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1 Introduction 

Pattern classification (recognition) is one of the oldest tools of the artificial 

intelligence. It has been developing for more than fifty years (see [1]). The main 

emphasis of researchers was and still is put on developing methods and algorithms 

of learning classifiers [2]. The mainstream of research is concentrated on 

recognizing patterns that are modeled as random vectors in the Euclidean space. 

When images are recognized, the typical approach is based on their preprocessing 

in order to extract relevant features from them and to form vectors, which are then 

classified using classifiers dedicated to vector input data. A success of such an 

approach depends not only on a selected classifier and its learning but mainly on 

selecting proper features. Clearly, at the beginning of the era of computers, this 

approach was the only possible. Even at the beginning of the nineties, a typical PC 

had troubles with processing a moderate size image. In recent twenty years, 

however, the speed of computers and mainly a rapid growth of storage devices are 

developing so quickly that we are able to cluster and recognize images as a whole, 

without laborious (and risky) process of defining and extracting relevant features. 
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1.1 Motivation 

Our main motivations come from computer science and decision-making theory. 

However, putting an emphasis on data structures for images and image sequences 

recognition one has also immediate associations and questions about how brain 

stores images. There are a large number of papers on these topics (see [3], [4], [5], 

[6] for an excerpt of those which are close to the topics of this paper). It is also 

known (see [7]) that process of memorizing and the retrieval of images in our 

brain is very complicated with many feedbacks. Having this in mind, we would 

like to touch only one aspect of the memorizing images in the long-term memory, 

namely, how our brain copes with a very common kind of redundancy caused by 

different illumination of the same object (see Figure 1 for the author’s photo). We 

certainly are not able to answer this question, but one of the mathematical tools 

discussed in this paper, namely, the Kronecker product of matrices provides a 

simple model for coping with this kind of redundancy. In fact, images shown in 

Figure 1 have been obtained as the Kronecker product of the original image and 

the vector [1, 0.6, 0.4] (see [8] for more facts concerning the Kronecker product, 

tensors, and operations on them). 

 

Figure 1 

One of our motivations for considering the Kronecker product structure for image sequences. The 

sequence of images that are taken with different illuminations can be stored as the Kronecker product 

of the first of them and the vector [1, 0.6, 0.4]. 

On the other hand, one can already meet databases containing one trillion images 

(see [9]) and one can expect that – due to cloud resources – even larger databases 

can be virtually organized. Recent examples which indicate that there are needs 

for cloud image databases and for image classification, grouping, clustering etc. 

are provided in [10], [11], [12]. From the viewpoint of an image cloud 

organization, managing and retrieval it is of importance to standardize data 

structures. In Section 2 we provide a brief review of data and images structures 

that are convenient for their classification. 

The results of classifying images can be used as input for data mining in the so-

called Big Data context (see [13] for the recent survey on these topics). However, 

in many cases, the results of classifying images can be applied directly to decision 

making, as it is illustrated in this paper. Namely, we propose and describe briefly a 

decision-making system for additive manufacturing, which is based on detecting 

changes between short image sequences. 
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As it follows from the following excerpt of papers on industrial image processing: 

[14], [15], [16], [17], one can expect that needs for storing and processing huge, 

dedicated databases of images will be growing and cloud facilities can be an 

adequate answer for these needs. 

Concerning possible applications of the results presented in this paper, they are 

directed to image-based decision-making that is based on learning. In particular, 

the image-based quality control is our main concern. As an illustration, we 

provide – in Section 6 -- an example of quality control of a laser additive 

manufacturing. Another example of possible applications is discussed in [18]. In 

[18] the states of an industrial gas burner are observed by a camera and used for 

decision-making. Notice that in opposite to the present paper, in [18] images are 

clustered, i.e., the learning without a teacher is applied. 

1.2 Organization of this Paper 

Our first aim is to provide a brief review of data structures that have already 

appeared in pattern recognition literature. The need for such a data structures for 

pattern and image recognition review stems from the fact that the topics of data 

structures for pattern recognition and/or clustering are discussed much less 

frequently than those of learning classifiers and they are scattered in the literature. 

