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Abstract: Privacy and auditability have been conflicting design requirements for blockchain-
based distributed ledgers since the inception of the field. As purpose-built blockchains with 
permissioned consensus and client access are developing in a broad and diverse range of 
industries, a specific form of this dichotomy is emerging: the need to audit the handling of 
regulated on-ledger financial assets, such as central bank digital currencies, while 
preserving the privacy and confidentiality of transactions as much as possible. This paper 
proposes a novel, privacy-preserving, noninteractive-zero-knowledge-proof-based protocol 
for a blockchain-based distributed ledger, to prove conformance with fundamental 
compliance requirements to external auditing parties. We present an extendable 
implementation and demonstrate the practicality of the approach. 
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1 Introduction 

Blockchain-based distributed ledger technology (DLT) [1] facilitates the creation 
of shared, distributed, ledger-like databases, the integrity of which is secured by 
some form of honest majority consensus across the parties operating the system. 
DLTs, especially smart contracts handling on-ledger financial instruments, are 
proving transformative in numerous industries [2-4]. 

Consortial – cross-organizational, and access-wise consortium-limited – blockchain 
systems are likely to become the subject of audits to ensure compliance with 
regulatory requirements. This is especially true now that digital forms of fiat 
currencies and fiat-backed assets are expected to appear on the ledgers of such 
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blockchains soon [5]. However, directly checking ledger contents often violates the 
privacy (or confidentiality) of the blockchain’s users. Existing solutions supporting 
privacy and confidentiality are often not universal enough (e.g., because they are 
platform-specific or smart-contract-based), do not provide a straightforward method 
to specify requirements, or require additional architectural elements. 

In this paper, we propose a novel approach1 that allows the simple definition of 
blockchain monetary transfer audit requirements as computations in the procedural 
language of the ZoKrates [7] tool. Subsequently, any party with access to the 
blockchain can incrementally create zero-knowledge proofs (ZKPs) [8] of ongoing 
compliance against a periodically published series of block hash commitments that 
do not reveal any ledger data. The auditor can verify the proofs noninteractively, 
eliminating the need for the real-time participation of the blockchain ’ s node 
operators. The auditee simply sends their proof of compliance to the auditor, who 
may verify it whenever they wish. 

Figure 1 provides an overview of the proposed approach. In the design phase, audit 
requirements are algorithmized in ZoKrates. During the following synthesis step, 
the source code is compiled into a low-level representation called a circuit 
(see subsection 3.2 for more details), and the corresponding prover and verifier keys 
are generated. At the operation phase, the auditee generates proofs using their 
prover key, the circuit, and the necessary private and public inputs. The proofs are 
subsequently sent to the auditor party for verification, which can be done with the 
verifier key. Ledger contents are never revealed to the auditor. The auditee makes 
public commitments about the developing state of the blockchain, which enables 
the creation of measures against the consortium keeping “two sets of books.” 

The source code for our prototype implementation has been published on GitHub2 
and is freely available under the Apache 2.0 license. 

The rest of this paper is organized as follows. The next section reviews some 
fundamental concepts our research builds on and compares our work with similar 
approaches. Then, in Protocol Design, we present our privacy-preserving audit 
design and prototype implementation. Finally, we discuss the performance of the 
prototype and the associated costs in section 4, followed by our conclusions in 
section 5. 

 
1  An initial version of the approach was presented at the faculty-level 2021 Scientific 

Student Competition of BME VIK and summarized in a PhD Minisymposium paper [6]. 
However, in comparison to this paper, that work used an interactive ZKP scheme, and 
the showcased implementation was only an early prototype. 

2  GitHub repository: ftsrg/zkp_audit_zokrates 

https://github.com/ftsrg/zkp-audit-zokrates
https://github.com/ftsrg/zkp-audit-zokrates
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Figure 1 

Overview of the process 

2 Background 

In this section, we introduce zero-knowledge proofs, the core technology that 
supports our proposal, followed by an elaboration on the relevance of this approach 
to central bank digital currency (CBDC) and bridging such systems with 
blockchains. We also compare our solution to similar works found in the literature. 

