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Abstract: In order to improve the robustness of processing chip images in surface mount 
technology, especially when it comes to using a single threshold value under different 
lighting conditions, this paper aims to propose a chip localization algorithm with low 
computational complexity and high generality. The study investigates the multi-threshold-
based online chip localization problem and introduces an intelligent optimization algorithm 
to enhance its performance. An automatic adjustment mayfly method is presented, improving 
the mayfly algorithm by combining it with the sine and cosine algorithm to enhance global 
search and convergence capabilities, resulting in improved fitness values. Additionally, 
image processing using inter-class variance yields multiple thresholds. Together with corner 
point detection, a versatile chip localization method is proposed. Simulation results 
demonstrate significant enhancements in solution accuracy, convergence speed, and merit-
seeking capability achieved by the improved algorithm. Finally, the method's effectiveness is 
verified through various chip localization experiments. 
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1 Introduction 
Integrated circuit boards are the basis of electronic products and use the latest 
manufacturing method, surface mount technology [1]. Due to the rapid 
development of the electronics industry, the requirements for integrated circuit 
boards are gradually increasing [2]. To meet this demand, machine vision 
technology has been introduced into the surface mount process to improve the 
capability of the mounter in achieving high performance results. The mounter, as 
the key equipment of the surface mount process, needs to accomplish the task of 
inspection of surface mount chips with the help of machine vision technology. 
Machine vision technology enables functions such as learning of chip parameters, 
positioning, and defect detection [3-5]. Specifically, the inspection process of the 
placement machine includes the following steps: first, the PCB board is transferred 
to a fixed position through the motion track; then, the camera acquires the image of 
the component adsorbed by the suction nozzle; Next, register component types on 
the software interface and use image processing algorithms to teach and recognize 
components to obtain component parameters; finally, the component is accurately 
placed onto the PCB board. Through machine vision technology, the position and 
posture of the chip can be accurately detected and the chip positioning function can 
be realized, thus automating the placement process. Such technology application 
provides support for efficient and accurate surface mounting. 

The first step in chip localization is segmentation of component images, and the 
commonly used methods for image segmentation [6-9] include threshold-based, 
edge-based, clustering-based and neural network-based methods [10]. One of the 
most frequently employed methods for chip image segmentation is the Otsu method 
[11, 12], a classical image segmentation algorithm that operates by dividing an 
image into two segments based on the distribution of its gray values. To calculate 
the position and direction of BGA, Ruo et al. [13] suggested a binary image-based 
localization approach utilizing the Rectangular Least Squares Rectangle approach. 
Xiao et al. [14] proposed the use of Otsu method and morphological filtering 
algorithm for various LED chip images, and then used template matching for chip 
localization. Amarulla Octavian et al. [15] proposed the combination mechanism of 
artificial intelligence and human intelligence in the swarm movement of defender 
drones to optimize the manoeuvre of defender drone swarms. Although the Otsu 
method is widely used in the field of image processing, it also has some drawbacks. 
For example, it is more sensitive to noise. In addition, the method only extracts the 
brighter regions of the chip, and the lighting condition of the image has a large 
impact on the results of chip information acquisition. If the image is too bright, i.e., 
the weight of high-value pixel points is larger, the image appears overall whitish.  
If the image is too dark, i.e., if there is a large proportion of low-value pixels, the 
image appears black. In the case of strong or weak illumination, the single-threshold 
segmentation algorithm cannot effectively segment the desired chip image, which 
makes the subsequent chip location acquisition algorithm difficult. In order to 
improve the segmentation effect, the single-threshold segmentation algorithm needs 
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to be extended to use multiple thresholds for segmentation, i.e., multi-threshold 
segmentation. In engineering applications, there are high requirements for 
component detection speed and accuracy. However, multi-threshold image 
segmentation algorithms suffer from low computational accuracy and long 
computation time. To mitigate these issues and improve the performance of multi-
threshold algorithms, intelligent optimization algorithms are commonly employed 
to determine suitable multiple thresholds [16], thereby enhancing the overall 
operation of multi-threshold segmentation algorithms. 

