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Abstract: Fog computing provides decentralized resources closer to end-users, reducing 
latency and improving responsiveness in Internet of Things (IoT) applications. However, 
energy consumption remains a significant challenge in these diverse environments. This 
study offers a comparative evaluation of three nature-inspired metaheuristics ‒ Genetic 
Algorithm (GA), Firework Algorithm (FWA), and Grey Wolf Optimizer (GWO) ‒ for energy-
efficient application scheduling in fog infrastructures. We use power-aware fitness functions 
and extensive parameter tuning to balance exploration and exploitation within a fixed 
computational budget. With over 100 independent runs, GA achieves the lowest final power 
consumption, averaging 12.1% less than FWA and 25.4% less than GWO. Although FWA 
reaches its optimal solution approximately 18% earlier than GA, GA maintains better energy 
efficiency. GWO converges most slowly and produces less efficient solutions despite 
sustaining higher population diversity. These results highlight the trade-offs between 
efficiency, convergence speed and execution time in energy-constrained fog computing 
deployments. 

Keywords: fog computing; nature-inspired algorithms; application scheduling; energy 
efficiency 

1 Introduction 

Fog computing has become a crucial paradigm for managing the enormous amount 
of data produced by the rapidly expanding Internet of Things (IoT). It provides 
efficient task processing closer to end-users, reduces latency, and enhances resource 
utilization. This model aims to connect the cloud and edge devices by utilizing 
decentralized computing resources to improve the performance of various 
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applications, from smart homes to vital industrial systems. As the demand for 
energy efficiency grows due to sustainability concerns and operational costs, 
developing practical scheduling algorithms within fog computing frameworks has 
become very important. The unique challenges in fog computing ‒ such as 
fluctuating resource availability, diverse environments, and the need for real-time 
processing ‒ highlight the necessity for innovative, responsive, and energy-efficient 
scheduling solutions. 

Nature-inspired algorithms have proven to be particularly effective in tackling the 
complexities of optimization problems, including those encountered in task 
scheduling within fog computing. Recent studies have highlighted various meta-
heuristic strategies that mimic natural processes to enhance task allocation 
efficiency and minimize energy consumption ‒ for example, Jakwa et al. [1] 
propose a hybrid meta-heuristics-based task scheduling algorithm that competes 
favorably against traditional methods, such as modified particle swarm optimization 
(MPSO). Their results indicate substantial improvements in resource utilization, 
average response time, and energy consumption, clearly demonstrating the benefits 
of their approach to resource management for fog nodes. 

Moreover, [2] discusses the critical challenges in heuristic task scheduling for IoT 
applications within fog-cloud computing, outlining the need for algorithms to 
integrate real-time adaptations and collaborate effectively across devices. This 
highlights an emerging trend in scheduling where advanced machine learning 
techniques are proposed to respond to varying workload conditions dynamically, 
leveraging insights from past performance to optimize future task scheduling 
decisions. 

Additionally, Hussein et al. [3] showcase the potential of ant colony optimization 
(ACO) in effectively load balancing IoT tasks over fog nodes while minimizing 
communication costs and response times. The proposed ACO-based scheduling 
algorithm demonstrates improvements in response times and load balancing 
compared to traditional methods, reinforcing the applicability of nature-inspired 
strategies in improving application performance in distributed infrastructures. 

While previous studies have examined various nature-inspired algorithms for fog 
computing, differences in infrastructure models, workloads, and evaluation metrics 
across publications make it challenging to make direct, quantitative comparisons 
between methods. Additionally, many works mainly focus on the final solution 
quality, often neglecting equally important factors such as execution time, 
convergence speed, and the search dynamics that affect practical use in latency-
sensitive environments. 

In this study, we offer a controlled, side-by-side comparison of three well-known 
meta-heuristics ‒ Genetic Algorithm (GA), Firework Algorithm (FWA), and Grey 
Wolf Optimizer (GWO) ‒ all implemented within the same simulation framework 
and tested under identical infrastructure and workload conditions. To ensure 
fairness and practical relevance, each algorithm is tuned and assessed within a fixed 
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computational budget, reflecting the constraints in time-critical scheduling 
scenarios where extended optimization runs are not feasible. Our evaluation, 
supported by statistical significance testing and effect size analysis, measures trade-
offs such as GA’s consistently higher efficiency across all generations versus 
FWA’s earlier achievement of its final solution, providing useful guidance for 
choosing algorithms in energy-limited fog computing environments. 