2.1 Zero-Knowledge Proofs 

Zero-knowledge proofs [8], or ZKPs for short, form a relatively new area of 
mathematics, which rely on cryptography to provide means to prove that a statement 
is true or that the prover knows a certain value that fits a set of criteria without 
revealing any information other than the proof (such as the fitting value) itself. For 
example, in self-sovereign identity applications, ZKPs facilitate one to present a so-
called verifiable credential (like an ID card), proving that they are over the age of 
majority without revealing exactly how old they are [10]. In our context, we use 
ZKPs to prove compliance to requirements like “no transaction with a forbidden 
recipient address exists on the ledger” – without disclosing any ledger data. 
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The core idea originates from Goldwasser et al., who introduced interactive zero-
knowledge proofs in 1989 [11]. Over time, several extensions have been developed, 
such as noninteractive proofs, proofs of knowledge, and arguments of knowledge. 
A zero-knowledge (ZK) proof of knowledge means that not only the existence of a 
witness (i.e., fitting value) is proven, but the prover knows a witness to the proof 
[12]. Arguments and proofs of knowledge are different (albeit sometimes used 
interchangeably in the literature) because arguments permit “proofs” of false 
statements that are computationally infeasible to find. In other words, ZK arguments 
are like ZK proofs but with computational soundness rather than statistical (see 
[13]). 

Today, state-of-the-art ZKPs commonly found in literature and used in software are 
succinct arguments of knowledge, such as zk-STARKs (Zero-Knowledge Succinct 
Transparent ARguments of Knowledge) [14] and zk-SNARKs (Zero-Knowledge 
Succinct Noninteractive ARguments of Knowledge) [15]. Succinctness refers to the 
small size and easy verifiability of the generated proofs. Transparency means no 
trusted setup is necessary. ZKPs are used in numerous blockchain-related projects 
[16], such as: 

• Zerocoin [17] and Zerocash [18] (and Zcash [19], its implementation), 
extending Bitcoin [20] with ZKP-based privacy 

• fabZK [21], offering privacy-preserving and auditable smart contracts for 
Hyperledger Fabric [22] 

• StarkNet3 and zkSync4, “ZK-Rollups” for Ethereum [23] 

• Mina [24], an extremely lightweight cryptocurrency platform with ZK-
powered smart contracts 

2.2 Relevance to Central Bank Digital Currency Bridging 

In recent years, central bank digital currency (CDBC), “an electronic, fiat liability 
of a central bank that can be used to settle payments or as a store of value” [25], 
has been a subject of active research worldwide [26]; in a survey done in 2020 by 
the Bank for International Settlements, the majority of central banks (CBs) around 
the world expressed that they are at least exploring CBDC [25]. At this point, there 
are no widely used production implementations yet, but several proof-of-concept 
and pilot deployments have been created5. 

CDBCs promise significantly decreased transaction processing time compared to 
many classic payment solutions (due to the potential elimination of intermediaries 

 
3  www.starknet.io (accessed on 2024-02-13) 
4  zksync.io (accessed on 2024-02-13) 
5  See, e.g., the Central Bank Digital Currency Tracker of the Atlantic Council: 

www.atlanticcouncil.org/cbdctracker (accessed on 2023-05-10) 

http://www.starknet.io/
https://zksync.io/
https://www.atlanticcouncil.org/cbdctracker/
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involved), low transaction costs, and the possibility of programmability and the use 
of legal tender in smart contracts. Payment via cryptocurrencies has always been 
hindering the utilization of the true potential of smart contracts in various industries, 
and existing stablecoins [27] notwithstanding, the use of smart contracts in 
established industries needs proper legal tender in cases when financial transactions 
are also involved. The coming EU-regulated e-money [28] assets will be a part of 
the solution, but equally, we expect CBDCs to play a major role. 

While the possibility of issuing CBDC on a distributed ledger – instead of a classic, 
centralized system – is being explored, recent developments indicate that most 
likely, (a) the authoritative CBDC ledger will host, at most, a very limited and 
controlled set of smart contracts, serving predominantly governmental purposes; 
and (b) directly or indirectly issuing CBDC to open, permissionless blockchains 
will not be pursued soon. 