Furthermore, relationships between data structures and the corresponding 

classifiers are frequently neglected. In our review we take into account the 

following features of data structures: 

– An algebraic representation of patterns (images) as (vectors, matrices, 

tensors) 

– Importance (or not) of ordering in time 

– Relationships (dependencies) between class labels in a learning sequence 

– An internal correlation structure of patterns (images) as well as possible 

correlations between them 

Then, we shall discuss one more face of the ”curse of dimensionality” that appears 

when we consider the estimation problem of correlation (covariance) structures of 

images and their sequences. This discussion leads to the need of imposing 

simplifying assumptions on class densities of patterns, images and their 

sequences. As an adequate set of class distributions, we select the matrix (tensor) 

normal distributions that have a special, the Kronecker product, structure of 

patterns (images) covariance structure. 

In Section 4, we derive the Bayes decision rule for the matrix normal distribution 

(MND) Our next step is to discuss how to estimate the covariance matrices of 

MND and how to use them to plug-in into the Bayes optimal decision rules. 
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Finally, we consider an application of classifiers as change detectors in image 

sequences. It occurred that even the simplifying MND covariance assumption is 

not sufficient for estimating the covariance structure of sequences of images to be 

classified and the ”competition” is won by a simple 5 nearest neighbor (5-NN) 

classifier, which neglects (at least partially) the covariance structure of sequences 

of images. But, as it is demonstrated at the last part of the paper, it is sufficient for 

a proper decision making in the additive manufacturing example. 

Clearly, change detection is not the only application of structured image data 

classification. In fact, the emerging ”data-intensive science”, considered as a part 

of cloud databases (see [19]), will need classification and clustering of structured 

image sets even more than earlier. 

Summarizing, the paper is structured as follows: 

 Our main goal is to detect a change in image sequences – considered as the 

Bayes classification problem -- is discussed in Section 1.3. 

 As the first step toward its solution, in Section 2 we provide the review of 

data structures for classification, taking into account not only data 

organization but also their correlation dependences. As the result, the class 

of matrices (or tensors) having the multivariate normal distributions is 

selected as a sufficiently general model for our purposes. 

 In Section 3, the most important features of the MND’s are summarized for 

the reader convenience since this specific class of probability distributions 

is not so widely known as the general class of multivariate normal 

distributions (GCMND). 

 The Bayes classifier for MND classes is derived in Section 4. Although the 

Bayes classifier for GCMND is well known for many decades, its version 

for MND requires a re-derivation. The reason is in that MND is a sub-class 

of GCMND that has specific features, which should be reflected in a 

structure of the Bayes classifier and in the way of its learning. 

 The learning procedure is proposed in Section 5. It takes into account both 

the specific structure of the Bayes classifiers for MND data and the specific 

way of estimating inter-row and inter-column covariance matrices of 

MNDs. 

 Finally, in Section 6, we provide the results of testing the empirical Bayes 

classifier for MND images that arise in a laser additive manufacturing 

process. 

1.3 Change Detection from Images 

The idea of applying classifiers as change detectors in a sequence of images is 

depicted in Figure 2. It looks simple, but difficulties of its application depend on: 
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1) A priori knowledge about class densities (parametric or nonparametric), 

2) A data structure (vectors, matrices, tensors), 

3) Correlations inside each image and between them. 

Success depends on a proper combination of 1) and 3). We refer the reader to [20], 

[21] for other approaches to change detection in image sequences. 

 

Figure 2 

Main idea: change detection in an image sequence as the Bayes classification problem. At the first two 

frames (from below) changes are not present – they are classified to Class 1. When changes occur 

(upper two frames) and if they are correctly detected, then these frames are classified to Class 2 and the 

change is declared. 

2 Data Structures for Classification 

In this section we review data structures that are used in classification tasks, 

putting the main emphasis on sequences of images to be classified. 

2.1 Classic Data Structure 

In the classic problem statement, a pattern to be classified is a vector
dRx , 

say. The learning sequence ,...2,1),,( iLx ii
 consists of such vectors and class 

labels Li attach to them (see Figure 3). Usually, Li’s are positive integers. In the 

standard, setting pairs ,...2,1),,( iLx ii
 are assumed to be random and 

mutually independent. Their ordering in time is not taken into account when 

classifications are made. Within elements of 
ix vectors correlations (or more 

complicated statistical dependence) are allowed. 
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2.2 Data Structures Arranged according to Class Labels 

As far as we know, the first attempts of imposing a structure on the learning 

sequence of vectors ,...2,1),,( iLx ii
concentrated on subsequent class labels. 

