
Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 123 –

Game-Creative Learning in Programming
Courses Over 15 Years

Emília Pietriková, Norbert Ádám and Anton Baláž
Department of Computers and Informatics, Faculty of Electrical Engineering and
Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia
E-mail: emilia.pietrikova@tuke.sk, norbert.adam@tuke.sk, anton.balaz@tuke.sk

Abstract: This article highlights the impact of game creation on an introductory
programming course (CS0, CS1) combined with problem-based learning. It introduces and
defines the Game-Creative Learning (GCL) approach, which gradually transforms
traditional 'learning from scratch' methods into an innovative framework where students
develop their own computer games while learning a new programming language. Over 15
years, this approach has engaged over 10,000 students – novice programmers, addressing
educational challenges and leading to higher course quality, increased motivation, and
better student engagement. Beginning with simple tasks like playing with Karel the Robot,
students' progress to creating their robots and ultimately developing 2D games.
Throughout the course, scores and levels of engagement are assessed and tracked in a
competitive environment. This approach aligns with Bloom's taxonomy by guiding students
progressively through its cognitive levels.

Keywords: Game-Creative Learning; Computer Science Education; Programming
Education; Bloom's Taxonomy; Courseware; Higher Education; Problem-Based Learning;
Novice Programmers; Karel the Robot

1 Introduction

Gamification is not a new concept. As early as the 17th Century, J. A. Comenius
called for educational innovations, including the introduction of games into
education [1]. In the last two decades, with the advent of new technologies, the
popularity and importance of computer games significantly increased, which also
affected students [2]. Today's students are not the breed their educators used to be.
M. Prensky in his well-known publication [3] states that today's students are
digital natives while their teachers are digital immigrants. His study is a powerful
message to teachers, a call to integrate modern information technology into
academic courses as their natural component.

E. Pietriková et al. Game-Creative Learning in Programming Courses Over 15 Years

 – 124 –

We know the industry demands skilled programmers. However, today's students
differ from those for whom standard programming courses were originally
designed. These courses typically begin with 'Hello world!' programs, move
through basic I/O formatting and simple mathematical operations, and culminate
in challenging programming concepts. Such an approach is often unattractive to
modern students. Even if the educational process uses computers, the practical
outputs of the course usually consist only of a simple screen with a few numbers.
Students consider the idea behind these numbers to be uninteresting and the
practical application of these to be unrealistic.

This paper describes the innovations applied to an introductory programming
course (CS1 or CS0) implemented gradually over 15 years. This process has
impacted over 10,000 novice programmers over the course of 15 years. As stated
in [4], there is no need for innovation if the process is working well, so our work
relies on the successful implementation of game-based solutions of multiple
studies like [5] or [6]. Reflecting [7], we designed an educational system fitting
the needs, goals, and interests of students wanting to learn programming.

We named this approach Game-Creative Learning (GCL) as it is a subset of
problem-based learning (PBL), influenced by elements of gamification and game-
based learning (GBL) [8]. PBL has been popular mainly in the last two decades
[9]. Originally, PBL was popularized by [10], following their research concerning
students' reasoning abilities. The approach arose from the desire to give students
an opportunity to apply practical and theoretical knowledge to problems within
their trade, replicating features of real-life application contexts. This means a clear
move away from the previous approach. To date, PBL is considered a relatively
stable learning approach, delineated by specific ways of implementation [11].
Since then, many studies have been published – most report primary concerns
linked to PBL, for instance the prescriptive model by [12], proving that the
presence of the task model results in spending much more time on discussing the
problem situation and on planning and selecting the activities to be performed.

Recently, gamification has risen due to many influential studies, including [13] or
[14]. One of its goals is to create close ties between the users and the environment
to increase its popularity [15]. In education, the environment is a set of tools to
increase student engagement, i.e., one of our primary motivations. An example of
this is the use of an educational MMORPG called CMX, which has demonstrated
improvements in students' learning and motivation in programming [16].

