
Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 329 ‒

Nature-inspired Algorithms for Energy-Aware
Application Scheduling in Fog Computing
Environments

Krisztián Póra1,2,*, Imre Felde2 and Attila Csaba Marosi1

1HUN-REN Institute for Computer Science and Control (HUN-REN SZTAKI),
Hungarian Research Network, Kende utca 13-17, H-1111 Budapest, Hungary;
krisztian.pora@sztaki.hun-ren.hu, marosi.attila@sztaki.hun-ren.hu
2John von Neumann Faculty of Informatics, Óbuda University, Bécsi út 96/b, H-
1034 Budapest, Hungary; felde.imre@uni-obuda.hu

* Corresponding author

Abstract: Fog computing provides decentralized resources closer to end-users, reducing
latency and improving responsiveness in Internet of Things (IoT) applications. However,
energy consumption remains a significant challenge in these diverse environments. This
study offers a comparative evaluation of three nature-inspired metaheuristics ‒ Genetic
Algorithm (GA), Firework Algorithm (FWA), and Grey Wolf Optimizer (GWO) ‒ for energy-
efficient application scheduling in fog infrastructures. We use power-aware fitness functions
and extensive parameter tuning to balance exploration and exploitation within a fixed
computational budget. With over 100 independent runs, GA achieves the lowest final power
consumption, averaging 12.1% less than FWA and 25.4% less than GWO. Although FWA
reaches its optimal solution approximately 18% earlier than GA, GA maintains better energy
efficiency. GWO converges most slowly and produces less efficient solutions despite
sustaining higher population diversity. These results highlight the trade-offs between
efficiency, convergence speed and execution time in energy-constrained fog computing
deployments.

Keywords: fog computing; nature-inspired algorithms; application scheduling; energy
efficiency

1 Introduction

Fog computing has become a crucial paradigm for managing the enormous amount
of data produced by the rapidly expanding Internet of Things (IoT). It provides
efficient task processing closer to end-users, reduces latency, and enhances resource
utilization. This model aims to connect the cloud and edge devices by utilizing
decentralized computing resources to improve the performance of various

K. Póra et al.Nature-inspired Algorithms for Energy-Aware Application Scheduling in Fog Computing Environments

‒ 330 ‒

applications, from smart homes to vital industrial systems. As the demand for
energy efficiency grows due to sustainability concerns and operational costs,
developing practical scheduling algorithms within fog computing frameworks has
become very important. The unique challenges in fog computing ‒ such as
fluctuating resource availability, diverse environments, and the need for real-time
processing ‒ highlight the necessity for innovative, responsive, and energy-efficient
scheduling solutions.

Nature-inspired algorithms have proven to be particularly effective in tackling the
complexities of optimization problems, including those encountered in task
scheduling within fog computing. Recent studies have highlighted various meta-
heuristic strategies that mimic natural processes to enhance task allocation
efficiency and minimize energy consumption ‒ for example, Jakwa et al. [1]
propose a hybrid meta-heuristics-based task scheduling algorithm that competes
favorably against traditional methods, such as modified particle swarm optimization
(MPSO). Their results indicate substantial improvements in resource utilization,
average response time, and energy consumption, clearly demonstrating the benefits
of their approach to resource management for fog nodes.

Moreover, [2] discusses the critical challenges in heuristic task scheduling for IoT
applications within fog-cloud computing, outlining the need for algorithms to
integrate real-time adaptations and collaborate effectively across devices. This
highlights an emerging trend in scheduling where advanced machine learning
techniques are proposed to respond to varying workload conditions dynamically,
leveraging insights from past performance to optimize future task scheduling
decisions.

Additionally, Hussein et al. [3] showcase the potential of ant colony optimization
(ACO) in effectively load balancing IoT tasks over fog nodes while minimizing
communication costs and response times. The proposed ACO-based scheduling
algorithm demonstrates improvements in response times and load balancing
compared to traditional methods, reinforcing the applicability of nature-inspired
strategies in improving application performance in distributed infrastructures.

While previous studies have examined various nature-inspired algorithms for fog
computing, differences in infrastructure models, workloads, and evaluation metrics
across publications make it challenging to make direct, quantitative comparisons
between methods. Additionally, many works mainly focus on the final solution
quality, often neglecting equally important factors such as execution time,
convergence speed, and the search dynamics that affect practical use in latency-
sensitive environments.

In this study, we offer a controlled, side-by-side comparison of three well-known
meta-heuristics ‒ Genetic Algorithm (GA), Firework Algorithm (FWA), and Grey
Wolf Optimizer (GWO) ‒ all implemented within the same simulation framework
and tested under identical infrastructure and workload conditions. To ensure
fairness and practical relevance, each algorithm is tuned and assessed within a fixed

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 331 ‒

computational budget, reflecting the constraints in time-critical scheduling
scenarios where extended optimization runs are not feasible. Our evaluation,
supported by statistical significance testing and effect size analysis, measures trade-
offs such as GA’s consistently higher efficiency across all generations versus
FWA’s earlier achievement of its final solution, providing useful guidance for
choosing algorithms in energy-limited fog computing environments.

The rest of the paper is structured as follows. We present a brief overview of related
works in Section 2. In Section 3, we detail the system model and the analyzed
nature-inspired algorithms. Section 4 describes the simulation environment of the
experiments, the parameter fine-tuning process, and discusses the observed results
of the comparative analysis. Finally, section 5 provides conclusions for the work.