These hypotheses flow from recent developments in CBDC exploration. Project 
Bakong6, e-Naira7, Project Rosalind8, and OpenCBDC [29] either do not or do not 
intend to support more than a minimal and controlled set of pre-approved smart 
contracts. E-krona9 and e-hryvnia10 plan smart contract support only in a later phase. 
We do not know of any specific platform design that supports the direct installation 
of arbitrary smart contracts. 

Significant technical and policy arguments support detaching the authoritative 
CBDC ledger function from the function of CBDC-handling smart contracts. On 
the technical side, design for latency and throughput can be greatly complicated by 
smart contracts and contract usage profiles, which are “unknown” at system design 
time, especially for high-performance, cross-organizational blockchains [30] [31]. 

Additionally, with wide-scale smart-contract-based programmability, security 
concerns arise, which carry a significant (and, arguably, unnecessary) level of risk 
for the authoritative CBDC ledger [32-34]. Maintaining credible arguments of 
privacy and confidentiality for the ledger also becomes a matter of concern. 

On the policy side, research has already mapped out the approaches for supplying 
smart contracts in DLTs with various forms of fiat-denominated (digital) money [5]. 
A critical insight is that “bringing money to” the smart contracts of a purpose-built 
DLT through techniques like bridging (introduced in the next section) is not only 
one of the viable options but is also far closer to actual rollout in practice than 
production CBDC platforms themselves, as for these techniques, CBDC as the 
source of money supply is only one of the options to enable DLT-internal settlement. 
(Such DLTs are beginning to appear in a regulated manner; see, e.g., the Kate Coin 

 
6  bakong.nbc.gov.kh (accessed on 2024-02-13) 
7  enaira.gov.ng (accessed on 2024-02-13) 
8  www.bis.org/about/bisih/topics/cbdc/rosalind.htm (accessed on 2024-02-13) 
9  www.riksbank.se/en-gb/payments--cash/e-krona/ (accessed on 2024-02-13) 
10  bank.gov.ua/en/payments/e-hryvnia (accessed on 2024-02-13) 

https://bakong.nbc.gov.kh/
https://enaira.gov.ng/
https://www.bis.org/about/bisih/topics/cbdc/rosalind.htm
https://www.riksbank.se/en-gb/payments--cash/e-krona/
https://bank.gov.ua/en/payments/e-hryvnia
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platform11.) Thus, there seems to be little incentive for CBs to take up the risk of 
widely supporting direct CBDC-ledger programmability when the needs of the 
private sector can be supported in these established ways. From a more general 
policy perspective, detaching the authoritative CBDC ledger from the smart 
contract layer is also more in line with the two-layer (i.e., financial institutions in 
intermediary roles) CBDC approaches we see in the emerging platforms [35]. 

2.2.1 CBDC Bridging 

Due to the reasons detailed above, a reasonable scenario for CBs to support CBDC 
programmability without uncontrolled smart contract installation on their CBDC 
ledgers is by bridging CBDC to an attached, permissioned blockchain (whose 
operators can be held accountable): a sidechain. In essence, this means allowing the 
locking of a certain amount of CBDC on the CB’s ledger and minting (i.e., creating) 
an equivalent value of funds on the sidechain ledger. Note that bridging as a concept 
originates from the cryptocurrency world12 but is directly applicable to CBDC-to-
permissioned-distributed-ledger scenarios, too. For a recent survey and gap analysis 
of distributed ledger integration and interoperability, see [37]. Bridging CBDC to a 
consortial ledger enables smart-contract-encoded business rules to have irrevocable, 
atomic, and legally sound monetary side effects upon execution. 

The bridged-out funds can be called shadow CBDC because they can be used much 
like the underlying CBDC on the bridged blockchain, in the knowledge that they 
are backed by CBDC on the original ledger. Shadow CBDC can be converted back 
to the original by burning (i.e., destroying) it on the sidechain and unlocking 
equivalent CBDC units on the CBDC ledger. Figure 2 illustrates CBDC bridging. 

However, bridging also causes the locked CBDC to leave the CB’s immediate 
supervision as transactions happen on the sidechain rather than through the CB. One 
way for the CB to ensure compliance is to audit the transactions on the sidechain. 