The mayfly algorithm [17] was originally proposed by Zervoudakis et al. in 2020, 
and combines the benefits of well-known optimization algorithms as Particle 
Swarm Optimization (PSO) [18], Genetic Algorithm (GA) [19] and Firefly 
Algorithm (FA) [20]. Traditional mathematical and numerical computational 
methods often face difficulties in solving complex functional optimization 
problems, especially for multi-objective optimization, non-convex analysis and 
problems with complex non-determinism [21]. As the search dimension increases 
and the search space grows exponentially, the traditional numerical solution 
methods become no longer applicable, so new algorithms are needed to solve these 
problems. And the mayfly algorithm has strong search and learning abilities, which 
can effectively solve single objective optimization problems. It applies the 
information exchange and cooperation between individuals to the optimization 
process by simulating the foraging behavior and social interaction behavior of 
mayflies. The individuals in the algorithm are regarded as mayflies and find the 
optimal solution by adjusting their position and speed. The Mayfly Optimization 
Algorithm exhibits superior global search and convergence capabilities, enabling it 
to uncover improved solutions within complex search spaces. It has demonstrated 
its versatility and applicability across various fields. For instance, Li et al. [22] 
successfully established a magnetic field compensation model using the mayfly 
algorithm to solve the three-axis magnetic configuration problem in the presence of 
disturbing magnetic fields. To address the global path planning issue for robots in 
complicated dynamic situations, Zou et al. [23] suggested an enhanced mayfly 
method based on Q learning. Liu et al. [24] applied an improved mayfly algorithm 
for estimating the optimal weight coefficients of sequence prediction values in wind 
speed prediction, and achieved accurate point prediction and interval prediction 
performance, which provides strong support for point planning and scheduling. 

Both Shi-Tomasi and Harris are corner point detection methods based on gradient 
calculation. In comparison, Shi-Tomasi algorithm performs well in terms of 
stability, robustness to image rotation, lighting conditions, visual changes and noise, 
and inherits the advantages of Harris algorithm. In addition, the Shi-Tomasi 
algorithm has stronger adaptive ability to achieve uniform distribution of detected 
feature points and avoid clustering phenomenon. 

Lighting conditions can affect imaging, causing image segmentation judgments and 
boundaries to be affected by conditions that are too dark or too bright [25]. In order 
to handle complicated chip kinds and satisfy the demands of high light change 
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stability, this paper proposes a general-purpose chip localization method.                
The method firstly introduces a dynamically adjusted mayfly algorithm and 
improves it by combining the sine and cosine factors to enhance the global search 
capability and convergence of the algorithm, so as to obtain better adaptation values. 
Secondly, in the placement machine project, the collected image is processed in 
real-time, and the segmentation algorithm is used to process the chip image. Finally, 
in combination with the Shi-Tomasi algorithm [26], multiple types of chips can be 
localized to obtain the chip location accurately. The overall process is shown in 
Figure 1. Through the above improvements combined with the Shi-Tomasi 
algorithm, the proposed method shows higher adaptability and stability, which can 
effectively meet the requirements of light change and complex chip positioning 
requirements. 

 
Figure 1 

Flowchart of general chip positioning 

2 Basic Mayfly Algorithm 
An optimization algorithm called the mayfly optimization algorithm is based on the 
mating behavior of mayflies. In the algorithm, the position of individual mayflies is 
used to represent the solution of the algorithm. The mayfly algorithm simulates 
individual mayflies by creating a population of individuals. In this group, each 
individual represents a potential solution to a problem, and their position in the 
problem space reflects the characteristics of those solutions. 
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2.1 Male Mayfly Movement 
During the courtship process of mayflies, males gather together in groups.                
By sensing the location and fitness of neighboring individuals, each individual male 
mayfly can adjust his position and speed to better find a mate or achieve other goals. 
This type of neighborhood interaction allows individual mayflies to act in concert 
by interacting with each other, thus enhancing the search and courtship 
effectiveness of the entire group. The formula is as follows: 

 1 1
, , ,

t t t
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i jx + indicates the position of the 1t + individual in the i generation 

population in the  dimension. Through the neighborhood interaction and the update 
of individual positions in the mayfly optimization algorithm, the population of 
individuals is able to find a better solution in the problem space. This mayfly 
behavior-based optimization algorithm has strong search and learning capabilities. 