2 Related Work

In recent years, the integration of fog computing with practical task scheduling
approaches has been a focal point of research, aiming to enhance performance and
resource utilization in fog computing environments. Wang et al. [4] present a hybrid
heuristic algorithm for task scheduling within smart production lines, leveraging
fog computing. Their experimental results show that the proposed strategy performs
better than other strategies, highlighting the potential of combined nature-inspired
techniques. Similarly, Rafique et al. [5] propose a bio-inspired hybrid algorithm to
optimize resource management and task scheduling in fog computing settings. Their
simulations in iFogSim [6] demonstrate significant improvements in energy
efficiency and scheduling time.

Xu et al. [7] introduce a method that combines laxity and an ant colony system to
tackle task scheduling challenges in cloud-fog environments. Their laxity-based
priority algorithm organizes tasks based on urgency while considering deadlines,
which is crucial for minimizing delays or failures in task execution. On the other
hand, Keshri et al. [8] Merge ACO with GWO to effectively address energy
consumption and resource wastage in virtual machine placement within cloud data
centers.

Domanal et al. [9] further this discussion by developing a hybrid bio-inspired
algorithm that integrates features from various methodologies. Their work focuses
on reducing operational overhead while maximizing resource allocation efficiency,
which is crucial as cloud environments expand.

Adaptive schedulers harness real-time data to respond to workload fluctuations
effectively, enhancing overall system performance. For instance, Soula et al. [10]
integrate machine learning with bio-inspired heuristics to create an intelligent task
allocator that dynamically adjusts to environmental changes, promoting adaptive
resource management. Similarly, Nabi et al. [11] propose an adaptive Particle

K. Póra et al.Nature-inspired Algorithms for Energy-Aware Application Scheduling in Fog Computing Environments

‒ 332 ‒

Swarm Optimization (PSO) approach for task scheduling in cloud computing,
minimizing task execution times while improving resource utilization and
throughput.

Optimizing the spatial and hierarchical structure of fog environments ensures
service proximity and coordination. Talavera et al. [12] employ GAs with
hierarchical clustering to refine fog colony layouts, minimizing application
response times. Hong et al. [13] extend this by presenting an autonomous
evolutionary approach for orchestrating service placement across cloud, fog, and
IoT layers, highlighting the value of cross-layer coordination. Similarly, Vakilian
et al. [14] explore the role of Artificial Bee Colony algorithms in cooperative load
balancing, adding a layer of operational efficiency by promoting inter-node
communications that enhance response times and energy costs.

Finally, using the Cuckoo Search Algorithm, Liu et al. [15] tackle multi-objective
challenges associated with IoT service placement in fog environments. Their
findings reveal that the algorithm successfully navigates trade-offs between
competing objectives, thereby aiding the development of robust scheduling
strategies.

The reviewed studies show how nature-inspired algorithms are versatile in solving
scheduling and resource allocation problems in fog and cloud-fog environments,
often leading to significant gains in energy efficiency and performance. However,
making direct quantitative comparisons across these studies is challenging due to
differences in infrastructure models, workloads, evaluation metrics, and algorithm
setups. Additionally, while many studies measure energy consumption, fewer
analyze execution time, convergence speed, and the underlying search dynamics ‒
factors that are vital for time-sensitive, resource-limited deployments.

Motivated by these gaps, our work performs a controlled, side-by-side comparison
of three representative meta-heuristics ‒ GA, FWA, and GWO ‒ under identical
experimental conditions, with tuned parameters and a fixed computational budget,
to provide a comprehensive understanding of their trade-offs in energy-aware fog
computing.

3 Methodology

This section presents our approach to optimizing task placement in fog computing
environments using nature-inspired algorithms. We first describe the system
model's components and then detail the three meta-heuristic algorithms
implemented: the Genetic Algorithm (GA), the Fireworks Algorithm (FWA) and
the Grey Wolf Optimizer (GWO).

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 333 ‒

3.1 System Model

We model a fog computing infrastructure comprising a source node (e.g., IoT
sensor), one central cloud node ‒ acting as destination for the data ‒ and
heterogeneous fog nodes dispersed throughout the network. Each fog node 𝑖𝑖
possesses a computational capacity 𝐶𝐶𝑖𝑖, drawn uniformly at random from a
predefined range, and includes both static and dynamic power characteristics: a
constant idle draw 𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and a load‐dependent consumption 𝑃𝑃𝑖𝑖

𝑑𝑑𝑑𝑑𝑑𝑑 that grows
linearly up to a maximum of 𝑃𝑃𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 at full utilization.

Workloads (formulated as an application consisting of a list of tasks) are represented
as directed acyclic graphs, 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸). A single source task is pinned to an edge
device and continuously generates data at a fixed rate, while a single sink task
resides in the cloud and consumes processed output at its constant rate. Between
them, several processing tasks require a certain amount of computation 𝑡𝑡𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟 and
may be placed on any fog node whose remaining capacity suffices.

Table 1 summarizes the key system parameters used throughout our study.
Numerical values and ranges used for experimentation are detailed within Section
4.