 
Figure 2 

CBDC bridging [6] 

 
11  newsroom.kbc.com/kbc-creates-a-first-in-europe-with-the-kate-coin-its-own-digital-

coin-based-on-blockchain (accessed on 2024-02-13) 
12  See, e.g., the 2-way peg protocol [36]: its core idea is to lock funds or assets on the 

main ledger and create equivalent funds or assets on the bridged ledger. The reverse of 
the process can be later performed to “convert” assets back to the main ledger. 

https://newsroom.kbc.com/kbc-creates-a-first-in-europe-with-the-kate-coin-its-own-digital-coin-based-on-blockchain
https://newsroom.kbc.com/kbc-creates-a-first-in-europe-with-the-kate-coin-its-own-digital-coin-based-on-blockchain
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2.2.2 Auditing Financial IT Systems 

Auditing financial information technology (IT) systems is a well-established 
practice and one of the most effective tools for fraud detection [38]. Key audit types 
include those related to bookkeeping and accounting and compliance audits that 
ensure specific laws and regulations are met. The former verifies that the financial 
statements published by the auditee are sound, complete, and accurate by 
performing various tests and reviewing financial documents such as invoices. 
Compliance audits target one or more specific regulations and aim to establish 
adherence to them [39]. 

Regulations often embody anti-money laundering (AML) and combating the 
financing of terrorism (CFT) efforts. For instance, the 26/2020 (VIII 25) regulation 
of MNB (the central bank of Hungary) [40], in effect since 2021, describes how a 
financial screening system should be implemented to comply with the measures 
accepted by the European Union and the United Nations Security Council regarding 
AML/CFT. 

As paper-based accounting is not common practice anymore and IT systems are 
used instead, there is a strong potential to automate the audit process. Artificial 
intelligence approaches have been recognized to be applicable [39], and 
“continuous auditing” [41] has been proposed using blockchain-based 
solutions [42]. 

Analyzing the records of the auditee to detect suspicious transactions, albeit a vital 
step in AML/CFT efforts [43], poses data privacy and confidentiality challenges. 
At the very least, in the EU, the auditing party may have to observe the General 
Data Protection Regulation (GDPR) [44], which imposes strict rules on data 
privacy13. Furthermore, any business ledger, distributed or not, may carry business-
confidential information. 

The privacy-preserving audit outlined in this paper allows the consortium operating 
the sidechain to prove to an auditing party that its ledger’s transactions conform to 
regulatory requirements, without revealing any specific transaction data. 

2.3 Related Work 

Privacy-preserving, blockchain-based payment systems, such as Zcash [19] or 
Monero [45], have existed for several years, many of which are prepared for 
external transaction audits in platform-specific ways. Recent academic work has 
focused on resolving the contradiction between auditability/accountability and 
privacy. Several proposed approaches use smart contracts to implement a payment 
system layer above the blockchain network. For example, [46] presents a prototype 
implementation for efficient, privacy-preserving, and auditable token payments as 

 
13  The auditor and the regulator can be different parties. 
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Go chaincode for Hyperledger Fabric [22]. FabZK [21] extends Fabric to make 
smart contracts auditable without privacy infringement. However, the method 
requires transaction senders to create ZKPs, tokens, and commitments continuously 
– the proposal in this paper does not require any alterations to how the participating 
organizations use the blockchain. Some contributions are not extensions of existing 
systems but implementations on their own, such as MiniLedger [47] and 
PPChain [48]. [47] offers a thorough overview and comparison of several protocols 
and systems for auditable distributed payment systems. 

Concerning CBDC-related applications, one conceptual approach to regulatory 
requirement compliance is to avoid the need for explicit audits altogether by 
platform guarantees. [49] uses ZKPs in a system similar to Zcash to provide cash-
like CBDC while enforcing encumbrances, such as personal holding limits and 
thresholds on the “speed of money” by design. However, in such schemes, the 
regulatory party must either have a node in the system or trust the majority of the 
network operators to adhere to the requirement-enforcing rules of consensus. 

