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Abstract: We present a detailed review and evaluation of machine learning (ML) methods 
for modeling and predicting stress evolution in various materials and systems. Stress 
evolution is considered a fundamental phenomenon in materials science, structural 
engineering and biomechanics. It is frequently modeled with deterministic methods, which 
struggle to handle high-dimensional, complex and non-linear data. A promising substitute 
is Machine Learning (ML), which offers instruments to enhance predictive accuracy and 
more effectively capture complex patterns. We used the Scopus database to find relevant 
literature and the PRISMA framework for systematic screening for creating an extensive 
database for this review. Based on how well supervised, unsupervised and deep learning 
approaches apply to stress modeling, under various loading and environmental 
circumstances, we present a new taxonomy of machine learning approaches. Furthermore, 
we critically evaluate these approaches' advantages and disadvantages, and further 
highlight the significance of feature engineering, data quality and model interpretability. 
The review ends by outlining potential future directions, especially with regard to deep and 
hybrid models that combine ML with traditional techniques to improve prediction of stress 
evolution in a variety of applications. 

Keywords: machine learning; deep learning; stress evolution; data science; artificial 
intelligence; deep learning; applied mathematics; big data; applied AI 

1 Introduction 

In material science, stress is crucial. When an object has external forces, internal 
forces are generated to keep force balance. The concentration of internal forces at 
a point is stress (Figure 1), which can be defined as Equation (1): 
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σ  is called the stress vector at point A, P∆  is the internal force and S∆  is the 
area containing point A [1]. Stress shows force concentration inside an object and 
is an important measure for mechanical properties, failure risk, and service life. 
Stress is affected by many factors, such as material processing technology and 
process, material properties, and environmental conditions. The stress change 
inside an object, with time or process, is referred to as “stress evolution”, as 
illustrated in Figure 2. 
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Figure 1 

Definition of stress 

Stress evolution refers to the dynamic changes in stress within materials subjected 
to external influences, such as mechanical loading, thermal effects, or 
environmental conditions. This concept is fundamental in understanding how 
materials deform, fail, or adapt under various scenarios. Understanding the 
evolution of stress is a basic prerequisite for predicting material behavior and 
optimizing performance in advanced materials and structures. The stress-strain 
relationship provides crucial insight into how materials respond to different loads, 
while techniques such as digital image correlation allow for precise measurement 
of local strains and stress distributions, especially for materials like concrete, 
bricks, and composites. Additionally, strength theories are critical for defining 
yield or failure criteria under complex stress states like biaxial or multiaxial 
stresses, ensuring material reliability in real-world applications. For example, in 
order to obtain the stress-strain relationship of quenched 7050 aluminum alloy 
under different temperature and strain rate conditions, the Gleeble hot 
compression experiment is implemented. Using the optimization algorithm for 
curve fitting, the stress-strain constitutive model can be established in the form 
shown in Equation (2), and the difference between the experiment results and the 
model is shown in Figure 3. 
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• •

= + + − − −  (2) 

Studying the laws of stress evolution is crucial in many fields. It helps to better 
understand the characteristics of materials during the forming process i.e., 
dimensional and shape accuracy, component cracking failures, service life, 
forming process, and the physical, chemical, mechanical properties. Engineers 
analyze the safety and stability of structures such as buildings and bridges using 
stress evolution laws to ensure life and property safety in structural engineering. In 
the geological sciences, using the knowledge of stress evolution in strata, it is 
possible to analyze the earth stress evolution and predict earthquakes. In the life 
sciences, biomechanics studies stress evolution in living structures like cells, 
tissues and organs, to understand life activity laws and provide new insights for 
disease diagnosis and treatment. 
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Figure 2 

Radical Stress Evolution of 7055 Aluminum Alloy Ring during Processing: (a) Beginning of 
Quenching; (b) Quenching at 52 s; (c) End of Quenching; (d) Cold Bulging Loading; (e) Cold Bulging 

Unloading 

The more conventional methods for studying stress evolution include the Finite 
Element Method (FEM), Model Method and Experimental Method. FEM divides 
the continuum into discrete units and approximates the stress evolution of the 
entire domain by calculating physical quantities at unit nodes. The Model Method 
can be divided into a phenomenological model and a physical model.  
The phenomenological model generally establishes model equations based on 
experimental data and predicts stress evolution by fitting equation parameters; the 
physical model generally starts from basic theory, studies the influencing factors 
and their laws, and then establishes model equations to predict stress evolution. 
The Experimental Method is used to measure the stress distribution in the object 
in real time on site, so as to obtain the stress evolution law of a certain process. 