Table 1
Notation in the proposed system model

Symbol Description
𝐼𝐼 Computing infrastructure of interconnected nodes
𝐴𝐴 Application made up of tasks to be scheduled
𝑁𝑁 Total number of nodes (in the Fog computing layer)
𝐶𝐶𝑖𝑖 Computational capacity of node 𝑖𝑖
𝑈𝑈𝑖𝑖 Utilization factor of node 𝑖𝑖

𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Power consumption of node 𝑖𝑖 in idle state
𝑃𝑃𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 Power consumption of node 𝑖𝑖 at maximum utilization

𝑃𝑃𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑(𝑈𝑈𝑖𝑖) Power consumption of node 𝑖𝑖 at utilization 𝑈𝑈𝑖𝑖

𝑇𝑇𝐴𝐴 Total number of processing tasks in application 𝐴𝐴
𝑡𝑡𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 Computational capacity requirements of task 𝑡𝑡

3.2 Nature-inspired Algorithms

We implemented and compared three nature-inspired metaheuristic algorithms for
optimizing task placement. Each algorithm minimizes power consumption while
respecting computational resource constraints. The algorithms share a common
fitness function, which is based on estimating the total power used by application
tasks, to avoid the costs of repeatedly allocating and deallocating entire solution
populations (which would be even more problematic in real-world scenarios).

K. Póra et al.Nature-inspired Algorithms for Energy-Aware Application Scheduling in Fog Computing Environments

‒ 334 ‒

We assume that metrics such as static and maximum power consumption, along
with actual utilization metrics, are known ‒ typically provided by infrastructure
monitoring solution s‒ and use them to calculate fitness values.

3.2.1 Genetic Algorithm (GA)

The Genetic Algorithm [16] is a population-based metaheuristic optimization
algorithm inspired by natural selection and genetic evolution. Algorithm 1 presents
the pseudocode for our GA implementation.

The process begins by creating a set of random task-to-node assignments. In each
generation, a number of candidates are picked randomly, and superior solutions win
“tournaments” to become parents. Pairs of parents then swap genes according to a
uniformly random crossover process to produce offspring inheriting a mixture of
genes from both selected parents.

To prevent the search from converging too early, each gene in the produced
offspring has a small probability (parametrized as the mutation rate) of randomly
changing, altering the task assignment of the individual. This mutation step injects
fresh variations into the population, promoting diversity. Once enough offspring are
created to refill the population, the old generation is replaced and the cycle repeats
until the predetermined number of generations is reached. To prevent losing

Algorithm 1 Genetic Algorithm
1: Input: Population size P, Generations G, Mutation rate M, Tournament

size T
2: Output: Placement solution
3: Initialize population pop with P random solutions
4: Evaluate fitness of all individuals
5: Track best solution
6: for 𝑔𝑔 = 1 to 𝐺𝐺 do
7: new_pop ← ∅
8: while |new_pop| < P do
9: parent1 ← TournamentSelect(pop)

10: parent2 ← TournamentSelect(pop)
11: child1, child2 ← Crossover(parent1, parent2)
12: Mutate(child1, child2) with M probability per gene
13: Add child to new_pop
14: end while
15: Evaluate fitness of new_pop
16: Replace worst individual with previous best
17: Update best solution if improved
18: pop ← new_pop
19: end for
20: return best solution found

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 335 ‒

previously found promising solutions, elitism was implemented into the algorithm,
ensuring that the best solution found so far is kept in the pool of individuals evolving
over generations, and that a worse solution will not be returned from the algorithm
upon its termination.

3.2.2 Firework Algorithm (FWA)

The Fireworks Algorithm [17] is a population-based meta-heuristic optimization
algorithm inspired by the fireworks explosion. The algorithm operates through an
iterative process over G generations, as outlined in Algorithm 2.

The method initializes F fireworks randomly within the search space and sets the
amplitude parameter to α. During each generation, the algorithm generates sparks
around each firework f by creating S local sparks within a neighborhood defined by
the current amplitude, followed by R highly random, so-called Gaussian sparks for
enhanced exploration diversity. In our implementation, the amplitude parameter
specifies the number of dimensions in which sparks differ from their firework of
origin. All generated sparks are collected and evaluated according to the objective
function, after which the top F sparks are selected to form the next round of
fireworks. The algorithm incorporates an elitist strategy by continuously tracking
the best solution encountered and replacing the worst spark with the previous best
solution. To balance exploration and exploitation, the amplitude parameter is
decreased by a decay factor of δ after each generation, progressively narrowing the
search radius around promising regions. The algorithm terminates after G

Algorithm 2 Firework Algorithm
1: Input: Fireworks F, Sparks S, Gaussians R, Generations G, Amplitude α,

Decay δ
2: Output: Placement solution
3: Initialize fireworks with F random solutions
4: 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ← α
5: for 𝑔𝑔 = 1 to 𝐺𝐺 do
6: 𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← ∅
7: for each firework f do
8: Generate S sparks around f using 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
9: Generate R Gaussian sparks

10: Append f and its sparks to 𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
11: end for
12: Evaluate fitness of all sparks
13: Select top F sparks as new fireworks
14: Track best solution
15: If previous best is better, replace worst spark
16: 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × δ
17: end for
18: return best solution found

K. Póra et al.Nature-inspired Algorithms for Energy-Aware Application Scheduling in Fog Computing Environments

‒ 336 ‒

generations and returns the best solution found during the entire optimization
process.