The following study is dedicated to programming teachers intending to transform
their practices interactively to raise skilled programmers. The hypothesis: If we
use GBL and PBL to innovate our educational approach used in academic
courses while preserving their original content and aims, we will increase the
knowledge and engagement of our students. In line with [7], we build an effective
learning environment to train good programmers and achieve everyday
engagement.

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 125 –

2 Game-Creative Learning

We coined the term Game-Creative Learning to denote learning by creating a
custom computer game in three stages – see Fig. 1. In the first stage, students play
a game to learn elementary programming concepts and become familiar with the
domain. This approach was inspired by the GBL approach [8], except that this
game serves as a model for the games the students would create later (third stage).

The second stage includes recreating the game the students previously played,
following the lecturer's instructions or a guide. This involves a gradual handover
of the knowledge of the programming language required to master the specific
problem. Following this approach, students remain motivated and don't get
overburdened by the complexity of the programming language and the problem
itself. It also allows us to dig deeper into specific language concepts. This
approach was inspired by PBL [9].

The third stage represents a slight transition to developing a new, more complex
game and specific language concepts. The aim is to address a nontrivial problem
using an industrial programming language. The intention is to reuse what students
already know but in different problem sets and to introduce new and more
complex issues. In this stage, students also have enough space to be creative and
to recognize the associations with specific parts of the second stage.

Figure 1
Game-Creative Learning: General idea vs application in CS0/CS1

An essential element of this approach is the learning environment. It includes
practical guidelines for the second stage and advice on tasks for the third stage.
We developed e-learning materials as part of this environment, clearly outlining
learning outcomes and practical objectives [17]. Additionally, we provided
detailed problem descriptions and instructions for solving them. We also included
additional tasks and resources.

Given the complexity of our learning environment, the GCL approach is further
supported by version control and automated assessment tools. However,
evaluating the correctness of the entire solution, including the quality of the code,

E. Pietriková et al. Game-Creative Learning in Programming Courses Over 15 Years

 – 126 –

requires a robust mechanism. In our experiment, we assess student assignments
through an automated tool and checks by tutors, depending on the problem's
complexity. Despite the significant number of studies on automated code
assessment, our approach is the closest to [19].

Throughout the term, we track the score of the students, which encourages
students to be active and competitive. As a result, the particular game assignments
often end in multiple attractive custom solutions complemented by graphics or
additional game features.

3 Course Innovation: Experiment

Our introductory programming course (CS1 or CS0) is run during the second term
of our undergraduate program. This mandatory course is based on a sophisticated
learning environment focused on procedural programming. Every year, it is
attended by hundreds of students (having mostly no prior programming
experience)1: 2009-946, 2010-1124, 2011-789, 2012-802, 2013-497, 2014-503,
2015-670, 2016-603, 2017-636, 2018-606, 2019-688, 2020-757, 2021-706, 2022-
693, 2023-565, 2024-777. The course curriculum does not differ substantially
from the curricula of standard academic courses, though specific topics have been
reorganized and adjusted to the innovations.

When planning the innovations, the first task was to select a suitable programming
language. Based on surveys [20] and [21], we had to choose either an educational
language as Karel the Robot [22], or an industrial one as C. Educational languages
are simpler to understand and to learn algorithmic thinking, but usually,
impracticable. On the other hand, industrial languages can motivate students,
though starting with them means beginning with a steep learning curve.

In our experiment, we decided to get the best of both worlds – to use the
educational pseudo-language Karel the Robot as a C library. Based on [23], we
did not use the language in an isolated fashion. Considering the entire curriculum,
we allowed the students to follow the C syntax rules from the very beginning,
even though they worked in the environment of the robot [24].

A further step was task selection. For beginners, we preferred to use a sole but
more complex task instead of multiple but simpler tasks. According to [20], we
used micro-worlds as a physical metaphor for various algorithmic problems since
it is easier to understand the robot's movements within the world's limits than to
understand cycles using vectors or Fibonacci sequences.

1 The fluctuation in student headcount is influenced by demographic changes and other

factors that are not directly related to the educational content or delivery.

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 127 –

In the 15 years, we have gradually applied the innovations in smaller steps.
Initially, we divided the course into two stages: Playing with and then creating
Karel the Robot. Later, we added a third stage focused on creating another game.
Additionally, we enhanced the learning environment by developing tutorials,
implementing a version control system, and automated assignment assessment.