 
Figure 3 

Stress-strain relationship of quenched 7050 aluminum alloy under different conditions: (a) Strain rate 
is 0.0005/s for different temperatures; (b) Strain rate is 0.001/s for different temperatures 
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Authors in [2] proposed a prediction model for the evolution of yield stress of 
cement-based paste in the early hydration stage from the perspective of 
microstructure. Taking into account the interaction between cement particles and 
the change of solid volume fraction during the hydration process, the original 
Yodel model was modified, and the prediction was more accurate. In an other 
article, [3], they took the stress evolution law of low-alloy ferritic steel welding 
process as the target, improved the original K-M model equation according to the 
austenite-martensite transformation process, established a finite element model, 
and obtained the welding stress evolution law that conforms to the experimental 
data. Stress evolution is a highly complex and nonlinear problem with high data 
dimensionality and high modeling difficulty, in which using the traditional models 
have obvious limitations. For example, the finite element method requires an 
accurate stress-strain constitutive model of the material and requires a large 
number of grids to be divided. The model method requires a large amount of 
experimental measurement data to fit the equation parameters. The emergence of 
machine learning has brought new breakthroughs in the modeling and prediction 
of stress evolution, improving the accuracy of the model and the prediction. 
Machine learning can process and analyze a large amount of data to learn laws, 
characteristics, and models from it, thereby completing tasks such as prediction 
and decision-making. For example, [4] were inspired by the application of neural 
networks in the field of physics and proposed a novel model, i.e., space-time 
physics-informed neural network (STPINN) to calculate the stress evolution 
caused by electromigration in very large-scale integration (VLSI) circuits. 
Compared with the traditional finite difference method or finite element method, 
STPINN based on meshless technology does not require grid division, has lower 
computational complexity and higher efficiency, and can more accurately predict 
stress evolution by encoding physical laws into neural networks and adopting 
multi-channel structure design. [5] used active ensemble learning (AEL) 
technology, utilized principal component analysis (PCA) to reduce data 
dimensions in the data sampling stage, and used light gradient boosting machine 
(LGBM) as a prediction model in the prediction stage, thereby improving the 
robustness, generalization ability and computational efficiency of predicting the 
evolution of early-age stress (EAS) in concrete. Consequently, this study conducts 
a detailed review, classification, and evaluation of machine learning methods for 
modelling and predicting stress evolution in various materials and systems, obtain 
their advantages and prospects over traditional methods, critically evaluate the 
limitations of these methods, emphasize the role of data quality, feature 
engineering, and model interpretability, determine the direction for future 
applications, and explore the potential of hybrid models that combine machine 
learning and traditional techniques to promote the understanding and prediction of 
stress evolution. 
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2 Background 

Stress evolution models incorporate factors such as elasticity, plasticity, and 
viscosity, alongside material-specific properties, to predict stress distributions and 
their time-dependent behavior. These predictions help engineers and scientists 
design materials with improved performance and reliability, accounting for 
complex real-world conditions [6-8]. 

2.1 Machine Learning’s Role in Stress Evolution Modeling 

Machine learning (ML) has emerged as a transformative tool in stress evolution 
modelling due to its ability to process high-dimensional data and uncover patterns 
that traditional methods may overlook. For instance, ML models, such as fully 
convolutional networks (FCNs), can predict stress distributions faster than 
conventional Finite Element Methods (FEMs), significantly enhancing 
computational efficiency [9]. Supervised learning techniques, including regression 
trees and neural networks, have been employed to predict mechanical properties 
like strength and toughness from experimental datasets [10]. Furthermore, ML 
facilitates material optimization by identifying configurations that minimize stress 
and maximize performance. Techniques such as support vector machine 
regression enable the screening of extensive material databases for properties like 
high elasticity or hardness [11]. Hybrid approaches, combining ML with 
traditional methods like FEM, provide comprehensive modelling by integrating 
macroscopic and microscopic data, making them particularly effective in 
predicting fatigue properties and stress-strain behaviors [12] [13]. 