The rest of the paper is structured as follows. We present a brief overview of related 
works in Section 2. In Section 3, we detail the system model and the analyzed 
nature-inspired algorithms. Section 4 describes the simulation environment of the 
experiments, the parameter fine-tuning process, and discusses the observed results 
of the comparative analysis. Finally, section 5 provides conclusions for the work. 

2 Related Work 

In recent years, the integration of fog computing with practical task scheduling 
approaches has been a focal point of research, aiming to enhance performance and 
resource utilization in fog computing environments. Wang et al. [4] present a hybrid 
heuristic algorithm for task scheduling within smart production lines, leveraging 
fog computing. Their experimental results show that the proposed strategy performs 
better than other strategies, highlighting the potential of combined nature-inspired 
techniques. Similarly, Rafique et al. [5] propose a bio-inspired hybrid algorithm to 
optimize resource management and task scheduling in fog computing settings. Their 
simulations in iFogSim [6] demonstrate significant improvements in energy 
efficiency and scheduling time. 

Xu et al. [7] introduce a method that combines laxity and an ant colony system to 
tackle task scheduling challenges in cloud-fog environments. Their laxity-based 
priority algorithm organizes tasks based on urgency while considering deadlines, 
which is crucial for minimizing delays or failures in task execution. On the other 
hand, Keshri et al. [8] Merge ACO with GWO to effectively address energy 
consumption and resource wastage in virtual machine placement within cloud data 
centers. 

Domanal et al. [9] further this discussion by developing a hybrid bio-inspired 
algorithm that integrates features from various methodologies. Their work focuses 
on reducing operational overhead while maximizing resource allocation efficiency, 
which is crucial as cloud environments expand. 

Adaptive schedulers harness real-time data to respond to workload fluctuations 
effectively, enhancing overall system performance. For instance, Soula et al. [10] 
integrate machine learning with bio-inspired heuristics to create an intelligent task 
allocator that dynamically adjusts to environmental changes, promoting adaptive 
resource management. Similarly, Nabi et al. [11] propose an adaptive Particle 



K. Póra et al.Nature-inspired Algorithms for Energy-Aware Application Scheduling in Fog Computing Environments 

‒ 332 ‒ 

Swarm Optimization (PSO) approach for task scheduling in cloud computing, 
minimizing task execution times while improving resource utilization and 
throughput. 

Optimizing the spatial and hierarchical structure of fog environments ensures 
service proximity and coordination. Talavera et al. [12] employ GAs with 
hierarchical clustering to refine fog colony layouts, minimizing application 
response times. Hong et al. [13] extend this by presenting an autonomous 
evolutionary approach for orchestrating service placement across cloud, fog, and 
IoT layers, highlighting the value of cross-layer coordination. Similarly, Vakilian 
et al. [14] explore the role of Artificial Bee Colony algorithms in cooperative load 
balancing, adding a layer of operational efficiency by promoting inter-node 
communications that enhance response times and energy costs. 

Finally, using the Cuckoo Search Algorithm, Liu et al. [15] tackle multi-objective 
challenges associated with IoT service placement in fog environments. Their 
findings reveal that the algorithm successfully navigates trade-offs between 
competing objectives, thereby aiding the development of robust scheduling 
strategies. 

The reviewed studies show how nature-inspired algorithms are versatile in solving 
scheduling and resource allocation problems in fog and cloud-fog environments, 
often leading to significant gains in energy efficiency and performance. However, 
making direct quantitative comparisons across these studies is challenging due to 
differences in infrastructure models, workloads, evaluation metrics, and algorithm 
setups. Additionally, while many studies measure energy consumption, fewer 
analyze execution time, convergence speed, and the underlying search dynamics ‒ 
factors that are vital for time-sensitive, resource-limited deployments.  

Motivated by these gaps, our work performs a controlled, side-by-side comparison 
of three representative meta-heuristics ‒ GA, FWA, and GWO ‒ under identical 
experimental conditions, with tuned parameters and a fixed computational budget, 
to provide a comprehensive understanding of their trade-offs in energy-aware fog 
computing. 