Our approach differs from the known prior art in the following respects: 

(1) Our approach is largely blockchain/DLT platform agnostic; the audit itself 
happens off-chain, with ledger data converted to the required format 
beforehand. Although targeted at consortial/private DLTs, it is also 
potentially applicable in permissionless settings. 

(2) The compliance properties subject to audit are extendable as we utilize the 
ZoKrates language, which resembles generic procedural languages like 
JavaScript. The requirements simply need to be algorithmized and the 
program (circuit) compiled. Over time, audit programs can be created and 
retired freely. Future work will investigate the possibility of creating a 
domain-specific language (DSL) on top of ZoKrates to express properties to 
be audited. 

(3) The organizations using the blockchain need not actively participate in the 
audit process, and creating proofs of compliance needs cooperation only 
from one blockchain node operator (who can change over time). 

zkrpChain [50] and zkLedger [51] are the constructions that align the most with our 
work regarding goals and share core design ideas. However, neither offers the same 
flexibility as our approach. zkrpChain is built on smart contracts and is specific to 
Hyperledger Fabric. zkLedger focuses on auditing banks, which are blockchain 
nodes (not end users), and imposes additional requirements, such as the participants 
maintaining a so-called commitment cache and actively engaging in the audits. 

In CBDC bridging, this would mean members of the sidechain consortium using 
the blockchain would have to contribute to the audits individually. Our protocol is 
universal: any criteria that can be expressed as a computation in ZoKrates can be 
verified. No complex interaction is needed from the participants; particularly in 
bridging scenarios, from the operators of the bridged chain. 
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This work is a direct continuation of [6], in which we presented an early version of 
our approach. A significant difference is that while we relied on an interactive zk-
STARK protocol (with a prototype using Zilch [52]) in the previous work, here we 
present a zk-SNARK-based, noninteractive, asynchronous protocol.  
A corresponding prototype implementation has been created in ZoKrates [7]. 
Noninteractive proving suits the audit settings we predominantly target much better 
(see the subsection on relevance to CBDCs). ZoKrates enables a modular and 
extendable proving scheme (as presented in the next section). 

3 Protocol Design 

In this section, we define the audit protocol, which allows the auditee to prove that 
the current or a historical blockchain state adheres to the requirements imposed by 
the auditor. 

The blockchain model in the following specification matches the one in our 
previous work [6]: in essence, transactions are (source, destination, amount) 
triples 14, and blocks consist of the previous block’s header’s hash value and a 
Merkle tree [57] constructed from the transactions in the block. The only extension 
to this model is the inclusion of an additional index value for each transaction in a 
block, which is to ensure that the Merkle tree’s leaves are unique. 

There are two basic aspects to consider: (1) how the conformance of a given state 
is proven and (2) how this proof is committed to the real blockchain state. The latter 
is crucial to ensure that the blockchain node operator is not secretly generating their 
proofs based on a different ledger, by “keeping two sets of books”; instead, they 
generate a proof from private and public inputs, where the data on-chain is private 
(this is a peculiarity of our use case, and is in contrast to the usual blockchain-related 
applications of ZKPs, where the on-chain data is usually the public input). Therefore, 
without precautions, the auditee could feed fabricated but otherwise valid data into 
the audit program and thus present a fake proof. We use cryptographic hashes to 
prevent this. 

3.1 Audit Program Specification 

Audit programs are computations that take some private and public inputs and 
optionally return an output. Such programs are used to express audit requirements. 
Refer to Figure 3 for a simple overview of audit programs. 

 
14  Where source and destination are Ethereum-style addresses (the last 20 bytes of the 

participant’s public key in hexadecimal format; i.e., 40 hexadecimal characters) 



B. Z. Péter et al. Privacy-Preserving, Noninteractive Compliance Audits of 
  Blockchain Ledgers with Zero-Knowledge Proofs 

– 16 – 

The application of zk-SNARKs to specify computations increasingly relies on a 
series of transformations: e.g., from program logic through arithmetic 
circuits (ACs) [9] or rank-1 constraint systems (R1CSs) 15  [8] to Quadratic 
Arithmetic Programs (QAPs), which in turn form satisfaction problems. Some 
software frameworks offer a higher-level language that is automatically compiled 
into circuits under the hood. Our previous (interactive-proving) experiments were 
conducted using Zilch [52], which comes with an object-oriented, Java-like 
language for this purpose called ZeroJava. ZoKrates, the framework used in the 
prototype implementation for this paper, has a very generic procedural language as 
well, also named ZoKrates. Both languages can be used to define requirements with 
elementary programming knowledge easily. 

