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Abstract: The use of mixed-effects models is becoming increasingly common in the analysis
of biomedical data. They are often employed for estimating physiological parameters, where
we can distinguish between fixed and random effects, and they work particularly well for
analyzing similar types of data. We apply mixed-effect modeling on experimental data, in
which mice with breast cancer were treated with chemotherapeutic drugs. The mice are
genetically identical, they had the same type of tumor, and they were treated with the same
drug. The available data are the tumor volumes at specific time points and the doses of the
injected drug. We fit our mathematical model to these experimental data; the parameters
of that mathematical model are essentially the physiological parameters whose estimation
is crucial for optimizing the therapy. To estimate the parameters, we apply a nonlinear
mixed-effects model fitting to in vivo data.
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1 Introduction

Cancer has become a major public health problem, with the number of cases and
deaths increasing every year. According to the World Health Organization (WHO),
this trend is expected to continue. Although there are many treatment options for
cancer, most of them are designed for the average patient and do not fully consider
individual differences. Because of this, patients often experience more side effects,
and their quality of life worsens during treatment [1–3]. Chemotherapy doses
can be minimized with the help of optimized therapy, so side effects can also be
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reduced. Reducing doses helps prevent the development of drug resistance and, last
but not least, can reduce treatment costs [4, 5]. Optimized therapies are not only
cost-effective but also provide an opportunity to minimize the number of clinical
trials, thereby speeding up research and development. Several approaches can be
used to solve the therapy optimization problem, for example, one such approach is
the use of impulsive control methods [6–10], but traditional control theory can also
be used [11, 12]. In this work, we focus on estimating the parameters of an in vivo
tumor model [13, 14]. The parameters can later be used for therapy optimization
algorithms.

Algorithmic therapy optimization is one of the promising tools for the future of
medicine, and it forms the core of our research. The therapy optimization requires
a mathematical model that can describe the effects of drugs and the dynamics of
tumor growth [13, 15]. A therapy is personalized when the parameters of the
mathematical model are based on the specific characteristics of the patient being
treated. Estimating the unique parameters of the patients and generating optimal
therapies in preclinical experiments have already been discussed in the literature
[16], as these individual parameters are crucial for personalization. There are
several methods for estimating the parameters of a mathematical model [17, 18].
For example, we can use model fitting using neural networks [19–22] and other
search algorithms and model analysis techniques [23–25].

We use in vivo data from animal experiments where mice with breast cancer were
treated with Doxil [26], the tumor volumes were measured, and the drug doses are
known [9]. Using these in vivo data, we fit a mathematical model [13] that allows
us to create and test personalized therapies in silico [27]. Model fitting plays a
critical role, as it directly impacts the outcomes and effectiveness of model-based
therapies. There are many solutions to the fitting problem, which also presents
several challenges [28–31]. These include the limited number of tumor volume
measurements and the fact that these measurements are affected by measurement
error [32, 33].

Mixed-effects models are used to analyze data where observations are grouped [15],
such as repeated measurements from specimens in clinical studies or biological
experiments. These models are effective in handling data with both fixed and
random effects [34]. Fixed effects describe the population-level relationships, and
random effects describe individual variability within groups. This makes them
popular in fields like pharmacokinetics, where drug concentrations and responses
may vary from one patient to another due to differences in physiology, genetics, or
other factors [35].

Our goal is to estimate the tumor dynamics parameters of the mathematical model
using nonlinear mixed-effects model fitting. Identification of the parameters is
essential for the personalization of the therapy, and with the help of the defined
parameters, virtual measurements can be generated on which our therapies can
be tested. We discuss the mathematical model in Section 2, and summarize the
mathematics and advantages of using non-linear mixed effect models. In Section 3,
we present our fitting results and examine our data from the point of view of fitting
non-linear mixed effect models. We also discuss the initial value of the parameters
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and the statistical tools used during the fitting. Finally, in Section 4, we present
the individual fitting results of each mouse and summarize the population values of
the parameters. These parameter values can be integrated into therapy optimization
algorithms to create personalized treatments, and they can serve as starting values
for further fitting processes when new experimental data is available.