3 Methodology 

This section presents our approach to optimizing task placement in fog computing 
environments using nature-inspired algorithms. We first describe the system 
model's components and then detail the three meta-heuristic algorithms 
implemented: the Genetic Algorithm (GA), the Fireworks Algorithm (FWA) and 
the Grey Wolf Optimizer (GWO). 
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3.1 System Model 

We model a fog computing infrastructure comprising a source node (e.g., IoT 
sensor), one central cloud node ‒ acting as destination for the data ‒ and 
heterogeneous fog nodes dispersed throughout the network. Each fog node 𝑖𝑖 
possesses a computational capacity 𝐶𝐶𝑖𝑖, drawn uniformly at random from a 
predefined range, and includes both static and dynamic power characteristics: a 
constant idle draw 𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  and a load‐dependent consumption 𝑃𝑃𝑖𝑖

𝑑𝑑𝑑𝑑𝑑𝑑 that grows 
linearly up to a maximum of 𝑃𝑃𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 at full utilization. 

Workloads (formulated as an application consisting of a list of tasks) are represented 
as directed acyclic graphs, 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸). A single source task is pinned to an edge 
device and continuously generates data at a fixed rate, while a single sink task 
resides in the cloud and consumes processed output at its constant rate. Between 
them, several processing tasks require a certain amount of computation 𝑡𝑡𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟 and 
may be placed on any fog node whose remaining capacity suffices. 

Table 1 summarizes the key system parameters used throughout our study. 
Numerical values and ranges used for experimentation are detailed within Section 
4. 

Table 1 
Notation in the proposed system model 

Symbol Description 
𝐼𝐼 Computing infrastructure of interconnected nodes 
𝐴𝐴 Application made up of tasks to be scheduled 
𝑁𝑁 Total number of nodes (in the Fog computing layer) 
𝐶𝐶𝑖𝑖 Computational capacity of node 𝑖𝑖 
𝑈𝑈𝑖𝑖 Utilization factor of node 𝑖𝑖 

𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Power consumption of node 𝑖𝑖 in idle state 
𝑃𝑃𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 Power consumption of node 𝑖𝑖 at maximum utilization 

𝑃𝑃𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑(𝑈𝑈𝑖𝑖) Power consumption of node 𝑖𝑖 at utilization 𝑈𝑈𝑖𝑖 

𝑇𝑇𝐴𝐴 Total number of processing tasks in application 𝐴𝐴 
𝑡𝑡𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 Computational capacity requirements of task 𝑡𝑡 

3.2 Nature-inspired Algorithms 

We implemented and compared three nature-inspired metaheuristic algorithms for 
optimizing task placement. Each algorithm minimizes power consumption while 
respecting computational resource constraints. The algorithms share a common 
fitness function, which is based on estimating the total power used by application 
tasks, to avoid the costs of repeatedly allocating and deallocating entire solution 
populations (which would be even more problematic in real-world scenarios).  
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We assume that metrics such as static and maximum power consumption, along 
with actual utilization metrics, are known ‒ typically provided by infrastructure 
monitoring solution s‒ and use them to calculate fitness values. 

3.2.1 Genetic Algorithm (GA) 

The Genetic Algorithm [16] is a population-based metaheuristic optimization 
algorithm inspired by natural selection and genetic evolution. Algorithm 1 presents 
the pseudocode for our GA implementation. 

The process begins by creating a set of random task-to-node assignments. In each 
generation, a number of candidates are picked randomly, and superior solutions win 
“tournaments” to become parents. Pairs of parents then swap genes according to a 
uniformly random crossover process to produce offspring inheriting a mixture of 
genes from both selected parents. 

To prevent the search from converging too early, each gene in the produced 
offspring has a small probability (parametrized as the mutation rate) of randomly 
changing, altering the task assignment of the individual. This mutation step injects 
fresh variations into the population, promoting diversity. Once enough offspring are 
created to refill the population, the old generation is replaced and the cycle repeats 
until the predetermined number of generations is reached. To prevent losing 

Algorithm 1 Genetic Algorithm 
1:  Input: Population size P, Generations G, Mutation rate M, Tournament 

size T 
2: Output: Placement solution 
3: Initialize population pop with P random solutions  
4: Evaluate fitness of all individuals 
5: Track best solution 
6: for 𝑔𝑔 = 1 to 𝐺𝐺 do 
7:     new_pop ← ∅ 
8:     while |new_pop| < P do 
9:         parent1 ← TournamentSelect(pop) 