As a result, the course consisted of three stages, each using different features of
PBL, GBL, and gamification, according to the proposed GCL approach:

1) Using Karel the Robot – algorithms served as games.
2) Implementing students' robot – custom (game) library.
3) Implementing Sokoban – advanced programming of 2D game.

3.1 Stage I: Playing the Robot

Based on the idea of associating industrial requirements with education, we
implemented the robot as a C library in the first stage. This allowed us to adjust
the programming language to the specified requirements, i.e., suppress any
unwanted language features and replace them with custom macros, procedures,
and types. So, students could focus on introductory programming elements,
namely brackets, semicolons, or function calls.

Figure 2
Environment of Karel the Robot: Example of initial and final situation

Karel the Robot inhabits a 2D game environment consisting of avenues and streets
blocked by walls and corners containing objects called beepers – see Fig. 2.
The world is inhabited only by a single robot that can move only forward, turn 90
degrees to the left, pick up a beeper from its current position (if there is any), or
place a beeper at its current position (if it has any). The robot carries the beepers
in its bag and can detect whether it is empty. The robot can also determine the
direction it stands in (one of the four cardinal directions) and whether there is a
beeper at the current corner (robot's current position).

Students create simple programs for the robot, through which they solve problems
in a 2D environment. Since they use the library, playing with the robot is subject
to C syntax. Playing the game, students learn elementary language statements and

E. Pietriková et al. Game-Creative Learning in Programming Courses Over 15 Years

 – 128 –

the basics of flow control and cycles. All programs include the karel.h header file
and are compiled as C programs. Robot commands are represented by calls to
library functions like void turn_on("world.kw"), void step(), void
pick_beeper(), int facing_east(), or int beepers_in_bag().

Students can create new commands using custom functions in C. However, they
do not use data (variables) – this allows for hiding specific topics, namely types or
I/O formatting. We introduce them in the second stage. Instead, the library
provides the loop(number) function.

Three works inspired the design of Karel and the command names, originally
implemented in Pascal [25], Java [26], and a pseudo-language [21]. Fig. 2 shows
an example of the environment. In the example, the task is to find a beeper by
navigating through a maze. The situation on the left represents the initial state,
while the situation on the right represents the final state. Naturally, the solution
should be adaptable to other similar world maps. Fig. 3 shows such a solution,
comparing the same program written in C, a Pascal library, and Karel's original
pseudo-language.

Figure 3
Comparison of a program in C, Pascal, and pseudo-language of Karel the Robot

In the first stage of the course, we achieve two goals:

• Students learn elementary programming concepts and train their
algorithmic thinking.

• Moreover, they work with attractive game outputs from the beginning.

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 129 –

3.2 Stage II: Creating the Robot

The second stage of the course benefits from the first one, in which the students
use the library as a black box. In this stage, the domain is already known, and the
problem is already understood. So, the goal is to create a custom robot library
(approx. 500 LoC), following the detailed instructions. The students' job is to
implement every robot command, in which they deal with I/O formatting,
variables, arrays, structures, and pointers. This way, the students transition from
playing games to creating them.

In the second stage of the course, we achieve two goals:

• Students deepen their understanding of key programming concepts.
• They enhance problem-solving skills through the development of a

functional robot library.

To address advanced problems, namely working with dynamic data structures or
memory allocation, and to support independent work, we added a Sokoban game
add-on, described in the following section.

3.3 Stage III: Creating a Game

In the last stage, students create their own 2D computer game (approx. 650 LoC).
Sokoban is a simple logic game representing the third GCL stage. It covers
advanced topics, dynamic memory management and pointers, practically reflected
in the individual game levels. Although students have guidelines to support them,
detailed steps are not provided at this stage. Students can rely only on the practical
hints provided.

Technically, Sokoban is similar to Karel, they both use a 2D world, but it is a real
game. Since we consider students gaming natives, we believe this supports their
motivation. To manage display controls, we decided to incorporate the Curses
programming library [27]. Fig. 4 depicts one game level.