2.2 Challenges and Future Directions in ML-Driven Stress 
Evolution Modeling 

While ML offers significant advancements in stress evolution modeling, 
challenges remain. One critical issue is the need for extensive, high-quality data to 
train models effectively, which can be a limitation in certain engineering 
applications [14]. Ensuring that ML models adhere to physical principles such as 
thermodynamic consistency is another challenge [15]. Additionally, integrating 
ML with traditional approaches like finite element analysis (FEA) can enhance 
predictive accuracy but requires careful validation and feature selection [16] [17]. 
Future directions involve the development of hybrid models that combine classical 
phenomenological approaches with data-driven methods to achieve accurate 
extrapolations even with limited data [14-17]. These advancements will help 
overcome current limitations, broadening the applicability of ML in stress 
evolution studies. 
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The constitutive model is an accurate tool for explaining the evolving state of the 
material under different kinds of mechanical and thermal loads. Data-driven 
approaches are indispensable in developing this model, particularly through the 
use of machine learning. Machine learning algorithms help in analyzing and 
predicting many complex behaviors, such as deformation, failure, and adaptation. 
This enables material design and furthers engineering applications [18] [19]. 
Machine learning significantly improves stress evolution modeling. ML 
constitutes an economic surrogate to predict stress fields while quantifying 
uncertainty. These models yield accurate predictions over a wide range of material 
microstructures, considering relatively lower computational cost compared to 
finite element analysis. They are pretty helpful in stress predictions in three-
dimensional structure or under complex loading condition. However, challenges 
remain. Large, varied data-sets must be generated and thermodynamic principles 
must be rigorously imposed [17] [18]. 

 
Figure 4 

Taxonomy of stress evolution 

Despite that, ML is still improving the accuracy of stress evolution predictions. 
Applications of machine learning in modeling stress evolution are numerous. For 
example, in the prediction of the behavior of engineering materials in tension, 
compression, and shear with real-world conditions, according to [16]. ML also 
improves the quality of additively manufactured parts by enabling real-time 
monitoring and defect prevention during fabrication. Some of the challenges 
include the cost associated with the collection of high-quality data and the 
implementation of ML models when data is scarce. Their resolution will 
contribute to increased applications in other engineering areas of ML-driven stress 
evolution modeling. Stress evolution in mechanics and materials is governed by 
several core principles. The stress-strain relationship is fundamental, illustrating 
material behavior under load and key thresholds, like the yield limit, where elastic 
deformation shifts to plastic [16]. Constitutive models, both phenomenological 
and data-driven, enhance predictions by considering factors like strain hardening 
and thermal effects, even in data-scarce scenarios [24] [34]. Thermomechanical 
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coupling, including thermal activation and viscoelastic properties, captures the 
time-dependent strain responses crucial for processes like curing. Microstructural 
evolution, such as dislocation mechanics and nano-porous growth, also plays a 
critical role in flow stress and material behavior [23] [28]. Damage mechanics 
addresses material degradation through models like Continuum Damage 
Mechanics (CDM), while cyclic loading highlights fatigue damage and hysteresis 
loops' importance in long-term performance [27]. Finally, configurational forces, 
exemplified by the Eshelby stress tensor, provide insight into energetic changes 
and adaptability in fracture mechanics and interface evolution [26]. These 
principles collectively form the basis for advancing material design and 
engineering applications. 

 
Figure 5 

Key Principles of Stress Evolution in Mechanics and Materials 

Table 1 
Principal and description of methods 

Principle Description Supporting 
References 

Stress-Strain Relationship Describes material behavior under load, 
highlighting key thresholds like the yield 
limit where elastic deformation shifts to 
plastic. 