Considering that mayflies are constantly moving and displaying dances on the 
surface of the water, we can adjust the way the velocity updates. Specifically, each 
individual mayfly's speed update will be influenced by other individuals within a 
certain distance around it. By interacting with neighboring individuals, individual 
mayflies can adjust their speed in order to perform a more coordinated dance on the 
surface of the water. This mechanism of neighborhood interaction allows individual 
mayflies to collaborate with each other in a group to achieve a more graceful dance. 
Thus the male mayfly speed equation can be expressed as: 
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where ,
t
i jv denotes the velocity of the j dimension of the i individual in the 

population of the t generation, ,i jpbest  is the optimal position reached by that 

mayfly individual, ,i jgbest is the global optimal position, 1a  and 2a is the 

coefficient of attraction of the mayfly movement, β  is the fixed visibility 

coefficient, 1a , 2a and β are constants. pr is the distance from the current position 

from ,i jpbest , gr is the distance from the current position to ,i jgbest , d
represents the dance coefficient, r  is a random quantity between [ ]11，− , and d the 
formula of 
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 1t td d ddamp+ = ⋅  (3) 

where td denotes the wedding dance coefficient at the time t and ddamp is the 
dance damping. 

With the above adjustments, the speed update of individual mayflies in the 
population will take into account the interaction with neighboring individuals, thus 
prompting them to act better together and achieve a more coordinated dance. This 
improved speed update further improves the effectiveness in problem solving. 

2.2 Female Mayfly Movement 
Although the behavioral patterns of female mayflies differ from those of males, 
their relative weakness in group aggregation does not prevent them from playing an 
important role in species reproduction. This behavioral difference between the sexes 
allows individual mayflies to play their respective roles in reproduction, thereby 
maintaining population stability and diversity. The formula is as follows: 
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Where t
iy represents the position of the female mayfly at the t  iteration i , 3a  

represents the positive attraction, mfr is the distance between the female mayfly and 

the male mayfly, 1f is the random wandering coefficient. 

2.2 Mayfly Mating Process 
In the mayfly algorithm, the mating process involves the selection of parents from 
among female and male individuals. The selection of parents is similar to the 
process by which male mayflies attract female mayflies, i.e., some mechanism is 
used to select individuals with a higher fitness level. Mating occurs between male 
and female individuals in the algorithm, where the optimal individual crosses with 
the optimal individual and the suboptimal individual crosses with the suboptimal 
individual. This mating process is carried out randomly, in which each pair of 
parents produces two offspring. By mating, the two offspring produced belong to 
the optimal and suboptimal individuals, respectively. This approach aims to use 
genetic crosses between individuals of higher fitness and those of lower fitness in 
the hope of obtaining better offspring. Through the mating process in the mayfly 
algorithm, genetic information is passed and exchanged between individuals, 
further improving the algorithm's search ability and optimization. The formula is 
shown in Equation (5): 
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where 1offs and 2offs represents the male and female offspring, male  is the 
father, female is the mother, L is a random number obeying Gaussian distribution 

between [ ]11，− , 1(0,1)Nσ is a random number obeying Gaussian distribution 
within the mean value of 0 and variance of 1. 

3 Improving the Mayfly Algorithm 

3.1 Activation of Inertia Weights and Dynamic Adjustment of 
Mayfly Position 

The inertia weighting mechanism in particle swarm algorithms is an important way 
of parameter tuning [27]. In the early iteration, larger inertial weights facilitate 
global search of particles for possible solutions. In the late iteration, the smaller 
inertial weights enable the particles to search more intensively for the local optimal 
solution, thereby accelerating the convergence process of the algorithm. Jinpeng Yu 
et al. [28] used neural networks to identify unknown nonlinear functions to improve 
the stability of stochastic closed-loop systems. Based on the above description, a 
nonlinear inertia weight factor (see Equation (6)) is proposed in this paper, inspired 
by the variation curve of the GLEU activation function. The introduction of this 
nonlinear amplitude factor can make the inertia weights have different variation 
characteristics during the iterative process. 
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where t
meanx is the average of the total fitness of all individuals in the t generation. 