DELIVER DELIVER
6/6 0/6
 ##### #####
 # # # #
 #$ # # #
 ### $### ### ###
 # $ $ # # #

..# # # ### ####### **#
$ $..# # @**#
#@#### ..# ##### #### # #### **#
 # ### ###### # ### ######
 ######## ########

Figure 4
Sokoban game level: Example of initial and final situation

E. Pietriková et al. Game-Creative Learning in Programming Courses Over 15 Years

 – 130 –

The symbols have the following meaning:

• # A wall through which the player cannot pass,
• $ A box that player can push,
• @ The player,
• . The target position of the box,
• * A box placed on a target position,
• SPACE The floor on which the player can move,
• DELIVER Boxes yet to be shifted to target positions.

In addition to learning the advanced aspects of procedural programming, the third
stage provides sufficient space for student creativity, usually manifested as new
game elements or visual graphics. Fig. 5 depicts one of these solutions. In addition
to these items, tracking the score of students supports competition.

Figure 5

A graphical representation of Sokoban

In the third stage of the course, we achieve three goals:

• Students apply advanced programming techniques to create a 2D game.
• They exercise creativity by experimenting with game and visual designs.
• They gain confidence by independently developing software projects.

3.4 Assessment

During the 15 years, we developed tools for automated assessment of student
assignments. The assessment is combined with the lecturer's checks to evaluate
the quality of students' code [18, 19]. Today, the course incorporates four
assignments, each linked to a particular course stage, while the implementation of

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 131 –

Sokoban is split into two assignments: The implementation of the Sokoban
environment and the development of the individual game levels.

Students push their code in a versioning system. The automated assessment tool
connects to Git [28], and generates regular feedback. With this, students have a
chance to fix potential errors and improve their overall score before reaching the
deadline. It enhances student engagement throughout the term, which is one of our
main goals. Another goal is the early detection of potential shortcomings. Our
intention is not to assess a black box at the end of the term but to identify the
specific problems as early as possible [4].

4 Measurement and Evaluation

We use three metrics to evaluate our experiment: student activity/engagement,
knowledge retention, and student opinion. Analyzing the results of the 15 years,
we see that the GCL approach is a success.

4.1 Student Activity & Engagement

The first metric focuses on identifying student engagement, one of the GCL goals.
In particular, it tracked the course web sessions, the committed code (Git), and
problem discussion entries.

One-term results are in Fig. 6. The upper and lower charts show student activity
throughout the term. In both graphs, several peaks indicate typical student
behavior: The work intensity increases with the approaching deadline. Initial
exposure to new tools like Git caused peaks in activity during Assignment 1.
Ideally, there should be no peaks near the deadlines, as students are expected to
commit their assignments well in advance. However, on a weekly scale, the
differences in the curves are negligible.

4.2 Knowledge Retention

The second metric incorporates student score comparison. The chart shown in Fig.
7 captures the score rate density in the period ranging from 2009 to 2024. We aim
to determine to what extent our knowledge-increase expectations have been met.

The results revealed that a significant number of students achieved borderline
scores. However, comparing the particular box plots, a higher score is evident
every second year. Therefore, we state that GCL leads to an improvement in the
knowledge acquisition process.

E. Pietriková et al. Game-Creative Learning in Programming Courses Over 15 Years

 – 132 –

Figure 6
Student engagement data

Figure 7
Student score over a 15-year period

A detailed examination of the score rates revealed some shortcomings of the last
stage. These included the fact that most discussion entries appeared on the pages
related to the Sokoban assignments (the game and the levels) and the lectures
dedicated to the related topics of modular programming, multi-dimensional arrays,
and pointers. Since the problem could lie either in the third stage of the course or
in the third stage of the GCL, we did another experiment with an object-oriented
programming course (with the participation of 170 students). The course's
curriculum differed, but the GCL approach remained the same.