[27] [28] [29] 

Constitutive Models Enhances predictions using 
phenomenological and data-driven 
approaches, accounting for strain 
hardening and thermal effects, even with 
limited data. 

[30] [31] [32] 

Thermomechanical Coupling Captures time-dependent strain responses 
involving thermal activation and 
viscoelastic processes; essential for 
processes like curing. 

[33] [34] [35] 

Microstructural Evolution Explores dislocation mechanics and nano-
porous growth in flow stress and material 
behavior. 

[36] [37] 
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Damage Mechanics Analyzes material degradation using 
CDM, emphasizing fatigue damage and 
hysteresis loops for durability predictions. 

[38] [39] 

Configurational Forces Provides energetic insights into fracture 
mechanics and interface motion, 
leveraging the Eshelby stress tensor. 

[40] [41] 

3 Material and Methods 

In order to establish how ML approaches are employed to model stress evolution 
in materials, a systematic literature review was completed. The Scopus database 
was used as the main point of reference for the study because it contains a wealth 
of peer-reviewed publications in engineering, materials science and computational 
methods. Also, the study focused on publications between 2015-2025 and used 
keywords like “stress evolution”, “machine learning”, “stress-strain modeling” 
and “finite element analysis”. Upon conducting the search, 2,768 documents were 
retrieved. In order to maintain methodological rigor, the PRISMA framework was 
utilized. Through several screening steps, duplicates and non-relevant publications 
were removed. Abstracts and full texts were adequately scrutinized for relevance 
and quality. After this filtering process, 9 articles were identified which met the 
stringent inclusion criteria and were subjected to final analysis. These studies were 
divided based on three core ML categories, i.e., supervised learning, unsupervised 
learning, and deep learning. Each of these categories was analyzed according to 
their modeling techniques, input data (microstructure, simulations, sensor 
readings), target outputs (stress fields, yield points) and material systems. We 
further evaluated each ML method using common performance indicators, 
including predictive accuracy, generalization ability, computational efficiency, 
and model interpretability. Special focus was given to hybrid models those 
combining ML with traditional physics-based approaches like FEA or CDM. 
These hybrid methods showed notable potential in capturing complex, nonlinear 
stress behavior with improved cost and time efficiency. 

4 Review and Results 

ML and DL are transforming the understanding and prediction of stress evolution 
in materials science and mechanics. AI applications, such as predicting 
mechanical properties, stress-strain relationships, and stress distribution, have 
demonstrated significant accuracy and efficiency. For instance, Deep Learning 
Surrogate models (DLS) can predict mechanical performance with over 98% 
accuracy, outperforming traditional FEA methods [24]. Machine learning and 
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deep learning techniques also enhance the prediction of composite material 
properties, stress-strain behavior in anisotropic materials, and flow stress in high-
entropy alloys, significantly advancing structural engineering and material safety 
[30]. The advantages of AI and DL lie in their speed and precision. Neural 
networks generate predictions in seconds, reducing the computational burden of 
traditional simulations, while achieving accuracy levels with less error [27] [33]. 