10:         parent2 ← TournamentSelect(pop) 
11:         child1, child2 ← Crossover(parent1, parent2) 
12:         Mutate(child1, child2) with M probability per gene 
13:         Add child to new_pop 
14:     end while 
15:     Evaluate fitness of new_pop 
16:     Replace worst individual with previous best 
17:     Update best solution if improved 
18:     pop ← new_pop 
19: end for 
20: return best solution found 
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previously found promising solutions, elitism was implemented into the algorithm, 
ensuring that the best solution found so far is kept in the pool of individuals evolving 
over generations, and that a worse solution will not be returned from the algorithm 
upon its termination. 

3.2.2 Firework Algorithm (FWA) 

The Fireworks Algorithm [17] is a population-based meta-heuristic optimization 
algorithm inspired by the fireworks explosion. The algorithm operates through an 
iterative process over G generations, as outlined in Algorithm 2. 

The method initializes F fireworks randomly within the search space and sets the 
amplitude parameter to α. During each generation, the algorithm generates sparks 
around each firework f by creating S local sparks within a neighborhood defined by 
the current amplitude, followed by R highly random, so-called Gaussian sparks for 
enhanced exploration diversity. In our implementation, the amplitude parameter 
specifies the number of dimensions in which sparks differ from their firework of 
origin. All generated sparks are collected and evaluated according to the objective 
function, after which the top F sparks are selected to form the next round of 
fireworks. The algorithm incorporates an elitist strategy by continuously tracking 
the best solution encountered and replacing the worst spark with the previous best 
solution. To balance exploration and exploitation, the amplitude parameter is 
decreased by a decay factor of δ after each generation, progressively narrowing the 
search radius around promising regions. The algorithm terminates after G 

Algorithm 2 Firework Algorithm 
1:  Input: Fireworks F, Sparks S, Gaussians R, Generations G, Amplitude α, 

Decay δ 
2: Output: Placement solution 
3: Initialize fireworks with F random solutions 
4: 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ← α 
5: for 𝑔𝑔 = 1 to 𝐺𝐺 do 
6:     𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← ∅ 
7:     for each firework f do 
8:         Generate S sparks around f using  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
9:         Generate R Gaussian sparks 

10:         Append f and its sparks to  𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
11:     end for 
12:     Evaluate fitness of all sparks 
13:     Select top F sparks as new fireworks 
14:     Track best solution 
15:     If previous best is better, replace worst spark 
16:     𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ×  δ 
17: end for 
18: return best solution found 
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generations and returns the best solution found during the entire optimization 
process. 

3.2.3 Grey Wolf Optimizer (GWO) 

The Grey Wolf Optimizer [18] is a population-based meta-heuristic optimization 
algorithm inspired by the leadership hierarchy and hunting strategies observed in 
grey wolf packs. In nature, grey wolves organize themselves into a strict social 
structure consisting of alpha (leader), beta (second-in-command), delta 
(subordinates), and omega (followers). The GWO algorithm models this structure 
to improve candidate solutions within a population of wolves iteratively. 

In our implementation (Algorithm 3), a pack of 𝑊𝑊 wolves is initialized with random 
task-to-node assignments. During each generation, wolves are ranked based on their 
fitness, and the top three individuals are assigned the roles of alpha (𝛼𝛼), beta (𝛽𝛽), 
and delta (δ). These three leaders guide the movement of the remaining wolves in 
the population (omegas), updating their positions based on a weighted influence of 
the leaders. 

The core mechanism of the GWO algorithm revolves around a simulated encircling 
and hunting behavior, where each wolf adjusts its position relative to the leaders. 
The influence coefficients A and C control the balance between exploration 

Algorithm 3 Grey Wolf Optimizer 
1:  Input: Pack size W, Generations G,  
2: Output: Placement solution 
3: Initialize pack with W random solutions 
4: Evaluate fitness and identify α, β, δ wolves 
5: Track best solution 
6: for 𝑔𝑔 = 1 to 𝐺𝐺 do 
7:     𝑎𝑎 ←  2(1 −  𝑔𝑔/𝐺𝐺) {Linear decrease coefficient} 
8:     for each wolf 𝑤𝑤 ∈  𝑊𝑊 do 
9:       for each dimension j do 