2 Materials and Methods

2.1 Mathematical Model of Tumor Growth

There are several types of tumor models in the literature [36–38]. For example,
there are tumor models that focus not only on tumor growth but also on the
growth of the supporting vascular system [39], and there are other models that
include drug resistance [4]. In our work, we use a mathematical model based on
formal reaction kinetics [40], which deals with the drug pharmacodynamics and
pharmacokinetics, and also models the dynamics of the dead tumor cells which is
crucial for identification, since the measurements from the experiments contain the
volume of both the living and the dead tumor cells. The tumor dynamics processes
are described by the formal reaction kinetics equations [15]:

X1
a−−→ 2X1, (1)

X1
n−−→ X2, (2)

X2
w−−→ O, (3)

X1 +X3
b,ED50−−−−→ X2 +X3, (4)

X3
c−−→ O, (5)

X3
k1−−→←−−
k2

X4, (6)

where (1) is tumor proliferation with rate a, (2) is the necrosis of living tumor cells
independent of the drug with rate n, (3) is the washout of the dead tumor cells with
washout rate w, (4) is the pharmacodynamics of the drug with maximal effect rate
b and median effective dose ED50, (6) is the drug transport between the central and
peripheral compartment with rate constants k1 and k2, while (5) is the depletion of
the drug with clearance c.

For the parameter estimation process, we need a mathematical model that describes
the dynamics of the tumor and the drug. The parameter values of this model
are estimated during the model fitting process. The mathematical model we use
can be acquired from the formal reactions with a combination of mass action and
Michaelis-Menten kinetics [41], resulting in a system of differential equations with
four state variables [13]:
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Table 1
Description and units of the model parameters.

Parameter Description Unit
a proliferation rate coefficient day−1

b drug efficiency rate coefficient day−1

c clearance of the drug day−1

ED50 median effective dose of the drug mg·kg−1

k1 flow rate coefficient of the drug
from the central to the peripheral compartment day−1

k2 flow rate coefficient of the drug
from the peripheral to the central compartment day−1

n necrosis rate coefficient day−1

w washout rate coefficient of dead tumor cells day−1

ẋ1 = (a−n)x1−b
x1x3

ED50 + x3
, (7)

ẋ2 = nx1 +b
x1x3

ED50 + x3
−wx2, (8)

ẋ3 = −(c+ k1)x3 + k2x4 +u, (9)
ẋ4 = k1x3− k2x4, (10)

where (7) describes the growth of the living tumor, with the state variable x1 [mm3]
representing the volume of living tumor cells as a function of time. Equation (8)
describes the dead tumor, where x2 [mm3] represents the volume of dead tumor
cells over time [15]. In (9), x3 [mg·kg−1] shows the drug concentration in the central
compartment, which, in this case, is the concentration of the drug in the blood. This
equation models the behavior of the drug in the blood. Equation (10) also describes
the drug concentration in the tissues, where x4 [mg·kg−1] represents the drug level
in the tissues.

The input of the system is u [mg·(kg·day)−1], which is the injection rate. The drug is
injected into the central compartment. The output of the system is the total volume
of living and dead tumor cells, denoted as y, which is the sum of the living and dead
tumor cells

y = x1 + x2, (11)

and this is the measured variable in the experiments used for model fitting in this
study.

The descriptions and units of the parameters [42] of the model are summarized in
Table 1. During model fitting, we estimate the values of the parameters listed in
Table 1, and we fixed the pharmacokinetics parameters c, k1, and k2 (which will be
detailed further in Section 3).
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2.2 Nonlinear Mixed-effects Models

The nonlinear mixed-effects model is a general method for analyzing continuous
repeated measurements taken from specimens within a specific population. This
approach is particularly useful when we want to understand the average behavior of
the population and the variations among specimens [43].

The main difference between linear and nonlinear mixed-effects models lies
in the structure of the model and how the explanatory variables (also known
as independent variables) are related to the response variables (also known as
dependent variables) within the model. Nonlinear mixed-effects models are more
flexible, as the relationship between the independent and dependent variables is
not necessarily linear (it can be exponential, logarithmic, or any other nonlinear
function) [34]. The general form of the model is

yi, j = f (xi, j,θ)+ εi, j, (12)

where yi, j is the jth observation of the ith specimen (e.g., the volume of the tumor
in our case) and f is a nonlinear function that describes the relationship between
the dependent variable and the independent variables. Parameter xi, j represents the
independent variables for the jth observation of the ith specimen (e.g., the dose
of the drug) [44]. Parameter θ represents the parameters for the specimen, which
contains the fixed and the random effects. These random effects allow the model
to account for individual differences among specimens. The parameters (θ ) of the
specimen can be divided into two components. Fixed Parameters are valid at the
population level, and random parameters are specific to individual specimens and
can be written as:

θi = θpop +bi, (13)

where θpop represents the population-level parameters, these are the fixed effects
that describe the average behavior characteristics of the entire population being
studied and bi is the random effect, assumed to follow a normal distribution [45].
The εi, j represents the residual error for the jth observation of the ith specimen,
which is the difference between the observed value (yi, j) and the predicted value
( f (xi, j,θ)) of the model [44, 46].