 
Figure 6 

Proposed taxonomy focused data-driven methods and applications 

Techniques like convolutional neural networks (CNNs) and U-Net architectures 
efficiently predict stress fields in complex material systems, offering rapid 
solutions for dynamic events like impact analysis [30-34]. Moreover, advanced AI 
frameworks such as multi-scale modeling and transfer learning improve the 
precision of predictions in both experimental and real-world applications, enabling 
breakthroughs in material design. Despite their potential, challenges remain. 
Reliable predictions depend on high-quality and abundant training data, requiring 
robust datasets and effective data augmentation strategies [35]. Integration of AI 
with experimental methods is critical to validate and enhance the practicality of 
these models. Combining computational predictions with experimental validation 
will ensure accurate, scalable, and real-world solutions [31]. In conclusion, AI and 
DL are revolutionizing materials science by providing efficient, accurate, and 
rapid tools for stress evolution analysis, paving the way for accelerated progress in 
engineering applications. The use of AI and deep learning has revolutionized 
studies into the development of stresses in material science and mechanics. These 
technologies can make very accurate predictions about their mechanical 
properties, such as the stress-strain relationship, including yield strength and 
ultimate strength, using data from simulations and experiments. Deep learning 
models coupled with FEA are used for the prediction of stress distributions with 
high accuracy that helps in overcoming high computational costs and accelerating 
the analysis process. Surrogate models, like deep learning surrogate models 
(DLS), provide efficient predictions of maximum stress values under complex 
conditions, making them valuable for material screening and design [24] [27]. AI 
also plays a crucial role in failure prediction by using high-fidelity simulation data 
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to forecast fracture propagation and material degradation with precision [34; Liu 
et al., 2024]. In other words, AI integrated into real-time monitoring systems can 
enhance the manufacturing process of materials with consistent quality and 
uniformity in properties. AI models analyze microstructural features that in turn 
help in understanding their influence on mechanical performance, thus helping to 
design materials with customized properties. These are promising developments 
that, in most cases, bring faster and cost-effective options rather than experimental 
testing methods. However, the accuracy of AI models heavily depends on high-
quality standardized training data. There is a need for robust data augmentation 
techniques to enhance the reliability of predictions under variable conditions. It 
also requires further collaboration between AI researchers and materials scientists 
to make the algorithm tuning appropriate for engineering applications, as per [31]. 
Despite their potentials, there are challenges on computational efficiency and 
experimental validation aspects. The optimization of AI models with respect to 
speed and accuracy without compromising reliability is very important for 
practical applications. Merging the AI-driven predictions with experimental 
validation ensures accurate, scalable results that could be useful in real life. 
Overcoming these challenges will widen the role of AI in material design and 
industrial applications. AI and deep learning remain in continuous development 
for analyzing stress evolution by offering efficient and fast solutions accurately; 
however, further work is required to realize their full potential. 

Deep learning has emerged as powerful tools that predict stress evolution in 
mechanics and materials, providing greater speed and accuracy than their 
experimental counterparts. The techniques can handle a considerable amount of 
data and, through the use of complex correlations existing between material 
properties and stresses, provide quite accurate predictions about the mechanical 
performance of materials. While traditional methods have relied on very time-
consuming experimental procedures or complex modeling calculations, AI-based 
approaches-like deep learning surrogate models-can accurately reproduce the 
results of FEA simulations much faster. This speeds up material screening and 
design toward optimization of synthesis conditions, besides enhancing real-time 
monitoring. The outstanding challenges are: obtaining enormous amounts of data 
during training, expensive computations, and model robustness assurance for 
guaranteed quality data. The solving of such problems is indicative of the 
possibility of using this method on a wider scope with regard to AI and 
applications in material optimizations and mechanical engineering. 

ML techniques presented in the context of stress evolution in engineering 
materials in the previously discussed Table II, marking a clear progression from 
primitive methods. Research shows that ML models like neural networks, k-
nearest neighbors, and random forests dominate in estimating flow stress, strain-
stress behavior, and ratchetting in alloys like titanium, magnesium, and Nitinol 
[37] [38] [43] [44]. 
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Table 2 
Summary table 

Ref Study Focus Materials/Applications Machine 
Learning 
Approach 

Key Findings 

[37] Flow stress 
modeling 

Titanium aluminide 
(TiAl) alloy TNM-B1 

Data-driven 
model, hybrid 
model 

MLM more accurate 
and faster than PM, 
better extrapolation 

[38] Predicting 
material 
response 

Titanium alloys, 
magnesium alloys, 
composites 

Neural networks Accurate predictions 
under arbitrary 
thermo-mechanical 
loading 

[39] Constitutive 
models for path-
dependent 
processes 

Structural materials Hybrid framework 
(phenomenological 
+ data-driven) 

Accurate 
extrapolation, 
thermodynamically 
consistent 

[40] Microstructure-
sensitive design 

Copper, Ti-7Al alloy Physics-informed 
neural network 
(PINN) 