3.2.3 Grey Wolf Optimizer (GWO)

The Grey Wolf Optimizer [18] is a population-based meta-heuristic optimization
algorithm inspired by the leadership hierarchy and hunting strategies observed in
grey wolf packs. In nature, grey wolves organize themselves into a strict social
structure consisting of alpha (leader), beta (second-in-command), delta
(subordinates), and omega (followers). The GWO algorithm models this structure
to improve candidate solutions within a population of wolves iteratively.

In our implementation (Algorithm 3), a pack of 𝑊𝑊 wolves is initialized with random
task-to-node assignments. During each generation, wolves are ranked based on their
fitness, and the top three individuals are assigned the roles of alpha (𝛼𝛼), beta (𝛽𝛽),
and delta (δ). These three leaders guide the movement of the remaining wolves in
the population (omegas), updating their positions based on a weighted influence of
the leaders.

The core mechanism of the GWO algorithm revolves around a simulated encircling
and hunting behavior, where each wolf adjusts its position relative to the leaders.
The influence coefficients A and C control the balance between exploration

Algorithm 3 Grey Wolf Optimizer
1: Input: Pack size W, Generations G,
2: Output: Placement solution
3: Initialize pack with W random solutions
4: Evaluate fitness and identify α, β, δ wolves
5: Track best solution
6: for 𝑔𝑔 = 1 to 𝐺𝐺 do
7: 𝑎𝑎 ← 2(1 − 𝑔𝑔/𝐺𝐺) {Linear decrease coefficient}
8: for each wolf 𝑤𝑤 ∈ 𝑊𝑊 do
9: for each dimension j do

10: Generate random coefficients 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3 and 𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3
11: Calculate distances from 𝛼𝛼, 𝛽𝛽, 𝛿𝛿
12: Calculate position components 𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 toward 𝛼𝛼, 𝛽𝛽, 𝛿𝛿
13: wj ← round �X1+X2+X3

3
� mod |𝑁𝑁| {Ensure valid node index}

14: end for
15: end for
16: Evaluate fitness of all wolves
17: If previous best is better, replace worst wolf
18: Update α, β, δ
19: Track best solution
20: end for
21: return best solution found

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 337 ‒

(searching broadly) and exploitation (refining good solutions). A key parameter 𝑎𝑎
is decreased linearly from 2 to 0 throughout G generations, gradually shifting the
search focus from exploration to exploitation.

To maintain diversity and avoid stagnation, each wolf’s new position is calculated
by averaging its attraction toward 𝛼𝛼, β, and δ positions, followed by a rounding step
to produce valid discrete task placements. The population is updated at each step,
and the best solution found so far is tracked and preserved using elitism. This
ensures that a superior solution is not lost due to random fluctuations in the search
process.

4 Results and Discussion

4.1 Experimental Setup

Our experimental framework is built on LEAF [19], a discrete-event simulator
designed explicitly for modeling energy consumption in fog computing
environments. LEAF offers strong capabilities for modeling diverse infrastructure
with varying computational power and energy use, supports complex application
graphs with interdependent tasks and data flows, includes built-in power
measurement and monitoring features, and allows efficient execution of large-scale
scenarios through discrete-event simulation. The implementation uses LEAF's
integrated power monitoring to measure the energy use of tasks and network flows,
providing realistic feedback for optimization. Each experiment employed semi-
randomized infrastructure and application configurations, with parameters listed in
Table 2.

Table 2
Parameter values and ranges used for experimental measurements

We assessed each placement algorithm across three main areas. Power consumption
measures the total energy used by the application's processing tasks on the
underlying infrastructure; by expressing this in watts, we directly evaluate how

Symbol Value / Range
𝑁𝑁 30
𝐶𝐶𝑖𝑖 50-150

𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 20-40
𝑃𝑃𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 150-250
𝑇𝑇𝐴𝐴 100
𝑡𝑡𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 1-15

K. Póra et al.Nature-inspired Algorithms for Energy-Aware Application Scheduling in Fog Computing Environments

‒ 338 ‒

energy-efficient a specific algorithm's placement is, which is crucial when
deploying services on resource-constrained fog nodes.

On the other hand, execution time measures how long each algorithm takes to make
a placement decision; reporting this helps evaluate practical responsiveness, as
overly slow placement can negate the benefits of offloading and scheduling in a
dynamic network. Additionally, fog computing architectures are often used for
transmitting and processing highly diverse workloads (e.g., stream processing),
which demand high adaptability.

Since metaheuristic algorithms improve their solutions over multiple generations,
just measuring the time they run does not fully assess their performance. The third
metric, convergence generation, indicates the exact point during execution when the
algorithm reaches a solution quality very close (within 1%) to its final result,
showing how quickly it finds high-quality solutions.

These metrics balance the trade-off between energy efficiency and timeliness,
ensuring that our evaluation accurately reflects operational costs and real-world
practicality. To guarantee statistical validity, we performed 100 independent runs
for each algorithm using consistent random seeds across all approaches, allowing
for fair comparisons while accounting for the inherent randomness of meta-heuristic
methods.