Namely, it was observed that combinations of letters in words appear with 

different frequencies in a given natural language. This and other almost classic 

structures are listed below. 

 

Figure 3 
Classic structure: independent and identically distributed (inside classes) vectors of features with 

correlated elements plus class labels (gray), ordering in time – not taken into account 

 

Figure 4 
Almost classic structure: independent and identically distributed (inside classes) vectors of features 

with correlated elements plus class labels (gray), forming the Markov chain, ordering in time is taken 

into account, see [16] 

– Markov chain dependence of labels: the result of the previous 

classification (e.g., a letter in a word) influences the next classification 

(e.g., the next letter, see [22]). 

– Hierarchy of class labels – patterns arranged into classes, then – inside 

each class – organized into subclasses. The corresponding classifiers are 
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also hierarchical. The first attempts can be traced back to the eighties 

[23], [24] and this stream of research is still continued (see [25]). 

In the Markov chain case, ordering in time of the learning sequence is important 

(see Figure 4). We mention the Markov chain of class labels for historical reasons 

only since it was one of the first attempts of imposing a structure on vectors of 

features to be classified. We shall not use this structure later on because it does not 

take into account correlations between vectors of features. 

2.3 Non-Classic Matrix Structure - Repeated Observations of 

Patterns 

An interesting, important for practice and theoretically appealing pattern 

recognition problem, is discussed in [26] and [27]. Namely, patterns to be 

classified are vectors, but this time, the learning sequence contains repeated 

observations of the same object. These observations are corrupted by noises 

(random errors). Also a new item to be classified consists of several noisy copies 

of the same object. Elements of each vector can be correlated. Additionally, 

batches of observed object can also be correlated (see Figure 5 in which possible 

correlations are depicted as curly brackets). Again, ordering in time appears as the 

important factor of this kind of data structure. 

In [26] it is additionally assumed that data vectors have the normal distribution. 

This, in addition to the above-mentioned correlation structure, leads the authors of 

[26] to the conclusion that the overall structure of the learning sequence has the 

so-called matrix normal distribution (MND), which has a special form of the 

covariance matrix. Namely, its covariance matrix is the Kronecker product of 

covariance matrices between elements of feature vectors and between repeated 

observations of the same object. 

 

Figure 5 

Non-classic matrix structure: correlated in time (curly brackets) vectors of features with correlated 

elements plus class labels (gray), ordering in time is taken into account, [26]. Two covariance matrices 

– the Kronecker product structure of the overall covariance matrix. 
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We shall discuss MND in more detail in the next section since we shall use it to 

describe image sequences. There are formal similarities between our development 

and [26], but there are also differences arising from the fact that in [26] random 

matrices arise by stacking together repeated observations of the same object, while 

in our case matrices are just images, coded in the gray-level convention. 

 

Figure 6 

Basic matrix structure: uncorrelated in time matrices of features (gray levels) with correlated columns 

and rows plus class labels (gray). The covariance matrix is the Kronecker product structure of the row 

and columns covariance matrices. There is no a dependence structure imposed on class labels. 

2.4 Why We Need Matrices and Tensors as Data Structures 

for Classification? 

In this subsection, we pause our systematics of data structures for a while in order 

to explain why it is expedient to keep images as matrices and their sequences as 

tensors. 

Formally, we can express matrices and tensors as vectors. Then, why it is 

important to keep images and tensors for classification in their original form? 

1) A typical image has about 10 MPix and it is inconvenient to consider it as a 

vector. Indeed, when “Truecolor” images are stored, each of ten millions of 

pixels is represented by 24 bits. 

2) The same is true for image sequences, where a vector containing a video 

would be rather ridiculous. A convenient structure for storing image 

sequences is the 3D tensor (see [8] for the definition and the fundamental 

operations on tensors). 

3) A correlation structure is easier to impose when images are kept in its 

”natural” form since we can provide an interpretation to the following 

notions: between-rows and between-columns correlation matrices (see [26], 

[27]). 

