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Abstract: The polygraph test, which is frequently employed for deception detection and 
truth verification, evaluates the accuracy of people's assertions by analyzing their 
physiological reactions. This study investigates the variety of physiological responses 
detected during polygraph tests using fuzzy C-means clustering analysis. 400 individuals 
undergoing polygraph testing provided a dataset containing physiological parameters, 
such as assessments of autonomic arousal, cardiovascular activity, respiration patterns, 
and electrodermal responses. Participants' varied patterns of physiological reaction were 
revealed using fuzzy clustering, which distinguished different physiological groupings 
among them. Cluster analysis revealed the physiological profiles linked to various levels of 
deception. Performance metrics, including cluster silhouette coefficient and within-cluster 
heterogeneity, were utilized to validate the clustering results. The findings provide valuable 
implications for improving the accuracy and reliability of polygraph testing, with potential 
applications in forensic investigations, law enforcement, and security screenings. This 
study contributes to the advancement of polygraph test interpretation techniques and 
underscores the importance of considering individual differences in physiological 
responses during deception detection. 
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1 Introduction 

Polygraph testing, also known as lie detection testing, has been utilized for many 
years as a technique for detecting deception and evaluating honesty in forensic 
investigations, security screenings, and pre-employment screenings [1].  
The polygraph measures physiological reactions to variations in heart rate, blood 
pressure, respiration, and skin conductivity. It is based on the concept that 
dishonest individuals react physically differently from truthful people [2].  
The scientific community continues to scrutinize and discuss the accuracy and 
reliability of polygraph testing, despite its widespread usage [3]. The inherent 
variability in physiological responses across test subjects is an important aspect of 
polygraph testing that requires more research [4]. The interpretation of test results 
might be challenged by the fact that, whereas certain individuals may show 
prominent physiological reactions when engaging in deceptive activity, others 
may only show minor or inconclusive responses [5]. 

Improving the accuracy and reliability of polygraph testing requires an 
understanding of the physiological mechanisms behind these variations [6]. 
Advancements in machine learning, decision making with hard computing 
methods [7] and data analytics in recent times provide encouraging opportunities 
to investigate the complex relationships between dishonest conduct and 
physiological reactions during polygraph examinations [8]. Fuzzy C-means 
clustering, among other clustering methods, facilitates the identification of unique 
patterns or clusters in diverse datasets [9, 10, 11, 12, 13, 14], allowing for the 
categorization of individuals according to their physiological profiles [15]. 
Clustering approaches provide insights into the underlying physiological states 
linked with lying by grouping individuals into homogenous groups based on their 
physiological responses [16]. 

It is important to emphasize that this research is a novel addition to the field 
because it is the first to expressly use fuzzy C-means clustering to the setting of 
polygraph testing. The purpose of this research is to examine physiological data 
from subjects undergoing polygraph testing using fuzzy C-means clustering.  
We aim to clarify the variability of physiological responses during polygraph tests 
and provide insight into the physiological traits linked to deception detection by 
detecting unique physiological clusters among subjects. The results of this study 
have implications for strengthening polygraph testing's reliability and precision, 
which will increase its usefulness in forensic science, law enforcement, and other 
sectors that need truth verification. 
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2 Methodology 

2.1 Objectives 

This research aims to employ fuzzy C-means clustering analysis to discern distinct 
physiological clusters within individuals undergoing polygraph testing. It seeks to 
characterize the physiological profiles associated with these clusters, 
encompassing measures such as autonomic arousal, cardiovascular activity, 
respiratory patterns, and electrodermal responses. Additionally, the study intends 
to evaluate the effectiveness of the clustering algorithm in segregating individuals 
based on their physiological responses during polygraph examinations. It further 
aims to assess the validity and reliability of the identified clusters through various 
performance metrics. Finally, the research aims to discuss the implications of its 
findings for enhancing the accuracy and reliability of polygraph testing across 
different domains, including forensic science and law enforcement. 