4.2 Parameter Tuning

A uniform computational budget of 100 generations and a population (or pack) size
of 50 was enforced across all algorithms to emulate the time constraints of real-
world fog computing scenarios, where long optimization runs may be impractical.
Within this budget, algorithm-specific parameters were tuned to balance
exploration and exploitation without exceeding the computational cap.

For the Genetic Algorithm, we tested tournament sizes from 3 to 9 and mutation
rates from 0.01 to 0.1. The heatmap in Figure 1 shows a clear pattern: low mutation
rates (especially 0.01) combined with larger tournament sizes (5-7) consistently
resulted in the lowest power consumption. This combination enhances selection
pressure, allowing high-quality genes to spread quickly while reducing disruptive
mutations that could ruin promising partial solutions. Conversely, higher mutation
rates increased variability and often lowered overall performance, indicating that in
limited budgets, too much exploration can be counterproductive.

The Firework Algorithm tuning analyzed how the fixed group of 50 individuals was
divided among core fireworks (F), local sparks (S), and Gaussian sparks (G), along
with amplitude (α) and decay factor (δ) settings. Figure 2 shows that most of the
population should be assigned to sparks (which focus on intensive searching around
good solutions), with only a few core fireworks, plus a small Gaussian component
for occasional long jumps, to achieve the best energy efficiency. Starting amplitude

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 339 ‒

values around 1.0 and a moderate decay rate (δ ≈ 0.85) provided enough early
exploration while guiding the search in later generations. Faster decays led to
premature convergence, whereas slower decays extended exploration without
further gains.

The Grey Wolf Optimizer has fewer explicit tuning controls, with behavior mainly
driven by the linear decrease of the exploration coefficient 𝑎𝑎 from 2 to 0. We kept
this standard schedule, along with the same pack size of 50 for comparison.
Although this setup maintains the intended shift from exploration to exploitation,
later results indicate that the discrete placement problem may need additional
hybridization or leader update improvements to match the efficiency of GA or FWA
under strict generation limits. The final parameter settings used in the comparison
are summarized in Table 3.

Figure 2

Parameter tuning for the Firework Algorithm. Each subplot corresponds to a different population
distribution among Fireworks (F), Sparks (S), and Gaussian Sparks (G), with the total population fixed

at 50.

Figure 1

Parameter tuning for the Genetic Algorithm. Each cell in the heatmap represents a specific
combination of tournament size (x-axis) and mutation rate (y-axis), with corresponding values

indicating the power usage after placement. The color gradient reflects relative performance, where
darker shades indicate lower power consumption.

K. Póra et al.Nature-inspired Algorithms for Energy-Aware Application Scheduling in Fog Computing Environments

‒ 340 ‒

Table 3
Summary of algorithm parameters used for comparison

4.3 Convergence Dynamics

Figure 3 and Figure 4 together reveal the convergence patterns and the fitness
distribution evolution for the populations of each algorithm, enabling a unified view
of their search strategies.

The Genetic Algorithm shows the steepest early decline, reducing mean power
consumption from about 2200 W to under 1800 W within the first 20 generations.
The density heatmap (Figure 4a) reveals a rapid drop in population diversity toward
low-power areas, with little variation after generation 30. This early convergence
ensures stability ‒ evidenced by GA’s narrow standard deviation bands in Figure 3
‒ but also restricts the discovery of potentially better solutions later, explaining the
slower improvements in the final generations.

GA FWA GWO
Number of generations: 100

Population size: 50 F: 2, S: 22, G: 2 Number of wolves: 50
Mutation rate: 0.01 Amplitude: 1
Tournament size: 7 Decay: 0.85

Figure 3

Mean convergence curves for GA, FWA, and GWO over 100 generations. Solid lines represent mean
values, while shaded regions indicate ±1 standard deviation.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 341 ‒

The Firework Algorithm improves more gradually, with a nearly linear decrease in
mean power during the first 40 generations (Figure 3). In Figure 4b, diversity lasts
longer as sparks explore local areas while Gaussian sparks introduce occasional
high-power outliers. This balance delays the collapse of diversity, allowing the
algorithm to keep making steady progress before plateauing. As a result, FWA
typically reaches near-final solutions earlier than GA (mean convergence
generation ≈ 75 vs. 91), despite slightly higher final power consumption.

The Grey Wolf Optimizer starts at similar initial power levels but exhibits the
slowest and most irregular convergence, with ongoing variability across generations
(Figure 3). Figure 4c shows that population diversity stays high until late in the
process, but without a steady decline in power levels. This indicates that while
GWO’s leader–follower structure maintains exploration, its exploitation ability is
not sufficient in this setup, causing many runs to get stuck in suboptimal regions.

4.4 Comparative Performance and Statistical Validation

Descriptive statistics for all three metrics are reported in Table 4, and pairwise
hypothesis tests are summarized in Table 5. GA achieved the lowest mean power
consumption (1258.28 W, SD = 97.10 W), followed by FWA (1431.52 W, SD =
110.56 W) and GWO (1687.12 W, SD = 149.17 W). Relative to FWA, GA reduces
mean power consumption by 12.1%; relative to GWO, GA reduces mean power
consumption by 25.4% (both computed from the reported means). Conversely,
GWO consumes approximately 34.1% more power than GA when the increase is
expressed relative to GA. These differences are robust: pairwise comparisons of
power consumption using paired t-tests yield p < 0.001 for all pairs with large effect
sizes (Cohen’s dz: GA vs FWA = 1.884; GA vs GWO = 3.367; FWA vs GWO =

Figure 4

Evolution of population diversity through density heatmaps showing the distribution of solutions
across power consumption levels over 100 generations for (a) GA, (b) FWA, and (c) GWO. Color

intensity indicates the number of solutions at each power level, revealing distinct exploration-
exploitation strategies.