Improved accuracy 
and efficiency, small-
data problems 

[41] Flexible 
composites 
design 

Ag/poly (amic acid) 
composite 

BP neural network 
with DE algorithm 

High accuracy, 
optimized fabrication 
conditions 

[42] Stress hotspot 
prediction 

Hexagonal close packed 
materials 

Random forest Predicts hotspots, 
identifies 
microstructural 
features 

[43] Strain-stress 
behavior 
prediction 

Nitinol alloys Various algorithms 
(kNN, Random 
Forest) 

kNN highest 
accuracy, predicts 
mechanical responses 

[44] Ratchetting 
prediction 

AZ31 magnesium alloy Physics-informed 
ML model 

High prediction 
accuracy and 
generalization 

[45] Additive 
manufacturing 
process 
modeling 

Various materials Physics-informed 
ML models 

Robust and 
interpretable 
framework, integrates 
physical insights 

These models surpass phenomenological models in accuracy and calculations, 
especially in the presence of intricate or multi-axial loading conditions [37], [38]. 
Hybrid techniques that combine data-driven and physics-informed models, while 
maintaining thermodynamic equilibrium, are remarkably strong in low-data 
scenarios [39, 40]. Physics-informed neural networks (PINNs), apply 
microstructure-sensitive design processes to enhance physics-informed 
frameworks where sparse experimental data strengthen the design [40-45].  
The most difficult hurdles of a lacking dataset, generalizability of the model, and 
interpretability through a physics lens of purely driven ML predictions still very 
much poses an issue. A problem optimal ML approach would face includes a 
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bounded dataset where extrapolation beyond the confinement threshold would 
render retraining difficult [41] [42]. To address these challenges, new research 
emphasizes the development of interpretable, hybrid, and physics-constrained 
models that can excel in low-data regimes [39] [41]. The way ahead should be 
with the integration of ML followed by experimental validation, enhanced 
explainability and algorithm customization based on material type [38] [44]. 
Through overcoming these limitations, ML will continue to revolutionize 
materials science, for real-time prediction, optimized design, and accelerated 
discovery of new materials [38] [43]. ML and AI significantly support the analysis 
of stress evolution in mechanics, structures, and material science. These methods 
learn from big data from either experimental and simulated data and apply them to 
predict stress evolution in materials under many conditions. They are able to 
calculate faster and more effectively than many traditional methods. They also 
sometimes combine physics-based models with data-driven models to predict 
conditions more accurately even for situations beyond the training. This makes 
them ideal for structural health monitoring, material design optimization, and 
high-end simulations that involve considerations of cost and time. This, therefore, 
reduces trial and error in experiments and enables engineers to be more assured of 
their designs. AI models will be increasingly integrated with simulations and real-
time monitoring systems in the future. This can assist in designing new materials 
that are suited for particular stress situations and in anticipating failure before it 
occurs. The primary benefits are speed, flexibility, and the capacity to identify 
patterns that humans might miss. There are still issues, though, like the 
requirement for high-quality data, substantial computer power, and close 
coordination between material scientists and AI experts. These problems may be 
resolved in the upcoming years with the aid of cloud-based computing, more 
effective algorithms and improved data sharing. Stronger materials, safer 
structures and more environmentally friendly engineering solutions, could result, 
from the proper applications of AI and material science. 

In Figure 6, we illustrate how machine learning and artificial intelligence aid in 
modeling stress, in structures and materials. Data collection from simulations and 
experiments is the first step. Either AI models or models that combine AI and 
physics, can use this data. The outcomes are applied to practical tasks like 
enhancing materials and keeping an eye on the condition of structures. There are 
unquestionable advantages along the way, such as faster and more precise 
forecasts and fresh insights, but there are also drawbacks, like requirements for 
better data and significantly greater processing power. Future objectives like real-
time monitoring, the discovery of new materials and the development of more 
environmentally friendly designs are indicated by the process. 
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Figure 7 