These objectives aim to advance our understanding of the physiological variability 
inherent in polygraph test scoring and contribute to the development of more 
effective techniques for interpreting polygraph test results. 

2.2 Participants 

The sample comprised 400 individuals selected randomly from a pool of 1072 
offenders who had committed multiple crimes and underwent Polygraph testing 
administered by expert examiners from ten polygraph laboratories within the 
Romanian Police, under the supervision of Dr. Csaba Kiss. All 400 participants 
were repeat offenders involved in serious criminal activities, and they voluntarily 
confessed to their crimes, providing consent for their aggregated data to be 
utilized for scientific research purposes. Data utilized in this study were extracted 
from a minimum of three charts corresponding to each Polygraph examination 
conducted. Among the participants, 90% were male and 10% were female, with 
ages ranging from 18 to 65 years and an average age of 32 years. On average, 
participants had completed 8.6 years of formal education, indicating a relatively 
low level of educational attainment. 

This study adhered to ethical guidelines for research involving human participants. 
Participants provided informed consent prior to participation and were assured of 
confidentiality and anonymity throughout the study. 
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2.3 Data Collection 

Physiological data were collected using a standardized polygraph testing protocol. 
Participants underwent polygraph examinations administered by trained examiners 
in a controlled laboratory setting. The polygraph apparatus recorded physiological 
responses, including but not limited to electrodermal activity (EDA), heart rate, 
blood pressure, respiration, and skin conductivity, during the testing procedure 
[17]. 

A comprehensive set of physiological parameters derived from polygraph 
measurements was included in the analysis. These parameters encompassed 
measures of autonomic arousal, cardiovascular activity, respiratory patterns, and 
electrodermal responses. Specific physiological parameters included amplitude of 
electrodermal reaction (ARED), amplitude of blood pressure in brachial pulse 
(ATAB), change of baseline level in chest breathing (MNBRT), difference of 
altitude between breathing cycles (DIFA), duration of electrodermal reaction 
(TRED), abdominal breath line length (LLRA), arterial tension amplitude of the 
distal pulse (ATAD), heart rhythm (RC), voluntary repeated acts (REV), duration 
of brachial pulse arterial tension (TTAB), changing of the basic level of 
abdominal breathing (MNBRA), ratio of inspiration to expiration (I/E), average 
value of electrodermal reaction (EDA), thoracic breath line length (LLRT), 
reactive patterns (PATTR), duration of distal pulse arterial tension (TTAD), 
respiratory rhythm (RR), erratic breathing (RE), abdominal respiratory stop 
(TSTOPRA), average amplitude of abdominal breathing (ARA), length of 
electrodermal reaction (LRED), and thoracic respiratory stop (TSTOPR). 

2.3 Data Analysis 

Fuzzy C-means clustering was employed to analyze the physiological data and 
identify distinct clusters within the dataset. Fuzzy clustering allows for the 
classification of individuals into multiple clusters, with each individual assigned a 
membership value indicating their degree of association with each cluster.  
The algorithm iteratively assigns data points to clusters based on their proximity 
to cluster centroids, minimizing within-cluster variance while maximizing 
between-cluster variance [18]. 

Fuzzy C-Means (FCM) clustering is a soft clustering technique used for 
partitioning a dataset into a set of clusters where each data point belongs to every 
cluster with a certain degree of membership [19]. Unlike hard clustering methods, 
where each data point belongs exclusively to one cluster, FCM assigns a 
membership value to each data point for every cluster, indicating the degree of 
belongingness. This approach allows for the representation of uncertainty in 
cluster assignments. 
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Mathematically, FCM minimizes an objective function known as the fuzzy 
partition coefficient, which quantifies the degree of fuzziness in the clustering. 
The objective function is defined as follows: 

 
Where: 
 Jm(U,V) is the objective function to be minimized. 
 N is the number of data points. 
 c is the number of clusters. 
 uij is the membership value of data point xi in cluster j. 
 vj is the centroid of cluster j. 
 m is a fuzziness exponent (typically set to 2 in most applications). 
 ‖.‖  denotes a distance measure (e.g., Euclidean distance). 