The last statement is explained in more detail in Section 3.2. 
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2.5 Basic Matrix Structure for Classifying Images 

The structure described here is our main focus in this paper. It is well suited for 

classifying images with the main emphasis on detecting changes in their 

sequences. From this point of view ordering of images is important, but – in this 

model – previous decisions are not taken into account when a new classification is 

made. For example, when images of a properly produced item were recognized 

several times, this does not change the probability of classifying the next item as 

improper. Thus, there is no dependence between subsequent class labels. Each 

image is stored as a matrix with elements representing the gray levels of pixels. It 

is assumed that these matrices are normal random matrices. Their covariance 

structure is the Kronecker product of rows and columns covariance matrices (see 

Figure 6). This structure is described in Section 3.3. 

 

Figure 7 

Tensor product structure: Correlated in time matrices of features with correlated columns and rows 

plus class labels (gray), ordering in time IS TAKEN into account. Three covariance matrices - the 

Kronecker product structure of the row and columns covariance matrices and between images 

covariance. There is no a dependence structure imposed on class labels. 

2.6 Extended Basic Structure 

The next step in the hierarchy of data structures is the one similar to that described 

in the previous section (see Figure 7), but additionally admitting a correlation 

dependence between matrices (images) in a sequence. Thus, we have three 

covariance matrices: between rows, columns and between matrices (images). 

Their Kronecker product forms the overall covariance matrix of MND. Clearly, 

the time ordering is important, but we do not assume a dependence between 

labels. 

When classification is made for change detection – we classify each image but 

taking between images correlation into account. We omit a discussion of this case 

later. 
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2.7 Data Structures for Detecting Changes in Video Sequences 

Up to now, elements of learning sequences were either vectors or matrices ordered 

in time (or not), correlated along different directions (or not). The next level in our 

hierarchy of data structures consists of sequences of matrices (tensors) that are 

ordered in time. In particular, this structure can describe ordered sequences of 

images, i.e., video sequences. Classifying such objects is as important as difficult. 

Notice that this time we classify all video and when we want to detect changes, we 

must take into account all images in the sequences. In other words, objects to be 

classified are 3D tensors. 

This structure is much more data demanding to learn a classifier. We comment on 

how to reduce the amount of data in the last section, but the trick applied there can 

be used for short image sequences only. 

2.8 Outside the Systematics 

The above systematics of data structures was done from the point of view of 

classifying objects. For this reason, not only their algebraic description as vectors, 

matrices and 3D tensors was taken into account, but also importance (or not) of 

time ordering and a correlation structure. 

 

Figure 8 

Change detection in video sequences: no correlation between video sequences, correlated in time 

matrices of features with correlated columns and rows plus class labels (gray). There is no a 

dependence structure imposed on class labels. This is outside our scope today. 

 

This systematics is neither exhaustive nor complete. For example, we confined 

ourselves to gray level images. By adding colors (e.g., in RGB format) one can 

easily extend the proposed taxonomy. On the other hand, this systematics takes 
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only main factors influencing pattern recognition into account. Additional factors 

that may influence the result of classification include.  

– Outer context (see [28], [18]) which is not a feature of an object to be 

classified, but influences the result of classification (e.g., a lighting of a 

scene).  

– Ordered labels with different losses attached, depending on how far are 

current decisions from the proper one (see [29], [30], [31]).  

– Topology in the space of labels (e.g., rectangular net for objects 

localization [32]). 

Outside this systematics remains also an interesting approach proposed in [33] for 

semi-supervised learning. The data structure considered in this paper consists of 

initial labeled data and data labeled in the co-training process. 

3 Bayesian Framework for Classifying Images 

Our aim in this section is to provide a Bayesian framework for classifying images 

and – in particular – to apply it for change detection in an image sequence by 

classifying each image in it. Clearly, Bayesian classifiers are widely used for 

image classification at least from 1960’, but the main stream of research and 

applications follows the scheme depicted in Figure 9, i.e., firstly relevant features 

are defined and extracted from images. Then, a vector of features is classified. The 

main difference between this approach and the approach considered in this paper 

is in that we consider images (matrices) as whole entities and they are classified as 

such. The present approach should not be confused with the one proposed in [21], 

where changes in an image sequence were detected by tracking, separately, gray 

levels of each pixel along the time axis (see Figure 10 for a sketch of this idea).  

