with RANSAC-based keypoint pairing and affine transformation 
calculation. However, since not all parts of the sample are deformed in 
the same way during sample preparation, the transformation of the whole 
sample is not linear. In this case, the grid-based approach can be used to 
compute transformations for different regions of the sample separately. 

(2)  By choosing a high patch size, we can manage non-linearity, but there 
will be many patches that contain only microstructures, and without 
knowledge of the environment with macrostructures, we cannot 
accurately transform them into each other. The iterative approach can 
help the problem by initially performing the initial registration by 
choosing a low patch size and then further refining the regions by 
recursively redistributing them. The iterative approach performs non-
rigid registration with more confidence and a lower error rate. 
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