3 Model Fitting to Experimental Data

Our goal with the fitting is to determine constant parameter values in Table 1 that can
describe the parameters of the population. So, we focus on a specific target group,
meaning we want to estimate the parameters for this specific target group. In this
case, the application of mixed effect models is a very effective and commonly used
method [43]. In our research, the subjects of the experiment where we got the data
from are genetically identical mice, thus, we can expect small differences among
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Table 2
Initial values of the tumor dynamics parameters.

Parameters Initial values
a [day−1] ln(0.22)
n [day−1] ln(0.0005)
b [day−1] ln(8)

ED50 [mg·kg−1] ln(2.7183)
w [day−1] ln(0.004)

x1(0) [mm3] ln(50)

their parameter values. The mixed-effects model estimates the expected value of
the parameter values and models the differences between individuals as noise, so it
can be used very well in our case [13, 15]. During the fitting, we accessed a dataset
from 54 experimental mice. The dataset includes tumor measurement time points,
injection time points, the measured volume of the tumor, the amount of the injected
dose, and the unique ID for each mouse. The mice and tumor type can be found in
the work of Füredi et al. [26], and the experimental setup is detailed in the works of
Kovács et al. [9, 47].

Fitting the parameters is actually based on the comparison of two curves. We have
the observed measurements, which, in our case, are the measured tumor volumes,
and the predicted tumor volume values obtained during fitting, which are obtained
by the estimated parameters and by our mathematical model. The aim of the fitting
is to minimize the difference between the two curves. We can examine the deviation
of the two curves with different indicators. In our work, we examined the individual
weighted residual (IWRES) error, which weights the deviations (residuals) between
the observed values (DV) and the values predicted (IPRED) by the model with the
variance of the measurement data (σ̂ ) [48]:

IWRESi =
DVi− IPREDi

σ̂i
, (14)

where i denotes the index of the specimen. The IWRES standardizes differences
between observations so that different individuals become comparable. The closer
this value (14) is to zero, the smaller the error, and the closer the fitted curve
follows the observed data [49]. So the IWRES value weights the residual based
on inter-individual variability, which allows residuals to more accurately reflect
variation at different levels (e.g., population and individual). In general, individual
residual values (IRES) can also be used, but they do not take weighting into
account, so they do not always adequately reflect individual-specific differences
and variability, so we chose the weighted version for the evaluation of results (the
evaluation is detailed in Section 4). IWRES can also be used to identify individuals
for whom the model fits poorly, likely because they differ from the majority of mice.

In order to estimate the parameters, the algorithm requires initial values to start
the search. One of the main drawbacks of search algorithms is the need to select
appropriate initial values from which the search begins. For the fitting process,
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Table 3
Fixed pharmacodynamics and pharmacokinetics values.

Parameters Constant values
c [day−1] 1.8211
k1 [day−1] 14.0080
k2 [day−1] 136.2781

the initial parameter values were set empirically during the first run, based on our
previous work [22]. After the first run, we always examined the expected value
and standard deviation of the fitted parameters, and the next fitting was based on
these. Table 2 contains the initial values from which the search for the parameters
was started and the best results were obtained. Parameter x1(0) represents the initial
living tumor volume, which was estimated during the fitting.

Based on the previous analysis of our mathematical model, it was established that
the parameters c, k1, and k2 have a small influence on the output of the model [50],
so they are difficult to estimate. These parameters were fixed in this work, so their
value was not estimated. The fixed values, which were estimated based on our
previous work [9, 13, 20], are summarized in Table 3.

The measurement data were processed, and the fitting results were evaluated
in Matlab, while the nonlinear mixed-effect model fitting was done in RStudio
with nlmixr2 package [51, 52]. This package is commonly used to fit
non-linear mixed-effect (NLME) models, mainly for pharmacokinetic (PK), and
pharmacodynamic (PD) models, but also for modeling other mixed-effect models
[53]. When using the package, we used the SAEM (Stochastic Approximation
Expectation-Maximization) estimation algorithm. This is a popular method for
fitting nonlinear mixed-effects models, as well as in a pharmacometric context. The
SAEM algorithm uses an iterative approach based on the estimation of distributions
and the evaluation of data [54].