 

Figure 9 

The most common approach: features extraction from each image and then apply a classifier or a 

change detector. Applicable when one can define features relevant to classes (changes). 
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Figure 10 

Spatio-temporal change detection: Changes in gray levels of each spatial location (pixel) are tracked 

separately, the out-of-control state is declared when a group of pixels changed. 

3.1 Bayesian Classifier for Matrices (images) 

Denote by X  an n × m random matrix with the probability density function 

either )(1 Xf when X is drawn from Class 1 (e.g., in-control behavior) or 

)(2 Xf when X  is drawn from Class 2 (e.g., out-of-control).  

Remark: We confine to X ’s from two classes for simplicity. Immediate 

generalization is possible for more than one scenario of out-of-control behavior.  

Let  1,0,0 2121  pppp  be a priori probabilities that X comes from 

class 1 or 2. Selecting the so-called 0-1 loss function, the optimal classifier 

(minimizing the Bayes risk) is of the form (see [1], [2]):  

classify X to Class 1 if     (1) 

and to Class 2, otherwise.   

3.2 Lack of Data for Learning a Matrix Classifier 

In practice, 1f  and 2f  unknown, but we have two learning sequences: 

1

)1( ,...,2,1, NiX i   for estimating 1f and 2

)2( ,...,2,1, NiX i   for estimating 

2f . The classification of learning examples is assumed to be correct (done by an 

expert). 

Data structures for pattern and image recognition. It is customary to 

distinguish two main approaches to learning classifiers:  

I) A nonparametric approach: 1f  and 2f  are unknown and they are 

estimated (e.g., by the Parzen kernel method). Application of this 

approach to image sequences is impossible since for a typical 1 Mpix ≈ 
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103 × 103 image matrix X  one would need hundreds millions of learning 

examples.  

II) A parametric approach: 1f  and 2f  are assumed to be members of a 

parametric family of probability density functions, e.g., the Gaussian one. 

Still (almost) impossible to apply, because the covariance matrix would 

be as large as 106 × 106 for 1 MPix image. Again hundreds of millions of 

learning examples would be needed to estimate it.  

What can we do ?  

a) To apply a heuristic classifier.  

b) To assume that 1f , 2f  are Gaussian and completely neglect the 

covariance structure (known as naive Bayes).  

c) To assume that 1f , 2f  are Gaussian, but to impose ”a reasonable” 

structure on the covariance matrix.  

Such an appropriate structure of the covariance matrix possess random matrices 

having the probability distribution function, which is  known as the matrix normal 

distribution (MND) and – for larger dimensions – known as multilinear normal 

distribution (see [34]). 

3.3 Basic Facts about MND  

Further, we assume that class densities are MND and they have the probability 

density functions of the form: for 2,1j  

 







  T

jjjj

j

j MXVMXUtr
c

Xf )()(
2

1
exp

1
)( 11

 (2) 

where T stands for the transposition and  det[.] denotes the determinant of a matrix 

in the brackets. For the normalization constants we have:  

m

j

n

j

nm
def

j VUc 5.05.05.0 ]det[]det[)2(  , (3) 

where n × m matrices jM  denote the class means, while n × n matrix jU  and m 

× m matrices jV  are the rows and columns covariance matrices of the classes, 

respectively, assuming that ,0]det[ jU 0]det[ jV . Further, we shall write 

shortly,  

),,(~ , jjjmn VUMNX  for 1j or 2j  (4) 
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It is well known, that the formally equivalent description of MND is the 

following: 

)),((~ , jjmn MvecNX   for 1j or 2j  (5) 

where j  is n m × n m covariance matrix of j-th class, which is the Kronecker 

product (denoted as ⊗) of jU  and jV  , i.e.,  

,jj

def

j VU  2,1j  (6) 

Above, )(( Xvec ) stands for the operation of stacking columns of matrix X . 

4 Bayes Classifier for Classes having Matrix Normal 

Distribution 

In this section we assume that X  is drawn from ),,(, jjjmn VUMN , 

for 1j or 2j . For a while, we also assume that we know 

2,,, jVUM jjj . Our aim is to derive the Bayes classifier under the 0-1 loss 

function. As we shall see, the derivations closely follow those calculations that are 

well known for vectors with differences in algebraic manipulations. 