The algorithm iteratively updates the membership values uij and cluster centroids 
vj until convergence, based on the following update equations: 

 

 
Here, m is the fuzziness coefficient, controlling the degree of fuzziness in the 
clustering. As m approaches 1, the clustering becomes increasingly hard, whereas 
larger values of m lead to fuzzier clusters. 

FCM is widely used in various fields, including pattern recognition [20], image 
processing [21], and data mining [19], due to its ability to handle complex data 
distributions and capture inherent uncertainty in data. 

The clustering results were evaluated using performance metrics such as cluster 
silhouette coefficient, within-cluster heterogeneity, and explained variance [22]. 
These metrics provided quantitative measures of the clustering quality and the 
degree of separation between clusters. 

Descriptive statistics were calculated for demographic variables and physiological 
parameters. Cluster means for each physiological parameter were computed to 
characterize the physiological profiles of each cluster. Statistical analyses were 
performed using JASP version 0.17.3.0. 
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3 Results 

The fuzzy C-Means Clustering analysis (FCM) was conducted with a dataset 
comprising 400 observations, resulting in the formation of nine distinct clusters. 
The clustering performance metrics are summarized as follows: R² = 0.371, AIC = 
8362.760, BIC = 9260.840, and Silhouette = 0.010 (Table 1). 

Table 1 
Fuzzy C-Means Clustering 

Clusters N R² AIC BIC Silhouette 
9  400  0.371  8362.760  9260.840  0.010  

In the context of FCM, each observation is associated with membership degrees 
across all clusters, allowing for a cluster assignment. 

The performance of the clustering analysis is evaluated using several metrics.  
The coefficient of determination (R2) measures the proportion of variance in the 
data explained by the clustering model, with a value of 0.371 indicating a 
moderate level of explanatory power. Additionally, the Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC) serve as measures of 
model complexity, with lower values indicating a better trade-off between model 
fit and complexity. The calculated AIC value of 8362.760 and BIC value of 
9260.840 provide insights into the relative quality of the clustering model. 

Furthermore, the Silhouette coefficient, a measure of cluster cohesion and 
separation, is reported as 0.010. The Silhouette coefficient ranges from -1 to 1, 
with higher values indicating better-defined clusters. Although the reported value 
is relatively low, it still suggests a reasonable degree of cluster separation. 

Overall, these performance metrics provide a comprehensive assessment of the 
effectiveness of the FCM clustering algorithm in partitioning the dataset into 
meaningful clusters, with consideration given to both explanatory power and 
model complexity. 

Cluster information (Table 2) is provided in terms of cluster size, explained 
proportion within-cluster heterogeneity, and within sum of squares. The clusters 
varied in size, ranging from 6 to 124 observations. The proportion of within-
cluster heterogeneity explained ranged from 0.012 to 0.224, indicating varying 
degrees of compactness within clusters. The within sum of squares ranged from 
91.494 to 1769.666, reflecting the dispersion of data points within each cluster. 

The provided cluster information offers valuable insights into the characteristics 
of each cluster generated through the Fuzzy C-Means (FCM) Clustering analysis. 
This detailed breakdown facilitates a deeper understanding of the underlying 
patterns within the dataset and holds significant implications for various research 
domains. 
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Table 2 
Cluster Information 

 

Cluster 1 2 3 4 5 6 7 8 9 
Size  6  27  66  25  38  19  124  18  77  

Explaine
d 
proportio
n within-
cluster 
heteroge
neity 

 0.01  0.11  0.20  0.07  0.07  0.08  0.22  0.03  0.18  

Within 
sum of 
squares 

 91.49  887.44  1610.99  586.66  558.78  633.40  1769.66  284.01  1490.29  

 

Firstly, the size of each cluster indicates the distribution of observations across the 
clusters. For instance, Cluster 7 appears to be the largest, containing 124 
observations, while Cluster 1 is the smallest, comprising only 6 observations. This 
distribution provides researchers with an understanding of the prevalence and 
representation of different physiological profiles or patterns within the dataset. 