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 133 –

Figure 8
Tracking student scores during one assignment period

The results of the student progress in the assignment period are shown in Fig. 8.
Almost 24% of students engaged in this experiment was unsuccessful (reaching a
score below 8). On the contrary, the mean score of successful students was 10.99
out of 13. This indicates that students are receptive to the education process and
improve gradually throughout the term. Due to this, we can consider GCL as a
factor contributing to knowledge increase.

4.3 Students' Opinions

The last metric focused on the students. Incorporation student feedback into
course design is essential for continuous improvement. Reflecting approach in
[29], we regularly gather and analyze student feedback. The aim is to collect the
students' opinions, reflecting their satisfaction and any suggestions for further
course improvements. In particular, we found two opinions to be relevant:

• I think I understand procedural programming concepts,
• Karel helped me understand basic programming concepts.

E. Pietriková et al. Game-Creative Learning in Programming Courses Over 15 Years

 – 134 –

Figure 9
Measurement of students' personal opinion

The chart depicted in Fig. 9 shows that Karel significantly contributed to
mastering procedural programming.

According to [3], student satisfaction is influenced by several factors. This is why
we are interested in their personal opinion. Here are some examples of the most
typical opinions:

• Describe your experience with Karel:

o I like that it visualized things, which got me into programming
(2010);

o It clarified some issues I previously didn't understand (2016);

o Finally, I saw theory in practice, and it was fun because it was a
game (2020);

• Explain your first experience with this course:

o It was my first game (answer provided by many respondents);

o I have always wanted to create my own computer game, and I
plan to add my elements, including shooting or special beepers
(2012);

o I like this form of learning; I was looking forward to every new
week (2015);

o I like the tutorials describing various issues and their solutions
(2019).

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 135 –

4.4 Threats to Validity

All achieved results might be distorted by possible threats, which are challenging
to eliminate. In our study, we identified four key threats: External web visitors,
inconsistent commit behavior, off-platform discussions, and student dropout. We
explain them closely in the following section.

Since the course web is public, it is likely that the session counts also include
random visitors. So, we combined the first measurement with tracking both
commits and the discussion entries.

The commit rates could be higher if all students gradually committed their
solutions. A few students tended to commit their solutions only once, upon
finishing the assignment, even if they were active almost daily. This was caused
by the lack of experience using the version control system. Better support in using
these tools could eliminate the problem.

Discussion rates could also be higher. This is caused by the fact that students often
lead discussions beyond the course environment using social media. Even though
the first threat might cause the student engagement figures to be lower than
reported, the other two might have the opposite effect.

The statistical decrease in student headcount during the term, common in
environments with large student populations, can distort the overall results of
student score tracking. More sensitivity to realistic input measurement techniques
could yield a more accurate result.

5 Integrating Bloom's Taxonomy

When classifying educational objectives, we concentrated on the cognitive process
instead of knowledge [30]. We believe our work contributes to the achievement of
the cognitive objective, the higher application, aligned with the statement above
that In computing, we might hypothesize that learning objectives are what we
might term a higher application. This is why we focused on higher application
when classifying educational objectives. Fig. 10 shows a revised model for
computing, incorporating the capstone level of higher application, relying on the
interpretation categories of Bloom's taxonomy, as stated in [31].

The model shows that the third stage of GCL enhances the Remember,
Understand, Apply, and Analyze levels, which reflects learning elementary
concepts. Students can identify particular constructs of C in a piece of code,
recognize the concept code dealing with the subject matter (Remember), translate
algorithms from one form to another, and explain a concept or an algorithm
(Understand). They can apply a known process or algorithm to a familiar problem

E. Pietriková et al. Game-Creative Learning in Programming Courses Over 15 Years

 – 136 –

(Apply) and break down a programming task into its components and organize
them to achieve an overall logic objective (Analyze) [32]. So, students use the
game to think, though they can still not solve complex tasks.

The second stage enhances the Analyze, Evaluate, and Create levels, reflecting the
implementation of a solution to the complex task. Students can break a task down
and synthesize the components (Apply), determine whether the code meets the

Figure 10
Integrating Bloom's taxonomy with the Game-Creative Learning approach

requirements, evaluate its quality and define an appropriate testing strategy
(Evaluate), and propose new alternative algorithms to solve a complex task
(Create). Nevertheless, they can still not use complex libraries and software
technologies flexibly.