4.1 General Case 

Proposition 1. If X to be recognized is drawn from ),,(, jjjmn VUMN , 

for 1j or 2j , then the Bayes classifier has the form: classify matrix (image) 

X to Class 1, if  

 

  )/log()()(
2

1

)/log()()(
2

1

222

1

22

1

2

111

1

11

1

1

cpMXVMXUtr

cpMXVMXUtr

T

T

























 (7) 

and to Class 2, otherwise.  

Proof. When Mj and 2,1,,, jpVU jjj are known, then from (1) and (2) we 

directly obtain (7). 
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The expressions in the brackets in (7) play the role of the Mahalanobis distance. 

The matrices 
1

jU and 
1

jV de-correlate rows and columns of an image, 

respectively. 

Thus, in a general case, the optimal classifier is quadratic in X  and we have to 

know (or to estimate) all parameters: Mj and 2,1,,, jpVU jjj . Their 

estimation is discussed in Section 5. 

4.2 (Very) Special Case – Uncorrelated Matrix Elements 

Let us assume that jj VU ,  are identity matrices (no correlations at all) and 

5.021  pp . Then, (7) reduces to the following: classify matrix (image) X  

to Class 1 if 

2

2

2

1 FF
MXMX   (8) 

and to Class 2, otherwise, where 
F

A for matrix A stands for its Frobenius norm: 

2/1])[( AAtrA T

F
 . In other words, classify a new matrix to the class, which 

mean is closer -- in the terms of the Frobenius norm. 

Remark: it looks like a quadratic classifier, but in fact, it is linear in X  (this will 

be clear later). 

This is the so-called ”naive Bayes classifier” and -- in spite of its simplicity-- it 

occurs to be very useful when we have very large vectors (matrices) of features. 

4.3 (Less) Special Case – the Same Class Covariance Matrices 

As is well known, in the case of classifying Gaussian random vectors with the 

same class covariance matrices, the Bayes classifier is linear. In this section, we 

show that it is also the case for classifying matrices. 

Proposition 2. Let us assume that UUU  21 , VVV  21 , i.e., we have the 

same covariance structure in both classes. Define: 

   







 

2

1
2

1

21

1

1

1 log
2

1

p

p
MVMMVMUtrC  (9) 

Then, the Bayes decision rule is: classify matrix (image) X  to Class 1 if 

   CUMMXVtr
T

  1

12

1
 (10) 
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and to Class 2, otherwise. 

The proof follows from (7), by direct algebraic manipulations. 

Apparently, (10) is linear in X  and it can be rewritten as: 

CXWtr ][ ,     1

12

1   UMMVW
T

def

, (11) 

In order to interpret the result, let us rewrite (10) as follows: 

      CUMMVXVUtr
TTT   2/1

12

2/2/12/
 (12) 

where 
2/TU 

stands for 
TU )( 2/1

. Hence, the decision rule is the inner product 

of: 

a) de-correlated pattern X  and 

b) de-correlated difference of the class means  TMM 12  . 

One can consider (12) as the justification of the class of bi-linear (in weighting 

matrices) classifier proposed in [35]. 

Remark: We do not impose the Kronecker product structure on 1M  and 2M  

matrices. This seems to be an excessive requirement, leading to the assumption 

that we have a matrix of matrices of (almost) the same elements – images. This is 

outside the scope of this paper. 

5 Learning the Classifier – Plug-in Method 

When jjj VUM ,,  are unknown, we have two learning sequences: 
)( j

iX , 

jNi ,...,2,1 , 2,1j  for estimating them. For 21 NNN  the estimation 

of the mean matrices and a priori probabilities is obvious: 





jN

i

j

ijj XNM
1

)(1ˆ ,     NNp j /ˆ  ,   2,1j  (13) 

Estimating covariance matrices: jj VU ,  is not so easy task. The fact is their 

maximum likelihood estimates (MLE) are not unique, i.e., they can be estimated 

up to a constant multiplier, does not lead to troubles since jj VU ,  appear as 

multiplicative pairs. 
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Maximum likelihood estimators (MLE) jj VU ˆ,ˆ can be calculated if (see [36]) 

1,max 









n

m

m

n
N j , 2,1j . (14) 

Thus, it is not necessary to have: mnN j  . This is the main advantage of 

imposing the Kronecker product structure on the class covariance matrices. For 

nm  we need at least 2 images to calculate MLE’s of rows and columns 

covariance matrices, which does not mean that for two samples we obtain good 

estimates. 