K. Póra et al.Nature-inspired Algorithms for Energy-Aware Application Scheduling in Fog Computing Environments

‒ 342 ‒

1.786), indicating that the observed differences are both statistically and practically
meaningful.

Execution time follows an inverse ranking: FWA is the fastest (mean = 1.01 s), GA
is intermediate (mean = 1.07 s), and GWO is the slowest (mean = 1.34 s). FWA is
approximately 5.6% faster than GA, while GWO is ~25.2% slower than GA under
the chosen implementations. Tests on execution-time within-seed differences
(Wilcoxon signed-rank, due to non-normality) returned p < 0.001 for all pairwise
comparisons with large effect sizes (rank-biserial: GA vs FWA r = 0.615; GA vs
GWO r = 0.771; FWA vs GWO r = 0.839), confirming that these differences are
significant.

Table 4

Descriptive statistics (100 runs). Mean, 95% confidence interval, standard deviation, minimum, and
maximum for power consumption (W), execution time (s), and convergence generation for GA, FWA,

and GWO.

Convergence generation further differentiates the approaches: FWA typically
attains a near-final-quality solution earlier (mean = 74.66 generations) than GA
(mean = 91.09 generations) and GWO (mean = 97.97 generations). In relative
terms, FWA reaches near-final quality about 18.0% earlier than GA, and GA
reaches near-final quality about 7.0% earlier than GWO. These observations are
statistically significant (paired t for GA vs FWA: t = 10.7797, p < 0.001, dz = 1.078;
Wilcoxon for GA vs GWO: W = 405.5, p < 0.001, r = 0.710; paired t for FWA vs
GWO: t = −19.6359, p < 0.001, dz = 1.964).

Taken together, the quantitative results identify a clear trade-off: GA delivers the
best final energy efficiency and the most consistent outcomes; FWA is fastest to a
near-optimal solution with moderate final efficiency; GWO under the present
parametrization is generally slower, more variable, and produces higher-energy
placements.

Metric Alg. Mean 95% CI Std Min Max

Power
Usage [W]

GA 1258.28 [1239.01, 1277.54] 97.10 1060.63 1499.33
FWA 1431.52 [1409.58, 1453.46] 110.56 1160.68 1735.30
GWO 1687.12 [1657.52, 1716.72] 149.17 1416.76 2068.13

Execution
Time [s]

GA 1.07 [1.04, 1.10] 0.15 0.98 1.88
FWA 1.01 [0.99, 1.03] 0.09 0.94 1.70
GWO 1.34 [1.30, 1.37] 0.18 1.16 2.23

Convergence
Generation

GA 91.09 [89.47, 92.71] 8.16 67.00 100.00
FWA 74.66 [72.31, 77.01] 11.84 46.00 99.00
GWO 97.97 [97.54, 98.40] 2.17 85.00 100.00

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 343 ‒

Table 5
Statistical significance tests and effect sizes for pairwise algorithm comparisons

(t-p = paired Student’s t-test; WSR = Wilcoxon signed-rank; dz = Cohen’s dz; r = rank-biserial
correlation; all comparisons use n = 100 paired runs.)

4.5 Discussion

The Genetic Algorithm's superior energy efficiency (average 1258.28W, Table 4)
results from its effective combination of evolutionary operators. The tournament
selection with a size of 7 creates strong selection pressure, quickly eliminating poor
solutions while maintaining diversity through stochastic selection. With seven
individuals competing in each tournament, the chance of selecting suboptimal
solutions as parents is minimized, guiding the population toward high-quality
regions of the search space. The low mutation rate of 0.01 prevents disrupting good
solutions while allowing escape from local optima. Most importantly, elitism
ensures steady improvement by preserving the best solution found ‒ a crucial
feature in discrete optimization where genetic operators might otherwise destroy
optimal task assignments. The narrow confidence interval [1239.01, 1277.54] and
a coefficient of variation of 7.68% confirm that these mechanisms work reliably
across different initial conditions.

The Firework Algorithm achieves the fastest execution time (average 1.01 s, Table
4) through its efficient exploration strategy. The spark generation mechanism
evaluates multiple candidate solutions around each firework location in a structured
way, requiring fewer fitness evaluations to reach similar solution quality. The 5.6%
speed advantage over GA likely comes from the simpler spark generation
operations compared to GA's tournament selection and crossover procedures.
The smooth convergence seen in Figure 3 results from the amplitude decay
mechanism, which provides a clear transition from exploration to exploitation.
The configuration with 2 fireworks, 22 regular sparks, and 2 Gaussian sparks (an
11:1 spark-to-firework ratio) shows that intensive local search in a few promising
regions outperforms maintaining many independent search origins, reducing
computational costs while maintaining solution quality.