With the above adjustments, the optimal solution can be found faster by inertia 
weights at the beginning of the iteration, while the local optimum problem can be 
overcome at the later stage by switching between the original velocity and position 
update formulas to improve the search capability and optimization of the mayfly 
algorithm. This strategy can be better adapted to the characteristics of the problem. 
The location update of male mayflies uses the original update formula, and such a 
choice preserves the original update mechanism. Since the location update of male 
mayflies has an impact on the location update of female mayflies, by maintaining 
diversity in the location update of male mayflies, the exploration ability of the whole 
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population can be promoted, thus finding the optimal solution faster. This diversity 
of position update strategies provides a larger search space for the algorithm, 
increasing the flexibility and adaptability of the algorithm, helping to speed up the 
optimization process and improving the quality of the final results. 
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3.2 Crossover Variation 
The sine cosine algorithm (SCA) [29] is proposed by the Australian scholar 
Seyedali Mirjalili in 2016. The algorithm is designed based on the sine cosine 
mathematical function and the algorithm starts with a set of random solutions, 
improves these random solutions by iteratively evaluating the objective function, 
and updates the position through a set of rules as the core of the optimization 
technique, and the position replacement is done through a linear decreasing 
function, i.e., the transformation parameter. The standard positional update formula 
of the sine and cosine algorithm is shown in equation (9). This algorithm improves 
the quality of optimization results by strengthening the combination of random 
solutions and focusing on the search space in a targeted manner. 
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where t
ipgbest is the global extremum in the i dimension, t is the current iteration 

number, 2r is the range [0,2𝜋𝜋]of random numbers, 3r is the range [-2,2]of random 

numbers, 4r is the range [0,1]of random numbers, 1r is the random number in the 
range, is called the transformation parameter and is a linearly decreasing function 
which decreases linearly to 0 as the number of repetitions rises, and its expression 
is: 

 1
ar a t
T

= −
 

(10) 

whereT is the maximum number of iterations, a is a constant and the value in this 
article is 2. 



Acta Polytechnica Hungarica Vol. 21, No. 10, 2024 

‒ 339 ‒ 

To balance the exploitation capability of the Mayfly algorithm, we replace the step 
factor in the basic positive cosine algorithm with a nonlinearly decreasing inertia 
weight factor. This makes it possible to better control how the algorithm searches. 

In the mayfly algorithm, performing a mating operation when male and female 2 
generations mayfly are in close proximity, or when male and female 2 generations 
are in a local optimum position, may result in premature convergence of the 
population to continue the search for a more optimal solution. This is known as 
premature convergence and can limits the efficiency of the algorithm. To be able to 
cope with the premature convergence phenomenon, in this article, we introduce the 
positive cosine factor when using the mayfly algorithm for mating and use the 
Euclidean distance to determine the premature convergence. We use the distance 
between individuals to make the judgment. When the mayfly population falls into 
a local optimum, the sine cosine algorithm is introduced and its oscillatory change 
property is used to act on the parent mayflies and the female mayflies. At the same 
time, we also introduce the inertia weighting factor mentioned before to induce the 
population to leave the local optimum behind solution and thus improve the global 
search capability of the mayfly algorithm. With such improvements, the mayfly 
algorithm can better jump out of the local best answer and improve the capability 
of global search when early convergence phenomenon is encountered, thus 
improving the performance and optimization results of the algorithm. 
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d is the Mayfly male and female's Euclidean distance., set 610d −<  then, 
determine the population into local convergence, w  is the inertia weight. 

Based on the above improvements to MOA, Figure 2 displays the flow of the 
suggested algorithm. 