5.2 MLE Estimators of Uj and Vj 

According to [37], MLE estimators jj VU ˆ,ˆ  have to be calculated by solving the 

simultaneous set of equations: 

   
TN

i

jijji

j

j

j

MXVMX
mN

U 


 
1

1 ˆˆˆ1ˆ  (15) 

   


 
jN

i

jijji

j

j MXUMX
nN

V
1

1 ˆˆˆ1ˆ  (16) 

for 2,1j , They form the pair of matrix equations, which are usually solved as  

follows. 

The flip-flop method: 

1. Instead of jj VU ˆ,ˆ , use the unit matrices at r.h.s. of (15) and (16), 

2. Calculate the left-hand sides of (15) and (16), 

3. Re-substitute the results of the previous step into right-hand side of (15) 

and (16), 

4. Repeat Step 2 and Step 3 until convergence. 

Lemma 1. One flip-flop iteration of the above method is sufficient in order to 

obtain the consistent (convergent in the probability) and asymptotically efficient 

estimators of jj VU ,  as the number of observations from the two classes grows to 

infinity. 

For the proof see [38]. This result forms the base for proving that the empirical 

classifier is asymptotically optimal. 
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5.2 Empirical Classifiers for Matrix Normal Class 

Distributions 

In order to convert the Bayes classifier into empirical one, substitute Mj ← Mˆj , 

Uj ← Uˆj , e.t.c., into (7) to get the following classifier: 

classify matrix (image) X  to Class 1 if 

 

  )ˆ/ˆlog()ˆ(ˆ)ˆ(ˆ
2

1

)ˆ/ˆlog()ˆ(ˆ)ˆ(ˆ
2

1

222

1

22

1

2

111

1

11

1

1

cpMXVMXUtr

cpMXVMXUtr

T

T

























 (17) 

and to Class 2, otherwise, where 

m

j

n

j

nm
def

j VUc 5.05.05.0 ]ˆdet[]ˆdet[)2(ˆ  . (18)  

Proposition 3. If the row and column covariance matrices are estimated by the 

flip-flop method and a priori probabilities and the class means are estimated as in 

(13), then, for each fixed X , the left and the right hand sides of th empirical 

classifier, described as rule (17), is convergent in the probability to the left and 

the right hand sides of the optimal classifier (7), respectively, as the number of 

observations from the both classes approaches to infinity. 

Proof. The consistency of the estimators in (13) is well known and it follows from 

the law of large numbers. The consistency of the row and column covariance 

matrices follows from Lemma 1. The convergence of the left- and the right-hand 

sides of (17) to those of (7) immediately follows from the well-known Slutsky’s 

theorems since these expressions are either rational or continuous functions of the 

consistent estimators (13) or those described in Lemma 1. 

5.3 Empirical Classifiers – Special Cases 

1) The empirical version of the ”naive Bayes” classifier is particularly simple: 

Classify matrix (image) X  to Class 1 if 

2

2

2

1
ˆˆ

FF
MXMX   (19) 

and to Class 2, otherwise. 

2) The case of the same class covariance matrices. It is expedient to consider 

two possible approaches: 
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A) Plug-in approach: classify X  to Class 1 if 

1

12

1 ˆ)ˆˆ(ˆˆ   UMMVW T
def

 (20) 

and Ĉ  is defined analogously. 

B) A direct learning of the weight matrix W. Our starting point is again the Bayes 

decision rule: tr CXW ][ . Notice that this rule is not uniquely defined (we can 

multiply W  and C  by an arbitrary constant). Thus, later we take 1C . Let 

),( ji yX , 21...2,1 NNNi   (both classes) be the learning sequence with 

class labels 1iy for Class 1 and 1iy for Class 2. Then, the recurrent 

update that minimizes one-step ahead error 
2))1][((  WXtry ii with respect 

to W is of the form: 

T

iiiii XWXtryWW ))1][((1    (21) 

where 0 is a small learning constant. After stopping (21) with Ŵ , the 

decision is made according to ]1]ˆ[sgn[ WXtr . 