The third stage enhances the role of the higher application on top of the Analyze,
Evaluate, and Create levels. Every student reaching this level can analyze, design,
implement, and test software solutions on their own and use advanced software
libraries, tools, and technologies effectively. Thus, students are moving through
all levels of Bloom's taxonomy – from learning by playing games to learning by
creating games.

Conclusions

This study describes Game-Creative Learning (GCL) as a unique educational
approach, combining elements of gamification [15], game-based learning [8], and
problem-based learning [11]. The proposed hypothesis states that the innovation
of the educational approach in an academic course increases student knowledge.

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 137 –

Additionally, it enhances student engagement, preserving the original content and
aims of the course. This hypothesis was verified in multiple ways.

The GCL approach has demonstrated success in enhancing student engagement
and knowledge acquisition over 15 years, engaging over 10,000 students. By
progressively guiding students through increasingly complex programming tasks,
GCL has led to measurable improvements in student performance, with higher
engagement levels and better retention of programming concepts.

Formally, the course continuity has improved since the respective topics build on
each other, and students solve more realistic tasks. In addition, they work in an
attractive environment from the very first lecture and are motivated by using a
real-world, industrial programming language.

Regarding student opinions, particularly among those who are gaming natives,
questionnaires showed that most students find this approach and the current course
curriculum motivational. They claim it helped them understand fundamental
aspects of programming more effectively. Additionally, all measurement results
have been carefully recorded in charts, confirming the hypothesis.

Our course has two primary features: The attractive environment and many
participating students. The way we introduced the innovations in the course is
supported by most of the literature concerning gamification and game-based
learning. In contrast with [33], we show that GCL enables low-cost robots (Karel)
to help students to explore more sophisticated methods instead of turning out to be
dead ends. Following [4], who shared their message in the 1990s, we believe that
appropriate changes to first-year courses are the most significant in improving the
quality of the higher education system.

The success of GCL in programming education suggests its potential application
across various disciplines, offering a model for integrating gamification and
problem-based learning into broader educational contexts. As educators seek to
adapt to the evolving needs of today’s students, the GCL approach presents a
compelling case for reimagining traditional curricula to foster deeper learning and
sustained student interest.

Similar to the model introduced by [30], when we classified the educational
objectives and incorporated a higher application of Bloom's taxonomy, as
interpreted by [31], we focused on the cognitive process, not knowledge. We
emphasized cognitive aspects by progressively challenging students with more
complex tasks, fostering their analytical and problem-solving skills [34] as they
advanced through the course stages.

We believe we also addressed the following issues regarding the quality of e-
learning, as identified by [13]:

• E-learning efficiency – combining online guidelines, discussion, and
automated assessment into a complex learning environment;

E. Pietriková et al. Game-Creative Learning in Programming Courses Over 15 Years

 – 138 –

• Student response – immediate adjustment to particular changes and the
overall engagement;

• Importance of support for students – open discussions and detailed task
instructions;

• Positive investment return – increased student knowledge and better
student engagement.

Educators and institutions are encouraged to embrace the potential of GCL,
ensuring that future generations of students are not only engaged but also better
prepared for the challenges of the digital age.

The development of our approach continues, focused on assessment: Automated
code functionality assessment vs. code quality evaluation. These issues are
inspired by the techniques of creating programmer knowledge profiles, as seen in
[35] and [36]. The aim is to shift from student engagement to education [7] and
training good programmers [17].

Acknowledgement

This work was supported by project Kega No. 015TUKE-4/2024 "Modern
Methods and Education Forms in the Cybersecurity Education" and project VEGA
No. 1/0630/22 "Lowering Programmers’ Cognitive Load Using Context-
Dependent Dialogs".