4 Results

Parameter fitting was performed on the full dataset, which comprised 54
experimental mice. The IWRES values based on (14) were examined in all
specimens, the results of which can be seen in Figures 1 and 2, both figures showing
the results for 27 mice. In these figures, the red horizontal line is the median of the
data, the blue rectangles show the range where 25%-75% of the data are (so these
are the first (Q1) and third (Q3) quartiles), the whiskers typically extend to the data
points that are within 1.5 times the IQR (IQR = Q3-Q1) and these are not considered
as outliers, while red crosses indicate outliers. The x-axis indicates the ID of the
mice and the y-axis the individual weighted residuals (IWRES). Examining Figures
1 and 2, it is easy to recognize the possibly worst-fitting individuals. In our case,
the goal is that the boxes belonging to the individuals are as small as possible and
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Figure 1
Individual weighted residuals (IWRES) of the first 27 specimen, which can be used to examine the

goodness of fit.

the medians (red line) are located close to zero, since in this case, the fit is more
accurate.

Figure 1 clearly shows that for specimens 1-9-G1-22, 2-7-G1-22 and 3-2-G1-22,
the error moves over a larger interval, and each specimen has some outlier values.
The medians, on the other hand, are around zero for all individuals, and except for a
few cases, the boxes are also small, which indicates the movement of the errors on
a small interval, so overall a good fit can be concluded.

In Figure 2, the results are similar to those seen in the individuals shown in Figure
1. However, in this case, slightly more individuals exhibit larger boxes in the
boxplot of residuals, indicating a greater variability in the errors. This is particularly
evident for individuals 4-1-G1-22, 4-2-G2-22, 5-10-G1-22, and 5-6-G1-22, where
the interquartile range of the residuals is the largest. Despite this increased spread,
the medians of the residuals still mostly remain close to zero, generally falling
within the interval of -2 to 2, which suggests the absence of a considerable bias
in the fit.
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Figure 2
Individual weighted residuals (IWRES) of the second 27 specimens, which can be used to examine the

goodness of fit.

Figures 3 and 4 show the fitting results for each mouse. Each mouse can be
distinguished based on the unique IDs, and in each figure, the x-axis represents
time, the left y-axis represents the tumor volumes and the right y-axis represents the
doses. The figures show the tumor volume measurements (observed measurements
with blue curve) of mice from the same population and the estimated tumor volume
(individual prediction with red curve) fitted based on the nonlinear mixed-effect
model. The green vertical lines indicate the injection days and the doses.

Figure 3 shows that the individual prediction (red curve) does not fit well with the
observed measurements (blue curve) of the 1-9-G1 and 3-2-G1-22 mice, and that in
the case of the 2-7-G1-22 mouse. In Figure 4, we can also see the 4-1-G1-22 mouse,
for which we concluded based on Figure 2 that we might not get a nice fit and that
this curve did not fit properly. However, it can be stated that, overall, we obtained
nice fitting results.

We examined the IWRES results at the population level; it is summarized in Table
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Figure 3
The tumor volume measurements [mm3] (observed measurements with the blue curve) of mice and the
estimated tumor volume [mm3] (individual prediction with the red curve) fitted based on the nonlinear

mixed-effect model. The green vertical lines indicate the day of injection and the dose in mg·kg−1.
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Figure 4
The tumor volume measurements [mm3] (observed measurements with the blue curve) of mice and the
estimated tumor volume [mm3] (individual prediction with the red curve) fitted based on the nonlinear

mixed-effect model. The green vertical lines indicate the day of injection and the dose in mg·kg−1.
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Table 4
Statistical data for the individual weighted residuals (IWRES) at the population level.

Minimum Q1 Median Mean Q3 Maximum
IWRES -5.0695 -0.0559 -4.24e-10 0.2102 0.1727 10.7197

Table 5
Statistical indicators of fitted parameters at the population level.