Secondly, the explained proportion of within-cluster heterogeneity quantifies the 
degree to which the variability within each cluster is accounted for by the 
clustering model. Higher values, such as those observed in Clusters 3, 7, and 9, 
suggest that the physiological parameters within these clusters exhibit more 
consistent patterns or associations. Conversely, lower values, such as those in 
Clusters 1 and 2, indicate a greater degree of heterogeneity or variability within 
the cluster. 

Furthermore, the within sum of squares offers insights into the dispersion of data 
points within each cluster. Clusters with higher within sum of squares, such as 
Clusters 3, 6, and 8, may indicate greater variability or spread of physiological 
parameters, potentially highlighting diverse subgroups or phenomena within the 
dataset. 

Furthermore, the cluster means for each physiological parameter were computed. 
These parameters include amplitude of electrodermal reaction (ARED), amplitude 
of blood pressure in brachial pulse (ATAB), change of baseline level in chest 
breathing (MNBRT), difference of altitude between breathing cycles (DIFA), 
duration of the electrodermal reaction (TRED), abdominal breath line length 
(LLRA), arterial tension amplitude of the distal pulse (ATAD), heart rhythm 
(RC), voluntary repeated acts (REV), duration of brachial pulse arterial tension 
(TTAB), changing of the basic level of abdominal breathing (MNBRA), the ratio 
of inspiration to expiration (I/E), average value of the electrodermal reaction 
(EDA), thoracic breath line length (LLRT), reactive patterns (PATTR), duration 
of distal pulse arterial tension (TTAD), respiratory rhythm (RR), erratic breathing 
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(RE), abdominal respiratory stop (TSTOPRA), average amplitude of abdominal 
breathing (ARA), length of the electrodermal reaction (LRED), and thoracic 
respiratory stop (TSTOPR). 

Each cluster exhibited distinct mean values for these parameters, providing 
insights into the physiological characteristics associated with each cluster (Table 
3). 