References

[1] Comenius, J. A. (1630) Schola Ludus (School by Play) Comenius

[2] Palova, D. and Vejacka, M. (2022) Implementation of gamification
principles into higher education. European Journal of Educational
Research, 11(2):763-779, DOI: 10.12973/eu-jer.11.2.763

[3] Prensky, M. (2001) Digital natives, digital immigrants. On the Horizon,
9(5):1-6, DOI: 10.1108/10748120110424816

[4] Brown, S. and Race, P. (2021) University Teaching in Focus: A Learning-
centred Approach, chapter Using effective assessment and feedback to
promote learning, pp. 74-91, Routledge, 2 edition

[5] Tareque, M. H. et al. (2024) You Hacked My Program! Teaching
Cybersecurity using Game-based Learning. In 26th Western Canadian
Conference on Computing Education (WCCCE), pp. 1-7, ACM. DOI:
10.1145/3660650.3660672

[6] Schildgen, J. and Rosin, J. (2022) Game-based learning of sql injections. In
International Workshop on Data Systems Education, pp. 22-25, ACM.
DOI: 10.1145/3531072.3535321

[7] Alhazbi, S. and Halabi, O. (2018) Flipping introductory programming
class: potentials, challenges, and research gaps. In International Conference

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 139 –

on Education Technology and Computers (ICETC), pp. 27-32, ACM. DOI:
10.1145/3290511.3290552

[8] Kuk, K. V., Milentijevic, I. Z., Randelovic, D. M. et al. (2017) The Design
of the Personal Enemy - MIMLeBot as an Intelligent Agent in a Game-
based Learning Environment. In Acta Polytechnica Hungarica, 14(4):121-
139, DOI: 10.12700/APH.14.4.2017.4.7

[9] Toth, P., Horvath, K. and Keri, K. (2021) Development Level of
Engineering Students' Inductive Thinking. In Acta Polytechnica Hungarica,
18(5):107-129, DOI: 10.12700/APH.18.5.2021.5.8

[10] Barrows, H. S. and Tamblyn, R. M. (1980) Problem-based Learning: An
Approach to Medical Education. Springer, New York, 1 edition

[11] Servant-Miklos, V. F. (2019) A revolution in its own right: How maastricht
university reinvented problem-based learning. Health Professions
Education, 5(4):283-293, DOI: 10.1016/j.hpe.2018.12.005

[12] Poornima, S. and Pushpalatha, M. (2020) A survey on various applications
of prescriptive analytics. International Journal of Intelligent Networks,
1:76-84, DOI: 10.1016/j.ijin.2020.07.001

[13] Szabo, C. M., Bartal, O. and Nagy, B. (2021) The Methods and IT-Tools
Used in Higher Education Assessed in the Characteristics and Attitude of
Gen Z. In Acta Polytechnica Hungarica, 18(1):121-140, DOI:
10.12700/APH.18.1.2021.1.8

[14] Pinter, R. et al. (2020) Enhancing Higher Education Student Class
Attendance through Gamification. In Acta Polytechnica Hungarica,
17(2):13-33, DOI: 10.12700/APH.17.2.2020.2.2

[15] Palmquist, A. (2021) ‘Gamification was not the problem’: A case study
exploring factors affect teachers approvement of gamification. In
International Academic Mindtrek Conference, pages 106–116. ACM. DOI:
10.1145/3464327.3464347

[16] Malliarakis, C. et al. (2017) CMX: The Effects of an Educational
MMORPG on Learning and Teaching Computer Programming. In IEEE
Transactions on Learning Technologies, 10(2):219-235, DOI:
10.1109/TLT.2016.255666

[17] Binas, M. et al. (2014) Useful recommendations for successful
implementation of programming courses. In International Conference on
Emerging eLearning Technologies and Applications (ICETA), pp. 397-401,
IEEE, DOI: 10.1109/ICETA.2014.7107618

[18] Biro, P. et al. (2022) A New Method to Increase Feedback for
Programming Tasks During Automatic Evaluation Test Case Annotations
in ProgCont System. In Acta Polytechnica Hungarica, 19(9):103-116, DOI:
10.12700/APH.19.9.2022.9.6

E. Pietriková et al. Game-Creative Learning in Programming Courses Over 15 Years

 – 140 –

[19] Juhar, J. Et al. (2015) Towards automated assessment in game-creative
programming courses. In International Conference on Emerging eLearning
Technologies and Applications (ICETA) pp. 307-312, IEEE. DOI:
10.1109/ICETA.2015.7558505