Parameters a n b ED50 w x10
Minimum 0.1694 3.47e-04 4.2296 0.5408 4.40e-05 0.0034
Median 0.2435 4.71e-04 9.2740 1.4489 0.0431 24.3271
Mean 0.2435 4.74e-04 9.3849 1.8643 0.0456 52.4025
Maximum 0.3807 6.03e-04 14.5180 7.2009 0.1466 383.0802
SD 0.0430 4.86e-05 2.1989 1.3038 0.0328 61.4707

4. This also shows that, e.g., the median is also close to zero at the population level,
the mean is also small and the quartiles also have small values, which is definitely
positive information for the success of the fit, but in any case, in the future, grouping
based on tumor dynamics may further clarify this result.

The parameters we were looking for were obtained by the fitted curves, which
are also summarized at the population level in Table 5. The header of the table
shows the fitted model parameters (a, n, b, ED50, w) and the fitted initial living
tumor volume (x1(0)). We examined the minimum and maximum values, the
median, the average, and the standard deviation (SD) for each parameter. According
to Table 5, the most reliable estimate was obtained for parameter n, as it has
the smallest standard deviation, followed by parameters a and w. Moreover, the
median, mean, minimum, and maximum values are all closely aligned. Overall, the
statistical measures suggest that the parameter values vary only minimally between
individuals, indicating a successful fit. The only exception is the initial living tumor
volume x1(0), which exhibits a larger standard deviation and greater variability in
its statistical indicators. This is expected, as the mice started the experiment with
different initial tumor volumes.

Conclusion

We estimated the parameters of a mathematical model describing tumor growth
under chemotherapy using nonlinear mixed-effects model fitting. The dataset
consisted of tumor volume measurements from in vivo mouse experiments along
with the corresponding administered doses. The pharmacokinetic parameters (three
out of the eight estimable parameters) were fixed based on values reported in our
previous studies and were not re-estimated. We also estimated the initial volume
of living tumor tissue. The evaluation of the six estimated parameters confirmed
that the model parameters can be reliably estimated using this fitting approach. The
results support our assumption that inter-individual variability among the mice is
small, and the fitting was successful both at the individual and population levels.
In future work, it will be important to cluster tumor growth curves based on their
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dynamics [20], in order to define more homogeneous groups. For such groups,
model fitting could yield more accurate and specific parameter estimates.

We currently estimate fixed parameter values, but based on the experimental data,
we have already concluded that these physiological parameters may change over
time. In the cases where the model did not fit well for certain mice, we observed that
after a period of remission (tumor reduction), the tumor suddenly regrew, indicating
relapse. The model had difficulty describing this because it assumes constant
parameters, while the tumor growth dynamics are likely to change over time. As
a further improvement step, it might be worthwhile to examine this with a fitting
method where the fitting is performed in stages. In this way, parameter changes
can also be tracked, so the estimation can be more realistic and accurate. The
current result can be well integrated into many research since therapy optimization
algorithms can use these parameter values during the generation of the unique
therapy or can be used to carry out in silico experiments. In addition, these
parameter values can be additional starting values during a further fitting process if
new experimental results are obtained. In our future work, we would like to further
refine our model with a deeper analysis of the differences between individual mice,
enabling a more precise parameter estimation of the tumor model.
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data-driven tumor modeling for chemotherapy. In Proceedings of the 21st
IFAC World Congress, pages 16466–16471, 2020.

[14] M. Puskás and D. A. Drexler. Tumor model parameter estimation for
therapyoptimization using artificial neural networks. In IEEE International
Conference on Systems, Man, and Cybernetics - 2021, pages 1254–1259,
2021.

– 60 –



Acta Polytechnica Hungarica Vol. 22, No. 10, 2025

[15] D. A. Drexler, T. Ferenci, A. Lovrics, and L. Kovács. Tumor Dynamics
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[22] M. Puskás, B. Gergics, A. Ládi, and D. A. Drexler. Parameter estimation
from realistic experiment scenario using artificial neural networks. In 2022
IEEE 16th International Symposium on Applied Computational Intelligence
and Informatics (SACI), pages 161–168, 2022.

[23] L. Wang, J. Cao, J. O. Ramsay, D. M. Burger, C. J. L. Laporte, and J. K.
Rockstroh. Estimating mixed-effects differential equation models. Statistics
and Computing, 24:111–121, 2014.

[24] M. Kühleitner, N. Brunner, W. G. Nowak, et al. Best fitting tumor growth
models of the von bertalanffy-pütter type. BMC Cancer, 19:683, 2019.

[25] G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and
N. Ramanujam. Monte carlo-based inverse model for calculating tissue
optical properties. part ii: Application to breast cancer diagnosis. Appl. Opt.,
45(5):1072–1078, Feb 2006.
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