4 Compare with other Intelligent Algorithms 
To contrast the SCMOA algorithm's benefits and drawbacks proposed in this paper 
with other typical intelligent algorithms, GWO (Gray Wolf Optimization algorithm) 
[30], SCA (Sine Cosine Optimization algorithm), PSO (Particle Swarm 
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Optimization algorithm), the MAC improvement algorithm in the literature [31], 
and the standard mayfly algorithm are picked for contrast. These algorithms were 
run in the 12 standard test functions in Table 1. In the experiments, a setup with a 
dimension of 30, a total population size of 40, and a maximum number of 500 
iterations was chosen. Each algorithm was run 30 times independently to  

Define weights, sine and cosine algorithms, and 
other values

σ>10-3

Calculate σ using Eq (8)

Update the female position 
using Eq (7.1)

Update the female mayfly 
velocity and position using 

Eq (4) and Eq (7.2)

Male and female mayflies were ordered by 
fitness according to the fitness obtained above

d>10-6

The mating operation updates the 
position of the offspring using Eq (11.1)

Mating operations using Eq (11.2)

Output the optimal solution 
and optimal fitness values

Initialize 

Update the male mayfly position and 
velocity  using Eq (1) and Eq (2)

 
Figure 2 

Flow chart of SCMOA algorithm 

obtain stable results, and refer to Table 2 for information on specific algorithms' 
parameter settings. Using the aforementioned experimental configurations and 
comparisons, the performance of SCMOA algorithm and to assess their benefits and 
drawbacks and performance, other algorithms on various test functions can be 
compared. After effective quantitative analysis of these 12 test functions, the results 
as in Table 3 show that the SCMOA algorithm outperforms the original MOA. 

Table 1 
Benchmarking functions 

Function Name Dimension Range Optimum value 

 Sphere 30 [-100，100] 0 1f
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 Sehwefel’s2.22 30 [-10，10] 0 

 Sehwefel's2.21 30 [-100，100] 0 

 Quartic 30 [-1.28，1.28] 0 

 Power 30 [-100，100] 0 

 Schwefel's2.26 30 [-500,500] -8379.66 

 Rastrigin's 30 [-5.12,5.12] 0 

 Ackley's 20 [-32,32] 0 

 Griewank's 30 [-600,600] 0 

 Penalized1 30 [-50,50] 0 

 Kowalik's 4 [-5,-5] 3.075E-04 

 Branin 2 [-5,10] 0.398 

After effective quantitative analysis of these 12 test functions, Table 3's findings 
demonstrate that the SCMOA method performs better than the original MOA 
algorithm and the SCA algorithm in search on most of the functions. In seven 
functions, the SCMOA algorithm has reached the theoretical optimum and achieved 
better optimum values than other algorithms in other test functions. In particular 

, the SCMOA algorithm has improved up to 5 orders of magnitude in the 
indefinite dimensional multi-peak function test function. This indicates that the 
SCMOA algorithm performs well in terms of solution search capability, accuracy 
and stability. After conducting 30 independent experiments, the mean values of the 
test functions 1f , 6f , 8f , and 10f  are close to the theoretical optimum, indicating 
that the algorithm exhibits good stability. Furthermore, in all other test functions, 
the mean values of the SCMOA algorithm are superior to those of other algorithms. 
In addition, the standard deviation of SCMOA algorithm in most test functions is 
also smaller than other algorithms, which demonstrates that the algorithm has strong 
robustness. In summary, the SCMOA algorithm performs well in terms of search 
capability, accuracy and stability, and has better performance compared with other 
algorithms. 

Table 2 
Main parameter settings for different algorithms 

Algorithm Parameter Setting 

SCMOA  

 

2f

3f

4f

5f

6f

7f

8f

9f

10f

11f

12f

11f

8.0.5,99.0,110.1 ===== ddampdfldampf，α

8.0,2,5.1,5.1,0.1 0321 ===== gaaa β
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SCA A=2 

 Linear decreasing 
MOA Same as SCMOA 
MAC Same as SCMOA 

Table 3 
Comparison of benchmark functions 

Functions 
 

 SCMOA PSO SCA GWO MOA MAC 

 
0 

avg 00E+00 7.709E-01 8.321E+00 5.422E-31 4.877E-08 00E+00 
best 00E+00 3.743E-01 1.621E-03 2.206E-32 5.742E-12 00E+00 
std 00E+00 2.188E-01 2.046E+01 9.065E-31 1.746E-07 00E+00 