Table 3 
Cluster Means 

  Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Cluster 
5 

Cluster 
6 

Cluster 
7 

Cluster 
8 

Cluster 
9 

ARED 2.40 -0.16 -0.29 0.87 0.18 -0.40 0.03 0.67 -0.36 

ATAB -0.10 -0.07 -0.34 0.43 -0.38 0.01 -0.32 0.59 0.75 

ATAD -0.25 0.08 0.35 -0.14 -0.32 0.14 -0.08 -0.10 0.01 

ART -0.45 -0.05 -0.15 0.66 0.39 -0.39 -0.36 0.26 0.38 

ARA -0.54 -0.15 -0.06 -0.33 0.93 0.74 -0.19 -0.22 -0.02 
MNBR

A -0.52 0.77 0.57 -0.04 -0.44 -0.19 -0.31 -0.32 0.13 

MNBRT -0.25 0.69 0.43 0.07 -0.25 0.07 -0.30 -0.16 0.01 

IR -0.25 -1.19 0.33 0.15 1.00 0.07 -0.21 -0.23 -0.01 

LLRT 0.32 -0.13 0.12 0.03 0.54 -0.17 -0.42 -0.35 0.43 

LLRA 0.18 -0.45 0.43 -0.21 0.82 0.57 -0.41 0.45 -0.14 

LRED 3.84 -0.12 -0.20 0.69 -0.01 -0.27 -0.04 0.79 -0.35 

TRED 0.10 0.04 -0.04 0.21 -0.27 1.01 -0.13 -0.11 0.06 

TTAB 0.08 0.09 -0.56 0.18 -0.46 1.25 -0.12 0.02 0.48 

TTAD 0.03 0.50 0.19 0.02 -0.47 0.03 -0.09 -0.24 0.07 

RR 0.14 -1.21 0.62 -0.10 0.19 -0.50 -0.11 0.17 0.08 

RC 0.44 -0.07 0.52 -0.43 0.08 -0.73 -0.22 0.48 0.07 
TSTOP

R -0.39 2.91 -0.15 -0.18 -0.36 -0.31 -0.23 -0.17 -0.13 

TSTOP
RA -0.39 2.89 -0.15 -0.18 -0.36 -0.31 -0.24 -0.16 -0.13 

RE 0.75 0.93 0.02 0.05 -0.54 -0.18 -0.44 -0.25 0.66 

REV 2.48 0.79 -0.07 -0.06 -0.33 -0.33 -0.08 -0.14 0.02 

PATTR -0.66 0.87 0.30 0.80 -0.76 -0.22 -0.53 0.49 0.40 

EDA 0.42 -0.07 -0.27 1.98 0.17 0.06 -0.03 -0.41 -0.38 

MBT 0.54 0.35 -0.01 -0.20 -0.22 0.18 -0.18 1.38 -0.07 

DIFA -0.49 0.88 0.19 0.28 -0.36 0.75 -0.34 -0.09 0.04 

TDIFA -0.85 0.57 0.63 0.61 -0.52 0.92 -0.41 -0.30 -0.10 
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Analysing the cluster means for each physiological parameter provides researchers 
with a detailed characterization of the clusters. For example, Cluster 4 shows 
relatively high mean values for parameters such as ARED, ATAB, and ART, 
suggesting a distinct physiological profile associated with this cluster. Conversely, 
Cluster 5 exhibits lower mean values for several parameters, indicating a different 
physiological pattern. 

In conclusion, the cluster information obtained from the FCM analysis serves as a 
valuable resource for researchers in elucidating complex physiological phenomena 
and identifying distinct subgroups within the dataset. 

 
Figure 1 

t-SNE Cluster Plot 

The t-SNE (t-Distributed Stochastic Neighbor Embedding) cluster plot offers a 
visual representation of the high-dimensional data in a lower-dimensional space, 
allowing us to observe the spatial distribution of data points and the relationships 
between them (Figure 1). In the context of our analysis with nine clusters, a t-SNE 
cluster plot would condense the multidimensional physiological data into two 
dimensions while preserving local similarities between data points [23]. Each data 
point on the plot represents an individual observation, and its position is 
determined by its similarity to other data points. 

In the t-SNE cluster plot, data points belonging to the same cluster are typically 
grouped together spatially, forming distinct clusters or clusters with cohesive 
neighborhoods. The plot enables us to visually identify the boundaries between 
clusters, their relative sizes, and any overlapping regions. By assigning different 
colors or labels to data points according to their cluster assignments, we can easily 
discern the membership of each point and visually inspect the distribution of 
clusters across the plot. 

Interpreting the t-SNE cluster plot involves analyzing the spatial arrangement of 
clusters and identifying patterns such as tight clusters, scattered points, or clusters 
that overlap with one another. Clusters that are well-separated in the plot suggest 
distinct physiological profiles or patterns, while overlapping clusters indicate 
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similarities or relationships between different physiological states. The density of 
data points within each cluster on the t-SNE plot provides insights into the 
prevalence or concentration of certain physiological patterns within the dataset. 
Areas with higher data density represent clusters with more members or clusters 
exhibiting greater physiological homogeneity. 

4 Discussion 

The findings of this study contribute to our understanding of physiological 
variability as assessed through polygraph test scoring, shedding light on the 
distinct clusters identified through fuzzy C-means clustering. The analysis 
revealed nine distinct clusters, each characterized by unique physiological profiles 
represented by a combination of various parameters derived from polygraph 
measurements. 

The identification of these clusters highlights the heterogeneity of physiological 
responses observed among the participants undergoing polygraph testing, 
reflecting diverse physiological states or patterns within the dataset. The clustering 
performance metrics, including R², AIC, BIC, and Silhouette, provide quantitative 
measures of the clustering quality and the effectiveness of the fuzzy C-means 
algorithm in partitioning the polygraph data into meaningful clusters. 