10:         Generate random coefficients 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3 and 𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3 
11:         Calculate distances from 𝛼𝛼, 𝛽𝛽, 𝛿𝛿 
12:         Calculate position components 𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 toward 𝛼𝛼, 𝛽𝛽, 𝛿𝛿 
13:         wj ← round �X1+X2+X3

3
�  mod |𝑁𝑁| {Ensure valid node index} 

14:       end for 
15:     end for 
16:     Evaluate fitness of all wolves 
17:     If previous best is better, replace worst wolf 
18:     Update α, β, δ 
19:     Track best solution 
20: end for 
21: return best solution found 
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(searching broadly) and exploitation (refining good solutions). A key parameter 𝑎𝑎 
is decreased linearly from 2 to 0 throughout G generations, gradually shifting the 
search focus from exploration to exploitation. 

To maintain diversity and avoid stagnation, each wolf’s new position is calculated 
by averaging its attraction toward 𝛼𝛼, β, and δ positions, followed by a rounding step 
to produce valid discrete task placements. The population is updated at each step, 
and the best solution found so far is tracked and preserved using elitism. This 
ensures that a superior solution is not lost due to random fluctuations in the search 
process. 

4 Results and Discussion 

4.1 Experimental Setup 

Our experimental framework is built on LEAF [19], a discrete-event simulator 
designed explicitly for modeling energy consumption in fog computing 
environments. LEAF offers strong capabilities for modeling diverse infrastructure 
with varying computational power and energy use, supports complex application 
graphs with interdependent tasks and data flows, includes built-in power 
measurement and monitoring features, and allows efficient execution of large-scale 
scenarios through discrete-event simulation. The implementation uses LEAF's 
integrated power monitoring to measure the energy use of tasks and network flows, 
providing realistic feedback for optimization. Each experiment employed semi-
randomized infrastructure and application configurations, with parameters listed in 
Table 2. 

Table 2 
Parameter values and ranges used for experimental measurements 

We assessed each placement algorithm across three main areas. Power consumption 
measures the total energy used by the application's processing tasks on the 
underlying infrastructure; by expressing this in watts, we directly evaluate how 

Symbol Value / Range 
𝑁𝑁 30 
𝐶𝐶𝑖𝑖 50-150 

𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 20-40 
𝑃𝑃𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 150-250 
𝑇𝑇𝐴𝐴 100 
𝑡𝑡𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 1-15 
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energy-efficient a specific algorithm's placement is, which is crucial when 
deploying services on resource-constrained fog nodes. 

On the other hand, execution time measures how long each algorithm takes to make 
a placement decision; reporting this helps evaluate practical responsiveness, as 
overly slow placement can negate the benefits of offloading and scheduling in a 
dynamic network. Additionally, fog computing architectures are often used for 
transmitting and processing highly diverse workloads (e.g., stream processing), 
which demand high adaptability. 

Since metaheuristic algorithms improve their solutions over multiple generations, 
just measuring the time they run does not fully assess their performance. The third 
metric, convergence generation, indicates the exact point during execution when the 
algorithm reaches a solution quality very close (within 1%) to its final result, 
showing how quickly it finds high-quality solutions. 

These metrics balance the trade-off between energy efficiency and timeliness, 
ensuring that our evaluation accurately reflects operational costs and real-world 
practicality. To guarantee statistical validity, we performed 100 independent runs 
for each algorithm using consistent random seeds across all approaches, allowing 
for fair comparisons while accounting for the inherent randomness of meta-heuristic 
methods. 

4.2 Parameter Tuning 

A uniform computational budget of 100 generations and a population (or pack) size 
of 50 was enforced across all algorithms to emulate the time constraints of real-
world fog computing scenarios, where long optimization runs may be impractical. 
Within this budget, algorithm-specific parameters were tuned to balance 
exploration and exploitation without exceeding the computational cap. 

For the Genetic Algorithm, we tested tournament sizes from 3 to 9 and mutation 
rates from 0.01 to 0.1. The heatmap in Figure 1 shows a clear pattern: low mutation 
rates (especially 0.01) combined with larger tournament sizes (5-7) consistently 
resulted in the lowest power consumption. This combination enhances selection 
pressure, allowing high-quality genes to spread quickly while reducing disruptive 
mutations that could ruin promising partial solutions. Conversely, higher mutation 
rates increased variability and often lowered overall performance, indicating that in 
limited budgets, too much exploration can be counterproductive. 