[20] Pears, A. et al. (2007) A survey of literature on the teaching of introductory
programming. ACM SIGCSE Bulletin, 39(4):204-223, DOI:
10.1145/1345375.1345441

[21] Perera, P. et al. (2021) A systematic mapping of introductory programming
languages for novice learners. IEEE Access, 9:88121-88136, DOI:
10.1109/ACCESS.2021.308956

[22] Pattis, R. E. et al. (1995) Karel the Robot: A Gentle Introduction to the Art
of Programming. John Wiley & Sons, New York, 2 edition

[23] Ayalew, Y. (2021) Procedural programming experience as a predictor of
success in object-oriented programming. In International Technology,
Education and Development Conference (INTED) pp. 4092-4098, IATED.
DOI: 10.21125/inted.2021.0835

[24] Somlyai, L. and Vamossy, Z. (2024) Improved RGB-D Camera-based
SLAM System for Mobil Robots. In Acta Polytechnica Hungarica,
21(8):107-124, DOI: 10.12700/APH.21.8.2024.8.6

[25] Untch, R. H. (1990) Teaching programming using the Karel the Robot
paradigm realized with a conventional language

[26] Roberts, E. (2005) Karel the Robot learns Java

[27] Raymond, E. S. and Ben-Halim, Z. M. (1993) Writing programs with
ncurses

[28] Torvalds, L. and Hamano, J. C. (2005) Git

[29] Farkas, G. et al. (2023) Quality Improvement in Education, based on
Student Feedback. In Acta Polytechnica Hungarica, 20(6):215-228, DOI:
10.12700/APH.20.6.2023.6.12

[30] Johnson, C. G. and Fuller, U. (2006) Is Bloom’s taxonomy appropriate for
computer science? In Baltic Sea Conference on Computing Education
Research, pp. 120-123, DOI: 10.1145/1315803.1315825

[31] Thompson, E., Luxton-Reilly, A., Whalley, J. L., Hu, M., and Robbins, P.
(2008) Bloom’s taxonomy for CS assessment. In Conference on
Australasian Computing Education, pp. 155-161, DOI:
10.1145/1345443.1345438

[32] Masapanta-Carrion, S. and Velazquez-Iturbide, J. A. (2018) A systematic
review of the use of bloom’s taxonomy in computer science education. In
ACM Technical Symposium on Computer Science Education (SIGCSE),
pp. 441-446, DOI: 10.1145/3159450.3159491

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

 – 141 –

[33] Ruf, A., Muhling, A., and Hubwieser, P. (2014) Scratch vs. karel – impact
on learning outcomes and motivation. In ACM International Conference
Proceeding Series: Workshop in Primary and Secondary Computing
Education (WIPSCE), pp. 50-59, DOI: 10.1145/2670757.2670772

[34] Kovari, A. (2020) Study of Algorithmic Problem-Solving and Executive
Function. In Acta Polytechnica Hungarica, 17(9):241-256, DOI:
10.12700/APH.17.9.2020.9.13

[35] Aragao, M. et al. (2019) Scaling up a Programmers' Profile Tool. In
Symposium on Languages, Applications and Technologies (SLATE), pp.
11:1--11:8, Dagstuhl Publishing. DOI: 10.4230/OASIcs.SLATE.2019.11

[36] Pietriková, E., and Chodarev, S. (2015) Profile-driven source code
exploration. In Federated Conference on Computer Science and
Information Systems (FedCSIS), pp. 929-934, IEEE. DOI:
10.15439/2015F238

	1 Introduction
	2 Game-Creative Learning
	3 Course Innovation: Experiment
	3.1 Stage I: Playing the Robot
	3.2 Stage II: Creating the Robot
	3.3 Stage III: Creating a Game
	3.4 Assessment

	4 Measurement and Evaluation
	4.1 Student Activity & Engagement
	4.2 Knowledge Retention
	4.3 Students' Opinions
	4.4 Threats to Validity

	5 Integrating Bloom's Taxonomy