These programs are considered public information: both the auditor and the auditee 
know how the computation is defined and any public inputs it takes. Private inputs 
are known only by the auditee. For example, an audit program that asserts that the 
recipients of all transactions are whitelisted parties could take a list of transactions 
as a private input, a whitelist (list of addresses) as a public input and return a 
Boolean value signifying whether every recipient was on the whitelist. In this trivial 
case, the audit program might consist of a linear search in the whitelist repeated for 
every transaction and a Boolean flag value returned at the end of the program. 

 
Figure 3 

Audit programs and commitments 

3.2 Proof Generation 

Proofs are generated for a specific blockchain state (i.e., a range of blocks) and some 
specific criteria expressed in a ZoKrates program. Since it is rather impractical 

 
15  Simply referred to as circuits from now on; transformation between the formats is 

possible in both directions [7]. 
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(partially due to the resource requirements of generating proofs) to verify every 
criterion in a single run, it is advisable to develop audit programs in a modular 
manner and execute them independently, possibly in parallel. 

Zero-Knowledge Proof Generation in ZoKrates 

ZoKrates [7] is a zk-SNARK [15] toolkit and, therefore, generates ZKPs based on 
zk-SNARK constructions, first introduced in subsection 2.1. The concrete schemes 
supported are Groth16 [53], GM17 [54], and Marlin [55]. Although a technical 
description of the underlying cryptographic primitives is out of scope for this paper, 
we summarize the proof generation process – see Figure 4 for an overview. 

First, the desired computation is encoded in the simple, high-level DSL of ZoKrates. 
Typically, assertion statements are used to secure the validity of the resulting proofs. 
For example, a computation ensuring that a given address is eligible to receive funds 
might involve iterating over a list of allowed addresses and verifying that the given 
address matches one of the allowed ones in an assert statement. Valid proofs can 
only be generated by successful computations with no failing assertions. 

 
Figure 4 

ZoKrates proof generation 

Then, ZoKrates compiles the high-level code into a so-called flattened code: in 
simplified terms, an R1CS-compatible circuit16. For more complex programs, this 

 
16  The zk-SNARK scheme requires quadratic arithmetic programs (QAPs) [57] under the 

hood, but there are mappings from both ACs and R1CSs to QAPs [7]. QAPs implement 
the same logic but using polynomials. 
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can take a significant amount of time and consume substantial storage (in the 
magnitude of gigabytes). Based on the generated circuit, prover and verifier keys 
are generated (in a phase called setup). These constitute cryptographic material 
required to generate and verify proofs, respectively. 

Based on the flattened code and the inputs to the computation (public and private), 
a witness can be created – computing a witness by executing the computation is 
equivalent to finding an assignment of variables that satisfies the constraints in the 
circuit [7]. Together with the proving key, a proof can be generated for the witness. 
To verify the proof later, the circuit and all public inputs are necessary. 

3.3 Commitment to Real Blockchain State 

There are fundamentally two ways to ensure that the prover has fed private input 
originating from the actual ledger into the program(s). We have chosen the second 
approach because it does not require architectural changes on the blockchain side. 

3.3.1 Blockchain Node Managed by the Auditor 

Some blockchain systems may allow the creation of lightweight nodes, which 
behave mostly the same as regular nodes, but instead of synchronizing entire blocks, 
they only consider block headers. This way, they cannot access concrete transaction 
details but only hashes and metadata such as the block height. 

If, as part of the proof, the auditee shows that the root of the Merkle tree [57] built 
from the transactions in their private input (i.e., the supposed factual transaction 
data) is indeed the same as the one found in the actual block headers, the auditor 
can be confident that the probability of the proof being fake is insignificant. 