Detailed analysis of AI and machine learning in stress evolution 

5 Discussion 

Research into the evolution of stresses in materials, indicates significant 
developments within a set of disciplines. The interaction between high strain rates 
and temperature is very important in driving forward the microstructural evolution 
in alloys, especially in highly entropic samples. These will directly affect the 
mechanical properties and stress-relaxation behavior, and surely, future work will 
aim toward the optimization of these interactions, leading to better performing and 
more durable alloys [20]. Advanced computational approaches now replace the 
conventional ways of stress-strain predictions, including the finite element 
analysis and ML techniques. ML techniques provide enhanced prediction 
accuracy in complicated loading conditions and offer precise modeling of 
localized deformation in heterogeneous microstructure. Integration of these ML-
based models with classical computational techniques opens up exciting 
possibilities for handling a wide range of mechanical conditions, with far greater 
efficiency [21]. Another critical area of research that has emerged comprises 
titanium alloys, where innovative methods like laser shock peening and phase 
transformations are being explored to bring improvements in the mechanical 
performance. Stress-induced relaxation and nanodomain engineering are 
prospective pathways to further refine their strength and reliability [22]. Besides, 
stress localization due to grain boundary effects will be increasingly important in 
polycrystalline materials. It has been revealed in studies that grain boundaries 
have a significant effect on the distributions of stresses under different modes of 
deformation; future studies are needed to understand such mechanisms for 
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improvement in stress evolution modeling and reliability in materials [36]. All of 
these developments together guarantee a bright outlook for the design of materials, 
with specified mechanical properties and better stress performance. Design 
optimization has also benefited from stress evolution principles, drawing 
inspiration from nature's load-bearing strategies. Bio-inspired approaches, such as 
self-repair and optimal construction seen in biological materials like bones, 
provide new pathways for creating materials capable of withstanding higher stress 
levels. Principal stress line analysis, though underutilized, offers a powerful tool 
for guiding structural topology optimization by identifying optimal material 
continuity paths. Advanced computational modeling methods, such as the 
regularized extended finite element method (Rx-FEM), have also improved 
damage modeling in composite materials, including delamination and matrix 
cracking, enabling more effective designs. Microscale stress analysis further 
enhances performance predictions by examining stress load-sharing mechanisms 
in materials with microscale particles [22]. The practical applications of stress 
evolution include addressing challenges such as creep, a time-dependent strain 
under constant stress. Modeling creep in materials like concrete and masonry 
enhances predictions of stress redistribution and structural integrity [33]. Similarly, 
the development of ultra-high-strength steels and other advanced materials meets 
modern structural demands for greater performance. However, successful material 
selection must balance performance needs, cost and environmental factors [34]. 
Together, these advances drive the design of safer, more efficient and innovative 
engineering solutions. 

Conclusions 

Implementing ML in modeling the evolution of stress techniques has proven to be 
an effective optimization opportunity, for forecasting various material and 
mechanical systems. These methods make it possible to predict important 
mechanical attributes such as the stress-strain curve, yield strength, and fracture 
growth and also for measuring vast amounts of data obtained from simulations 
and experiments. AI model surrogates and deep learning models working in 
conjunction with FEA tend to capture some level of sophisticated stress 
distributions while incurring significantly lesser costs and time. In fact, AI 
provides many opportunities to monitor and control the structural material 
characteristics during the manufacturing process, in real-time, which significantly 
improves accuracy, consistency and overall quality control. Although these 
breakthroughs provide a considerable amount of growth opportunity, persistent 
gaps still exist, most notably, the dependence on high quality training data, strong 
data augmentation, and efficient computation framework to manage streamlined, 
high dimensional data sets. These problems in AI development should be 
optimally tailored through collaborative efforts with material scientists. There is 
an increasing need to address these gaps to properly utilize AI within material 
designing and mechanical engineering. Future models should focus on complex 
systems that combine traditional logic methods with AI algorithms to improve 
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estimation values and trustability. Combining AI with traditional approaches like 
FEA and continuum damage mechanics holds great promise for solving problems 
related to stress evolution under different types of loading and changing 
environmental conditions. In addition, new methods on microscale analysis or bio-
inspired design principles open fresh frontiers for enhancing material properties or 
structural performance. All AI models undergo a validation process, which 
ensures their dependability and interpretability. It is essential for practical 
applications and these models need to be refined through experimental processes. 
The advancement of AI models can significantly change the paradigm of material 
optimization by doing so quickly and at a lower cost, which in turn, will increase 
engineering safety and efficiency. 
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