 
0 

avg 8.40E-323 5.130E+00 1.150E-02 1.635E-18 6.551E-04 5.08E-264 
best 00E+00 2.751E+00 3.789E-04 2.368E-19 5.147E-07 1.77E-287 

std 00E+00 1.656E+00 1.854E-02 1.044E-18 2.816E-03 00E+00 

 
0 

avg 9.88E-324 2.595E+00 3.153E+01 9.181E-08 7.956E-01 3.21E-270 
best 00E+00 1.127E+00 1.346E+01 4.149E-09 1.953E-01 1.39E-293 
std 00E+00 9.363E-01 1.359E+01 9.363E-01 5.027E-01 00E+00 

 
0 

avg 1.523E-04 3.775E+00 7.687E-02 1.624E-03 1.469E-02 1.313E-04 
best 3.360E-07 7.106E-02 1.276E-02 5.780E-04 6.754E-03 2.347E-06 
std 1.604E-04 7.273E+00 9.057E-02 7.174E-04 5.007E-03 9.496E-05 

 
0 

avg 00E+00 1.776E-04 3.306E-05 4.34E-105 2.009E-28 00E+00 
best 00E+00 2.686E-06 1.817E-11 3.12E-116 3.197E-38 00E+00 
std 00E+00 1.422E-04 7.469E-05 2,17E-104 6.320E-28 00E+00 

 
8379.6
6 

avg 8.204E+03 3.443E+03 3.715E+03 5.899E+03 8.466E+03 1.256E+0
4 

best 6.726E+03 5.949E+03 4.295E+03 7.045E+03 6.135E+03 1.257E+0
4 

std 6.932E+02 7.226E+02 2.980E+02 8.96E+02 7.250E+02 7.776E+0
0 

 
0 

avg 00E+00 9.358E+00 1.669E+00 4.907E-01 1.239E+00 00E+00 
best 00E+00 4.345E+00 00E+00 00E+00 00E+00 00E+00 
std 00E+00 3.407E+00 4.292E+00 1.289E+00 1.068E+00 00E+00 

 
0 

avg 8.882E-16 3.049E+00 1.495E+01 5.690E-14 3.474E+00 8.882E-16 
best 8.882E-16 1.870E+00 4.657E-02 3.997E-14 1.647E+00 8.882E-16 
std 00E+00 6.124E-01 9.387E-01 8.586E-15 9.387E-01 00E+00 

 
0 

avg 00E+00 3.502E-01 7.712E-01 5.568E-03 2.672E-02 00E+00 
best 00E+00 1.298E-01 8.505E-03 00E+00 1.548E-09 00E+00 
std 00E+00 1.130E-01 2.890E-01 7.739E-03 1.680E-02 00E+00 

 
0 

avg 1.821E-09 3.567E+00 7.258E+04 3.317E-02 4.287E-01 3.217E-03 
best 7.991E-14 8.488E-01 6.451E-01 6.372E-03 1.497E-09 2.333E-04 
std 4.374E-09 1.244E+00 3.445E+05 1.922E-02 5.015E-01 2.791E-03 

 
3.075E

-04 

avg 3.075E-04 3.846E-03 9.531E-04 8.911E-03 1.007E-03 3.234E-04 
best 3.075E-04 4.216E-04 3.679E-04 3.075E-04 3.075E-04 3.094E-04 
std 2.925E-19 6.739E-03 3.435E-04 1.308E-02 3.659E-03 1.286E-05 

 
0.398 

avg 3.979E-01 3.979E-01 3.996E-01 3.979E-01 3.979E-01 4.007E-01 

best 3.979E-01 3.979E-01 3.979E-01 3.979E-01 3.979E-01 3.979E-01 

std 00E+00 7.883E-05 1.907E-03 1.169E-06 00E+00 00E+00 

5.121 == aa

]0,2[=a

minf

1f

2f

3f

4f

5f

6f

7f

8f

9f

10f

11f

12f
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5 Practical Engineering Applications 

5.1 Chip Positioning 
For the image with strong illumination, as shown in Figure 3 below, we obtained a 
threshold value of 189 using the improved mayfly algorithm combined with multi-
threshold segmentation, while the threshold value obtained using the Otsu method 
is 130. The figure below shows the binarized image obtained by segmenting the 
chip image according to these thresholds. It is clearly seen that the threshold 
segmentation obtained using the improved method is better. 