A clear downside of this method is that the auditor must have its own node in the 
blockchain, and not every major blockchain implementation even offers such light 
nodes. For example, Hyperledger Fabric [22] did not have such a feature at the time 
of writing. Ethereum [23] does have light nodes, but practical applications of the 
process presented in this paper likely call for private, permissioned systems. 

3.3.2 Commitment via Hash Traces and Checkpoints 

If the auditor knows the contents of the genesis (the very first) block of the bridged 
chain, it is possible for them to trace back consecutive audit results to that block. 
For example, to audit the first block immediately following the genesis block, the 
audit program could take the hash of the genesis block’s header as a public 
parameter and prove during the computation that the header of the audited block 
contains this hash value. 
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Of course, this does not guarantee that the transactions within this first block are, in 
fact, the transactions that are on the blockchain. It is technically possible for the 
auditee to maintain a separate phony blockchain with valid transactions that can be 
traced back to the commonly known genesis block through hash values. Therefore, 
the auditee must create a checkpoint at certain time or block-height-based intervals. 
This means verifying that a given block has a certain hash value in its header.  
The transactions were not faked if this hash matches the value reported in audits. 

3.4 Complete Audit Process 

Prior to the audit, the auditee converts the data on the blockchain to a format 
accepted by the audit protocol. This can happen continuously or in an ad-hoc 
manner when an audit is due. At this point, the compiled audit programs should be 
available to the auditee. They generate a ZKP for every audit program and thus 
prove the satisfaction of all requirements. The result is a set of files, which are then 
transferred to the auditor, who can use the original source code of the programs and 
the public inputs to verify these proofs. 

3.5 Auditing a Representative Set of Requirements 

As a prototype implementation, we have created three audit programs that together 
verify the following five simple requirements: 

(1) For every transaction, the sender account has a sufficient balance to 
perform the transaction. 

(2) The recipient of every transaction is whitelisted. 
(3) After each transaction, the balance of the sender’s account equals their 

balance immediately before the transaction minus the amount of funds 
transferred. 

(4) After each transaction, the balance of the recipient’s account equals their 
balance immediately before the transaction plus the amount of funds 
transferred. 

(5) The hash value found in every block’s header equals the root of the Merkle 
tree formed by the transactions in the previous block (except, of course, 
for the genesis block). 

These form a representative, basic set of essential ledger data requirements, but it is 
trivial to include additional requirements. For example, requiring that no 
transaction’s value exceeds a certain threshold could enforce cash-like 
encumbrances on the blockchain. 

We have implemented the verification of these five requirements in three named 
audit programs: 

• balances checks requirements (1), (3), and (4) 
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• whitelist checks requirement (2) 
• merkle checks requirement (5) 

The programs could take different input parameters (derived from the same ledger 
contents) since not all blockchain data is required for each computation. For 
example, to prove that transaction recipients are on the whitelist, merely a set of 
transactions is required. On the other hand, balances, the program that proves the 
valid change of account balances throughout several transactions, needs a 
consecutive list of those transactions and the initial account balances. 

Figure 5 shows a simplified overview of how the above five requirements can be 
audited using the three programs. Note that the three proofs can be generated 
simultaneously from the same input data. 

 
Figure 5 

The three prototype audit programs 

3.5.1 balances: verify the correct change of balances over time 

The balances program takes as its input parameters a list of initial account balances, 
a list of blocks (both are private), and a commitment in the form of a list of 
transaction hashes (public). It then iterates over all transactions in all blocks, 
validating that the source account’s balance is enough to cover the transaction and 
subsequently updating the accounts’ last known balances. At each iteration, it also 
verifies that the transaction’s hash equals the corresponding commitment hash. 
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3.5.2 whitelist: verify that every transaction’s recipient is whitelisted 

This program receives a list of blocks only known by the auditee and a public list 
of whitelisted accounts, plus the same commitment hash list as balances. It then 
asserts that for every transaction in every block, the recipient address can be found 
within the whitelist via a linear search. Like balances, it compares each 
transaction’s hash to the commitment values. It is theoretically possible to audit the 
contents of an entire blockchain ledger using this and the previous program 
simultaneously, but they are intended to be used for smaller segments with 
checkpoint states in between. 