The Firework Algorithm tuning analyzed how the fixed group of 50 individuals was 
divided among core fireworks (F), local sparks (S), and Gaussian sparks (G), along 
with amplitude (α) and decay factor (δ) settings. Figure 2 shows that most of the 
population should be assigned to sparks (which focus on intensive searching around 
good solutions), with only a few core fireworks, plus a small Gaussian component 
for occasional long jumps, to achieve the best energy efficiency. Starting amplitude 
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values around 1.0 and a moderate decay rate (δ ≈ 0.85) provided enough early 
exploration while guiding the search in later generations. Faster decays led to 
premature convergence, whereas slower decays extended exploration without 
further gains. 

The Grey Wolf Optimizer has fewer explicit tuning controls, with behavior mainly 
driven by the linear decrease of the exploration coefficient 𝑎𝑎 from 2 to 0. We kept 
this standard schedule, along with the same pack size of 50 for comparison. 
Although this setup maintains the intended shift from exploration to exploitation, 
later results indicate that the discrete placement problem may need additional 
hybridization or leader update improvements to match the efficiency of GA or FWA 
under strict generation limits. The final parameter settings used in the comparison 
are summarized in Table 3. 

Figure 2 

Parameter tuning for the Firework Algorithm. Each subplot corresponds to a different population 
distribution among Fireworks (F), Sparks (S), and Gaussian Sparks (G), with the total population fixed 

at 50. 

Figure 1 

Parameter tuning for the Genetic Algorithm. Each cell in the heatmap represents a specific 
combination of tournament size (x-axis) and mutation rate (y-axis), with corresponding values 

indicating the power usage after placement. The color gradient reflects relative performance, where 
darker shades indicate lower power consumption. 
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Table 3 
Summary of algorithm parameters used for comparison 

4.3 Convergence Dynamics 

Figure 3 and Figure 4 together reveal the convergence patterns and the fitness 
distribution evolution for the populations of each algorithm, enabling a unified view 
of their search strategies. 

The Genetic Algorithm shows the steepest early decline, reducing mean power 
consumption from about 2200 W to under 1800 W within the first 20 generations. 
The density heatmap (Figure 4a) reveals a rapid drop in population diversity toward 
low-power areas, with little variation after generation 30. This early convergence 
ensures stability ‒ evidenced by GA’s narrow standard deviation bands in Figure 3 
‒ but also restricts the discovery of potentially better solutions later, explaining the 
slower improvements in the final generations. 

GA FWA GWO 
Number of generations: 100 

Population size: 50 F: 2, S: 22, G: 2 Number of wolves: 50 
Mutation rate: 0.01 Amplitude: 1  
Tournament size: 7 Decay: 0.85  

Figure 3 

Mean convergence curves for GA, FWA, and GWO over 100 generations. Solid lines represent mean 
values, while shaded regions indicate ±1 standard deviation. 
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The Firework Algorithm improves more gradually, with a nearly linear decrease in 
mean power during the first 40 generations (Figure 3). In Figure 4b, diversity lasts 
longer as sparks explore local areas while Gaussian sparks introduce occasional 
high-power outliers. This balance delays the collapse of diversity, allowing the 
algorithm to keep making steady progress before plateauing. As a result, FWA 
typically reaches near-final solutions earlier than GA (mean convergence 
generation ≈ 75 vs. 91), despite slightly higher final power consumption. 

The Grey Wolf Optimizer starts at similar initial power levels but exhibits the 
slowest and most irregular convergence, with ongoing variability across generations 
(Figure 3). Figure 4c shows that population diversity stays high until late in the 
process, but without a steady decline in power levels. This indicates that while 
GWO’s leader–follower structure maintains exploration, its exploitation ability is 
not sufficient in this setup, causing many runs to get stuck in suboptimal regions. 