Metric Comparison Test Statistic p-value Effect Size

Power Usage [W]
GA vs FWA t-p t = -11.77 <0.001 dz = 1.88
GA vs GWO t-p t = -24.09 <0.001 dz = 3.37

FWA vs GWO t-p t = -13.77 <0.001 dz = 1.79

Execution Time [s]
GA vs FWA WSR W = 737.0 <0.001 r = 0.62
GA vs GWO WSR W = 284.0 <0.001 r = 0.77

FWA vs GWO WSR W = 85.0 <0.001 r = 0.84

Convergence
Generation

GA vs FWA t-p t = 10.78 <0.001 dz = 1.08
GA vs GWO WSR W= 405.5 <0.001 r = 0.71

FWA vs GWO t-p t = -11.64 <0.001 dz = 1.96

K. Póra et al.Nature-inspired Algorithms for Energy-Aware Application Scheduling in Fog Computing Environments

‒ 344 ‒

The Grey Wolf Optimizer's poor performance across all metrics highlights
difficulties in adapting continuous optimization metaphors to discrete problems.
The position update mechanism, designed for smooth navigation in continuous
spaces, becomes less precise when adapted for valid task-node assignments.
The stratified population structure in Figure 5c, while maintaining diversity, shows
that many wolves stay far from leaders throughout the optimization process. This
explains both the highest average power consumption (1687.12 W) and the most
significant standard deviation (148.43 W) observed in Table 4. The late
convergence (average 97.97 generations) with a very low variance (σ = 2.16)
suggests that the algorithm consistently needs nearly all available iterations,
implying that the linear decrease of the convergence parameter 'a' might be too
cautious for faster adaptation.

Conclusions

This study presented a controlled comparison of three nature-inspired meta-
heuristics for energy-aware application scheduling in fog computing:

 Genetic Algorithm (GA)
 Firework Algorithm (FWA)
 Grey Wolf Optimizer (GWO)

The results showed clear trade-offs:

GA consistently delivered the most energy-efficient placements across all
generations.
FWA achieved earlier stabilization and the shortest execution times, though
with higher final energy consumption.
GWO maintained population diversity but had slower convergence and lower
efficiency under the tested conditions.

By analyzing energy efficiency, convergence speed, execution time, and search
dynamics together within a fixed computational budget, this work goes beyond the
single-metric evaluations that dominate much of the existing literature. The results
highlight that algorithm suitability is inherently dependent on context, influenced
by the relative importance of rapid scheduling versus maximum efficiency in time-
critical, energy-constrained deployments.

Future research will focus on a deeper exploration of the observed search dynamics,
including the role of maintaining diversity, balancing exploitation and exploration,
and early-stage convergence patterns, to guide the development of hybrid or
adaptive strategies. Additionally, expanding the framework to multi-objective
optimization will allow for the simultaneous consideration of energy efficiency,
quality of service, and other operational goals relevant to fog computing
environments.

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 345 ‒

Acknowledgements

This work was partially funded by the European Commission’s GreenDIGIT
Horizon Europe project (GA No. 101131207): https://greendigit-project.eu; by the
Ministry of Innovation and Technology NRDI Office within the Autonomous
Systems National Laboratory Program framework; and the Hungarian project no.
TKP2021-NVA-01, implemented with the support provided by the Ministry of
Innovation and Technology of Hungary from the National Research, Development
and Innovation Fund, financed under the TKP2021-NVA funding scheme.

On behalf of the "ARNL: GPU-enabled cloud-based big data/AI research platform"
project we are grateful for the possibility to use HUN-REN Cloud [20]
(https://science-cloud.hu/) which helped us achieve the results published in this
paper.

References

[1] A. G. Jakwa, A. Y. Gital, S. Boukari, and F. U. Zambuk, ‘Performance
Evaluation of Hybrid Meta-Heuristics-Based Task Scheduling Algorithm for
Energy Efficiency in Fog Computing’:, Int. J. Cloud Appl. Comput., Vol. 13,
No. 1, pp. 1-16, Jun. 2023, doi: 10.4018/IJCAC.324758

[2] D. Alsadie, ‘Advancements in heuristic task scheduling for IoT applications
in fog-cloud computing: challenges and prospects’, PeerJ Comput. Sci., Vol.
10, p. e2128, Jun. 2024, doi: 10.7717/peerj-cs.2128

[3] M. K. Hussein and M. H. Mousa, ‘Efficient Task Offloading for IoT-Based
Applications in Fog Computing Using Ant Colony Optimization’, IEEE
Access, Vol. 8, pp. 37191-37201, 2020, doi:
10.1109/ACCESS.2020.2975741

[4] J. Wang and D. Li, ‘Task Scheduling Based on a Hybrid Heuristic Algorithm
for Smart Production Line with Fog Computing’, Sensors, Vol. 19, No. 5, p.
1023, Feb. 2019, doi: 10.3390/s19051023

[5] H. Rafique, M. A. Shah, S. U. Islam, T. Maqsood, S. Khan, and C. Maple,
‘A Novel Bio-Inspired Hybrid Algorithm (NBIHA) for Efficient Resource
Management in Fog Computing’, IEEE Access, Vol. 7, pp. 115760-115773,
2019, doi: 10.1109/ACCESS.2019.2924958

[6] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, ‘iFogSim: A Toolkit
for Modeling and Simulation of Resource Management Techniques in
Internet of Things, Edge and Fog Computing Environments’, Jun. 07, 2016,
arXiv: arXiv:1606.02007, doi: 10.48550/arXiv.1606.02007