3.5.3 merkle: verify that the block hashes are valid 

As the SHA2 [58] hash functions are not optimized for ZKPs, performing as few 
SHA256 computations within a single audit program as possible is desirable. In our 
implementation, the program can verify the correct hash value of the list of 
transactions of a single block. Upon receiving a (constant size) transaction array and 
a hash, it builds a Merkle tree from the transactions and compares its root to the 
input hash value, asserting that they are equal. With this program, a separate proof 
must be generated for each consecutive pair of blocks, but the process can be 
parallelized. 

4 Performance & Cost Considerations 

One of the problems with zk-SNARK [15] proofs today is that proof generation is 
very resource-intensive and may take a long time. In our experience, compiling 
ZoKrates source code is by no means an easy task for the computer either. For more 
complex programs (such as the one that computes unoptimized cryptographic 
hashes), exceedingly large memory and storage space was necessary. For eight 
transactions, building a Merkle tree [57] demanded somewhat more than 64 
gigabytes of memory and 32 gigabytes of storage space for compilation. Hopefully, 
with the development of hashing algorithms more suitable for ZKPs, such hash 
computations will become more performant. 

Nonetheless, the per-transaction costs are quite promising. The minimal Amazon 
EC2 virtual private server instance that we found was necessary to compile the 
source code and compute all three proofs was r6a.4xlarge, which – at the time 
the measurements were taken – cost around $1.09 per hour. In total, it took around 
1.5 hours to generate the proofs, meaning that the per-transaction proving cost was 
approximately $0.016 (USD). The synthesis step, which includes compiling the 
code and generating the proving and verification keys, takes considerable time, but 
does not contribute to the operation cost, since it only has to be done once. 
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For our initial prototype, this cost result is encouraging; although not yet apt for 
microtransactions, it is well in the realm of practical feasibility for systems handling 
typically higher-value transactions (the cost is at the order of magnitude of normal 
bank transactions in many jurisdictions). Also, as we work with ZoKrates, a front-
end to three different zk-SNARK schemes even today, we expect that with the rapid 
development of the ZKP field, our programs can become more resource-efficient 
without significant modifications. Finally, we chose SHA256 [58] as it is a very 
strong “default” hashing algorithm in the blockchain space; future research will 
evaluate the applicability of ZKP-friendly hashing algorithms, such as Pedersen 
hashes [19]. 

Figures 6 and 7 show the time and storage space required for the different phases of 
the three audit programs. The data was obtained on the aforementioned 
r6a.4xlarge AWS instance with an input of ten blocks, each containing ten 
transactions. The balances program took the longest to generate a proof at over four 
minutes, followed closely by the merkle program. The program that asserts whitelist 
membership was slightly faster. Due to the complexity of SHA256 computation, 
the merkle program took the longest to compile and consumed the most storage 
space by far. Since the zk-SNARKs generated by ZoKrates are succinct, the proof 
size is negligible, but the witness generated for the proof has a significant size (in 
the magnitude of hundreds of megabytes). It should be noted that the measured 
operation times for merkle apply to a single block of the input data, so the total time 
this program requires to prove conformance of the 10-block input is ten times the 
value seen on the bar chart. 

 
Figure 6 

Time and space requirements of the prototype audit programs’ synthesis 



Acta Polytechnica Hungarica Vol. 21, No. 11, 2024 

– 23 – 

 
Figure 7 

Time and space requirements of the prototype audit programs’ operation 

Conclusions 

In the world of private blockchain systems and especially within the context of 
bridged CBDC, we expect the need for ledgers to undergo audits, in order to ensure 
compliance with regulations. However, this would often unnecessarily expose 
potentially sensitive on-ledger data to the auditors. With our proposed approach, 
harnessing the power of zero-knowledge proofs, it is possible for an auditee to prove 
compliance with predefined requirements without revealing sensitive information. 

In the paper, we have presented a design for a privacy-preserving noninteractive 
audit protocol and a prototype implementation using ZoKrates. The prototype’s 
performance is promising, but we also see several applicable optimizations.  
The proposed design has applications in cross-organizational distributed ledger 
systems and can also be extended to public blockchains. 
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