4.4 Comparative Performance and Statistical Validation 

Descriptive statistics for all three metrics are reported in Table 4, and pairwise 
hypothesis tests are summarized in Table 5. GA achieved the lowest mean power 
consumption (1258.28 W, SD = 97.10 W), followed by FWA (1431.52 W, SD = 
110.56 W) and GWO (1687.12 W, SD = 149.17 W). Relative to FWA, GA reduces 
mean power consumption by 12.1%; relative to GWO, GA reduces mean power 
consumption by 25.4% (both computed from the reported means). Conversely, 
GWO consumes approximately 34.1% more power than GA when the increase is 
expressed relative to GA. These differences are robust: pairwise comparisons of 
power consumption using paired t-tests yield p < 0.001 for all pairs with large effect 
sizes (Cohen’s dz: GA vs FWA = 1.884; GA vs GWO = 3.367; FWA vs GWO = 

Figure 4 

Evolution of population diversity through density heatmaps showing the distribution of solutions 
across power consumption levels over 100 generations for (a) GA, (b) FWA, and (c) GWO. Color 

intensity indicates the number of solutions at each power level, revealing distinct exploration-
exploitation strategies. 
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1.786), indicating that the observed differences are both statistically and practically 
meaningful. 

Execution time follows an inverse ranking: FWA is the fastest (mean = 1.01 s), GA 
is intermediate (mean = 1.07 s), and GWO is the slowest (mean = 1.34 s). FWA is 
approximately 5.6% faster than GA, while GWO is ~25.2% slower than GA under 
the chosen implementations. Tests on execution-time within-seed differences 
(Wilcoxon signed-rank, due to non-normality) returned p < 0.001 for all pairwise 
comparisons with large effect sizes (rank-biserial: GA vs FWA r = 0.615; GA vs 
GWO r = 0.771; FWA vs GWO r = 0.839), confirming that these differences are 
significant. 

Table 4 

Descriptive statistics (100 runs). Mean, 95% confidence interval, standard deviation, minimum, and 
maximum for power consumption (W), execution time (s), and convergence generation for GA, FWA, 

and GWO. 

Convergence generation further differentiates the approaches: FWA typically 
attains a near-final-quality solution earlier (mean = 74.66 generations) than GA 
(mean = 91.09 generations) and GWO (mean = 97.97 generations). In relative 
terms, FWA reaches near-final quality about 18.0% earlier than GA, and GA 
reaches near-final quality about 7.0% earlier than GWO. These observations are 
statistically significant (paired t for GA vs FWA: t = 10.7797, p < 0.001, dz = 1.078; 
Wilcoxon for GA vs GWO: W = 405.5, p < 0.001, r = 0.710; paired t for FWA vs 
GWO: t = −19.6359, p < 0.001, dz = 1.964). 

Taken together, the quantitative results identify a clear trade-off: GA delivers the 
best final energy efficiency and the most consistent outcomes; FWA is fastest to a 
near-optimal solution with moderate final efficiency; GWO under the present 
parametrization is generally slower, more variable, and produces higher-energy 
placements. 

 

 

Metric Alg. Mean 95% CI Std Min Max 

Power 
Usage [W] 

GA 1258.28 [1239.01, 1277.54] 97.10 1060.63 1499.33 
FWA 1431.52 [1409.58, 1453.46] 110.56 1160.68 1735.30 
GWO 1687.12 [1657.52, 1716.72] 149.17 1416.76 2068.13 

Execution 
Time [s] 

GA 1.07 [1.04, 1.10] 0.15 0.98 1.88 
FWA 1.01 [0.99, 1.03] 0.09 0.94 1.70 
GWO 1.34 [1.30, 1.37] 0.18 1.16 2.23 

Convergence 
Generation 

GA 91.09 [89.47, 92.71] 8.16 67.00 100.00 
FWA 74.66 [72.31, 77.01] 11.84 46.00 99.00 
GWO 97.97 [97.54, 98.40] 2.17 85.00 100.00 
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Table 5 
Statistical significance tests and effect sizes for pairwise algorithm comparisons  

(t-p = paired Student’s t-test; WSR = Wilcoxon signed-rank; dz = Cohen’s dz; r = rank-biserial 
correlation; all comparisons use n = 100 paired runs.) 