[7] J. Xu, Z. Hao, R. Zhang, and X. Sun, ‘A Method Based on the Combination
of Laxity and Ant Colony System for Cloud-Fog Task Scheduling’, IEEE
Access, Vol. 7, pp. 116218-116226, 2019, doi:
10.1109/ACCESS.2019.2936116

K. Póra et al.Nature-inspired Algorithms for Energy-Aware Application Scheduling in Fog Computing Environments

‒ 346 ‒

[8] R. Keshri and D. P. Vidyarthi, ‘Energy-efficient communication-aware VM
placement in cloud datacenter using hybrid ACO–GWO’, Clust. Comput.,
Vol. 27, No. 9, pp. 13047-13074, Dec. 2024, doi: 10.1007/s10586-024-
04623-z

[9] S. G. Domanal, R. M. R. Guddeti, and R. Buyya, ‘A Hybrid Bio-Inspired
Algorithm for Scheduling and Resource Management in Cloud
Environment’, IEEE Trans. Serv. Comput., Vol. 13, No. 1, pp. 3-15, Jan.
2020, doi: 10.1109/TSC.2017.2679738

[10] M. Soula, A. Karanika, K. Kolomvatsos, C. Anagnostopoulos, and G.
Stamoulis, ‘Intelligent tasks allocation at the edge based on machine learning
and bio-inspired algorithms’, Evol. Syst., Vol. 13, No. 2, pp. 221-242, Apr.
2022, doi: 10.1007/s12530-021-09379-0

[11] A. Naouri, N. A. Nouri, A. Khelloufi, A. B. Sada, H. Ning, and S. Dhelim,
‘Efficient fog node placement using nature-inspired metaheuristic for IoT
applications’, Clust. Comput., Vol. 27, No. 6, pp. 8225-8241, Sep. 2024, doi:
10.1007/s10586-024-04409-3

[12] F. Talavera, I. Lera, C. Juiz, and C. Guerrero, ‘Optimizing fog colony layout
and service placement through genetic algorithms and hierarchical
clustering’, Expert Syst. Appl., Vol. 254, p. 124372, Nov. 2024, doi:
10.1016/j.eswa.2024.124372

[13] X. Hong, J. Zhang, Y. Shao, and Y. Alizadeh, ‘An Autonomous Evolutionary
Approach to Planning the IoT Services Placement in the Cloud-Fog-IoT
Ecosystem’, J. Grid Comput., Vol. 20, No. 3, p. 32, Sep. 2022, doi:
10.1007/s10723-022-09622-1

[14] S. Vakilian, S. V. Moravvej, and A. Fanian, ‘Using the Artificial Bee Colony
(ABC) Algorithm in Collaboration with the Fog Nodes in the Internet of
Things Three-layer Architecture’, in 2021 29th Iranian Conference on
Electrical Engineering (ICEE), Tehran, Iran, Islamic Republic of: IEEE,
May 2021, pp. 509-513, doi: 10.1109/ICEE52715.2021.9544399

[15] C. Liu, J. Wang, L. Zhou, and A. Rezaeipanah, ‘Solving the Multi-Objective
Problem of IoT Service Placement in Fog Computing Using Cuckoo Search
Algorithm’, Neural Process. Lett., Vol. 54, No. 3, pp. 1823-1854, Jun. 2022,
doi: 10.1007/s11063-021-10708-2

[16] D. Whitley, ‘A genetic algorithm tutorial’, Stat. Comput., Vol. 4, No. 2, Jun.
1994, doi: 10.1007/BF00175354

[17] Y. Tan and Y. Zhu, ‘Fireworks Algorithm for Optimization’, in Advances in
Swarm Intelligence, Y. Tan, Y. Shi, and K. C. Tan, Eds., Berlin, Heidelberg:
Springer, 2010, pp. 355-364, doi: 10.1007/978-3-642-13495-1_44

[18] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘Grey Wolf Optimizer’, Adv. Eng.
Softw., Vol. 69, pp. 46-61, Mar. 2014, doi:
10.1016/j.advengsoft.2013.12.007

Acta Polytechnica Hungarica Vol. 22, No. 12, 2025

‒ 347 ‒

[19] P. Wiesner and L. Thamsen, ‘LEAF: Simulating Large Energy-Aware Fog
Computing Environments’, in 2021 IEEE 5th International Conference on
Fog and Edge Computing (ICFEC), Melbourne, Australia: IEEE, May 2021,
pp. 29-36, doi: 10.1109/ICFEC51620.2021.00012

[20] M. Héder et al., ‘The Past, Present and Future of the ELKH Cloud’, Inf.
Társad., Vol. 22, No. 2, p. 128, Aug. 2022, doi:
10.22503/inftars.XXII.2022.2.8

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 System Model
	3.2 Nature-inspired Algorithms
	3.2.1 Genetic Algorithm (GA)
	3.2.2 Firework Algorithm (FWA)
	3.2.3 Grey Wolf Optimizer (GWO)

	4 Results and Discussion
	4.1 Experimental Setup
	4.2 Parameter Tuning
	4.3 Convergence Dynamics
	4.4 Comparative Performance and Statistical Validation
	4.5 Discussion