 
Figure 3 

The left side is the original image, the center is the Otsu method segmentation image, and the right side 
is the improved algorithm to obtain the threshold segmentation image 

When processing chip images containing elements such as pins, nozzles, chip body 
and background, we set the K value to 4 to obtain four thresholds in an adaptive 
manner. By sorting these four thresholds, we select the pixel between the last two 
thresholds as the pixel of the chip pin part. By binarizing the chip image, we can 
detect the corner locations of the chip using the Shi-Tomasi algorithm, an image 
feature-based corner detection algorithm that finds corner points in the image and 
calculates their quality scores. By applying this algorithm, we are able to accurately 
locate the corner point position of the chip, which provides important information 
for the subsequent localization and processing steps. 

Next, we can use the calculated feature points to calculate the minimum outer 
rectangle and subsequently discover the four vertices' coordinates for the smallest 
outer rectangle. With these vertex coordinates, we are able to accurately locate the 
position of the chip. This method is applicable to many types of chip localization, 
such as SOJ chips, QFP chips, TR chips, and irregular chips. 

5.2 Stability Test 
We contrast the proposed approach in this paper with the method from the literature 
to ensure the efficacy of the proposed identification and localization method [32]. 
We collected 256 images of these four chips under different illumination and angles, 
which in total constitute a dataset containing 1024 images. 
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Figure 4 
Pass rates for four types of chips 

 
Figure 5 

Results based on several chips. The left image in each set of chip images is the original, the center 
image displays the boundary feature points that were extracted for the binary image, and the right 

image displays the chip's smallest closed rectangle 

We contrasted the recognition rate that is, the proportion of correctly found photos 
to all images between groups of images. The experimental results, shown in Figure 
4, show that our method consistently has a recognition rate of more than 92% and 
is largely independent of chip type, being able to locate chips with light interference 
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and irregular shapes. Figure 5 lists four types of chip binary recognition and 
positioning. 

5.3 Precision Test 
Figure 5 is an image with a resolution of 1288 pixels * 964 pixels, use the drawing 
tool to read the pixel coordinates of the chip’s corner points as the actual coordinates 
compare this paper’s algorithm with the template matching algorithm, and compare 
the detection results of its four types of components in the positions shown in the 
figure, and the characteristic parameters obtained are shown in Table 4. From Table 
4, it can be seen that the algorithm in the paper is better than template matching, 
because the proposed multi-threshold method is used to pre-process the chip to 
ensure that the characteristics of the chip, the maximum error of the chip center 
coordinates under the algorithm is 0.8 pixels, which meets the requirements of high 
precision and high quality. 

Table 4 
Comparison of Coordinates and Errors 

Element Standard Coordinate 
Template Match Coordinate Algorithm Coordinate 

Calculate coordinates Error Calculate coordinates Error 

SOJ (663,438) (663.764,438.733) 1.059 (663.336,438.117) 0.355 

QFP (657,506) (657.223,506.412) 0.468 (657.118,506.235) 0.263 
TR (636,436) (636.647,436.764) 1.001 (636.133,436.746) 0.758 

Irregular (655,480) (655.705,480.941) 1.176 (655.199,480.602) 0.634 

Conclusions 

This paper introduces a universal chip localization method that combines an 
improved mayfly algorithm and multi-threshold segmentation. Its purpose is to 
meet the stringent stability requirements posed by changing lighting conditions and 
complex chip types. By dynamically adjusting the mayfly algorithm and enhancing 
the search strategy, we achieve improved convergence and solution quality across 
12 different test functions. With the Shi-Tomasi algorithm, we successfully achieve 
stable and accurate localization of various chip types, even in varying lighting 
conditions. In experiments involving 1024 chip images with diverse lighting and 
angles, our method achieves a pass rate of over 92%, irrespective of chip types. 
Compared to existing methods, ours is more robust, offering a practical solution to 
chip localization with broad application potential. 
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