4.5 Discussion 

The Genetic Algorithm's superior energy efficiency (average 1258.28W, Table 4) 
results from its effective combination of evolutionary operators. The tournament 
selection with a size of 7 creates strong selection pressure, quickly eliminating poor 
solutions while maintaining diversity through stochastic selection. With seven 
individuals competing in each tournament, the chance of selecting suboptimal 
solutions as parents is minimized, guiding the population toward high-quality 
regions of the search space. The low mutation rate of 0.01 prevents disrupting good 
solutions while allowing escape from local optima. Most importantly, elitism 
ensures steady improvement by preserving the best solution found ‒ a crucial 
feature in discrete optimization where genetic operators might otherwise destroy 
optimal task assignments. The narrow confidence interval [1239.01, 1277.54] and 
a coefficient of variation of 7.68% confirm that these mechanisms work reliably 
across different initial conditions. 

The Firework Algorithm achieves the fastest execution time (average 1.01 s, Table 
4) through its efficient exploration strategy. The spark generation mechanism 
evaluates multiple candidate solutions around each firework location in a structured 
way, requiring fewer fitness evaluations to reach similar solution quality. The 5.6% 
speed advantage over GA likely comes from the simpler spark generation 
operations compared to GA's tournament selection and crossover procedures.  
The smooth convergence seen in Figure 3 results from the amplitude decay 
mechanism, which provides a clear transition from exploration to exploitation.  
The configuration with 2 fireworks, 22 regular sparks, and 2 Gaussian sparks (an 
11:1 spark-to-firework ratio) shows that intensive local search in a few promising 
regions outperforms maintaining many independent search origins, reducing 
computational costs while maintaining solution quality. 

Metric Comparison Test Statistic p-value Effect Size 

Power Usage [W] 
GA vs FWA t-p t = -11.77 <0.001 dz = 1.88 
GA vs GWO t-p t = -24.09 <0.001 dz = 3.37 

FWA vs GWO t-p t = -13.77 <0.001 dz = 1.79 

Execution Time [s] 
GA vs FWA WSR W = 737.0 <0.001 r = 0.62 
GA vs GWO WSR W = 284.0 <0.001 r = 0.77 

FWA vs GWO WSR W = 85.0 <0.001 r = 0.84 

Convergence 
Generation 

GA vs FWA t-p t = 10.78 <0.001 dz = 1.08 
GA vs GWO WSR W= 405.5 <0.001 r = 0.71 

FWA vs GWO t-p t = -11.64 <0.001 dz = 1.96 
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The Grey Wolf Optimizer's poor performance across all metrics highlights 
difficulties in adapting continuous optimization metaphors to discrete problems. 
The position update mechanism, designed for smooth navigation in continuous 
spaces, becomes less precise when adapted for valid task-node assignments.  
The stratified population structure in Figure 5c, while maintaining diversity, shows 
that many wolves stay far from leaders throughout the optimization process. This 
explains both the highest average power consumption (1687.12 W) and the most 
significant standard deviation (148.43 W) observed in Table 4. The late 
convergence (average 97.97 generations) with a very low variance (σ = 2.16) 
suggests that the algorithm consistently needs nearly all available iterations, 
implying that the linear decrease of the convergence parameter 'a' might be too 
cautious for faster adaptation. 

Conclusions 

This study presented a controlled comparison of three nature-inspired meta-
heuristics for energy-aware application scheduling in fog computing: 

 Genetic Algorithm (GA) 
 Firework Algorithm (FWA) 
 Grey Wolf Optimizer (GWO) 

The results showed clear trade-offs: 

GA consistently delivered the most energy-efficient placements across all 
generations. 
FWA achieved earlier stabilization and the shortest execution times, though 
with higher final energy consumption. 
GWO maintained population diversity but had slower convergence and lower 
efficiency under the tested conditions. 

By analyzing energy efficiency, convergence speed, execution time, and search 
dynamics together within a fixed computational budget, this work goes beyond the 
single-metric evaluations that dominate much of the existing literature. The results 
highlight that algorithm suitability is inherently dependent on context, influenced 
by the relative importance of rapid scheduling versus maximum efficiency in time-
critical, energy-constrained deployments. 

Future research will focus on a deeper exploration of the observed search dynamics, 
including the role of maintaining diversity, balancing exploitation and exploration, 
and early-stage convergence patterns, to guide the development of hybrid or 
adaptive strategies. Additionally, expanding the framework to multi-objective 
optimization will allow for the simultaneous consideration of energy efficiency, 
quality of service, and other operational goals relevant to fog computing 
environments. 
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