Examining the cluster information, such as cluster size, explained proportion 
within-cluster heterogeneity, and within sum of squares, further elucidates the 
characteristics of each cluster and their relative homogeneity or heterogeneity in 
the context of polygraph test scoring. The cluster means analysis revealed distinct 
mean values for each physiological parameter derived from polygraph 
measurements across the clusters, indicating specific physiological characteristics 
associated with each cluster as assessed through the polygraph. 

Interpreting the physiological significance of these clusters in the context of 
polygraph test scoring requires careful consideration of the underlying 
physiological processes represented by the parameters included in the analysis. 
For instance, clusters characterized by high values of parameters such as 
amplitude of electrodermal reaction (ARED) and amplitude of blood pressure in 
brachial pulse (ATAB) may indicate heightened physiological arousal or stress 
response among individuals undergoing polygraph testing. Conversely, clusters 
exhibiting lower values of these parameters may represent individuals with 
relatively subdued physiological responses during polygraph examinations. 

The implications of these findings in the domain of polygraph testing extend 
beyond the scope of this study, offering insights into potential applications for 
improving the accuracy and reliability of polygraph examinations. Understanding 
the physiological variability among individuals undergoing polygraph testing can 
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inform the interpretation of test results and contribute to the development of more 
effective techniques for deception detection and truth verification. 

In conclusion, the findings of this study underscore the importance of considering 
the heterogeneity of physiological responses in polygraph test scoring and 
highlight the potential utility of clustering techniques in identifying distinct 
physiological profiles associated with deception detection. Further research in this 
area holds promise for advancing our understanding of the physiological basis of 
polygraph testing and its implications for forensic science and investigative 
practices. 

Conclusions 

In conclusion, our study utilized fuzzy C-means clustering to identify distinct 
physiological clusters among individuals undergoing polygraph testing.  
The analysis revealed nine clusters characterized by unique physiological profiles, 
providing valuable insights into the heterogeneity of physiological responses 
during polygraph examinations. These findings contribute to a deeper 
understanding of the physiological variability inherent in polygraph test scoring 
and underscore the importance of considering individual differences in the 
interpretation of test results. 

It is important to acknowledge the limitations of this study, including the reliance 
on a specific set of physiological parameters derived from polygraph 
measurements and the potential influence of confounding variables not accounted 
for in the analysis. Future research in the field of polygraph testing could explore 
alternative clustering algorithms, incorporate additional physiological parameters 
or contextual factors, and validate the identified clusters in larger and more 
diverse samples of individuals undergoing polygraph examinations. 

Future research in the field of polygraph testing should aim to address these 
limitations and further advance our understanding of physiological clustering in 
this context. Investigating alternative clustering algorithms and incorporating 
additional physiological parameters or contextual factors may enhance the 
accuracy and reliability of cluster identification. Moreover, validation of the 
identified clusters in larger and more diverse samples of individuals undergoing 
polygraph examinations is essential to ensure the reproducibility and 
generalizability of the findings. Furthermore, longitudinal studies tracking 
changes in physiological clusters over time and in response to different stimuli 
could provide valuable insights into the dynamic nature of physiological responses 
during polygraph testing. 

The implications of our findings for polygraph testing are significant.  
By identifying distinct physiological profiles associated with different degrees of 
deception, our study contributes to the development of more effective techniques 
for interpreting polygraph test results. Understanding the physiological variability 
among individuals undergoing polygraph examinations can inform the refinement 



D. Rad, et al. Physiological Reactions Profiling in Polygraph Testing:  
 Insights from Fuzzy C-Means Clustering Analysis 

 – 376 – 

of existing polygraph protocols and the development of innovative approaches to 
enhance the accuracy and reliability of polygraph testing in forensic science and 
investigative practices. Ultimately, our study highlights the potential utility of 
physiological clustering in improving the effectiveness of polygraph examinations 
and advancing the field of deception detection. 
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