5.4 Classifying whole Image Sequences 

Let 1q be the length of an image sequence denoted by X , which is n x m x q 

tensor. Assume that class densities of )(Xvecx   have the tensor normal 

distribution with the same covariance ZXU  , where Z  is q x q inter-frame 

covariance matrix. The classes have different means )M( jvecm
def

j  , 2,1j . 

Then, it can be shown that the Bayes classifier is again linear in x . 

MLE for estimating ZVU ,, consists of three sets of equations (see [36]) and it 

can be solved by a flip-flop like algorithm, but – in spite of the Kronecker product 

covariance structure – a large amount of data is required. 

Hence, a simple – heuristic – classifiers should also be taken into account to 

classify image sequences, as it will be demonstrated in the next section. 
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6 A Case Study – Quality Control of an Additive 

Manufacturing Process using a Camera 

We shall use a classifier as change detector in a sequence of short (3 images) 

videos, but instead of modeling them as 3D (tensor) structures we ”glue” batches 

consisting of 3 subsequent images into one, larger, image and then, they will be 

classified as changes in one image sequence. 

Caution: Applying a classifier as change detector one has to take into account an 

inherent difficulty of such an approach. Namely, the phenomenon that is known as 

the class imbalance (see, e.g., [39]), which appears here because, usually we have 

a much larger number of examples (images) of in-control examples than those 

out-of-control. Special actions (e.g., choice of the classifier or undersampling of 

the in-control images) have to be undertaken. 

6.1 A Practical Problem to Solve 

An additive manufacturing is a class of modern production processes. A large 

number of technics and technologies are used in this area, see [40], where the 

optimization of computer-aided screen printing design  is discussed and [41] for 

the life cycle optimization of such processes. We refer the reader to the survey 

papers [42], [43], [44] on additive manufacturing processes. 

As a vehicle for presenting possible applications of image classifiers in decision 

making, we selected the process known as the selective laser melting, which 

produces items (roughly) as follows: 

– A metallic powder is poured in a precisely controlled way 

– Simultaneously the powder is melted by a laser beam 

– After hardening – it forms a part of a 3D body to be constructed 

– The laser head, together with the powder supply nozzle, moves to the 

next place (in fact, phases of moving and pouring and melting the powder 

run simultaneously and continuously). 

For a more detailed description of this kind of production processes, the reader is 

referred to [45]. This technology is expected to be developing in the future and it 

is therefore expedient to attempt to improve it to the perfection. 

One of the problems is that the laser head stays longer near end-points (turning 

off) of a produced item (e.g., a wall). This results in a too wide ends for the 

produced wall (see Figure 11). 
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Figure 11 

The left endpoint of the built wall: visible part of the wall is too wide and too high 

Proposed remedy: recognize from images that the laser head is near the end point 

and reduce the laser power near the ends, then recognize again middle points and 

increase the laser power. 

Many attempts were recently undertaken to cope with this problem (see [25], [46], 

[47]). The main difference between the approaches proposed in the papers cited 

above and the present one is in that here we consider the recognition that the laser 

head is in the near end position from short video sequences (triples of images), 

treated as a whole entity. Additionally, we take into account that the frequency of 

being in these states is much rarer than being in the ”normal” state, i.e., in a 

middle of the wall. To illustrate the role of the class imbalance in this case, we 

mention that in our laboratory experiments the wall had 600 mm, while the near 

end zone had 2-4 mm. 

6.2 Learning Sequence of Images 

 

Figure 12 

Examples of original images of the produced wall – view from above. The left end laser head position 

– too thick wall end is visible and the middle one – has a proper wide of the wall. 

We had about 900 images of the produced wall that were taken from above 

(almost) along the laser beam. Examples of original images are shown in Figure 

12. These images were cropped to keep only parts of the wall and then they were 

grouped into new images with three elements in the way that each triple 

overlapped with the previous one, having two common original images. In this 

way, the sequence of the total length 898 was obtained. In this sequence, we have 

distinguished 104 triples that were labeled as ”BAD” since they contain the wall 

endpoints (usually too wide) and 794 triples marked as ”OK” since they a middle 

part of the wall, which is of the proper width. Examples of these triples are shown 

in Figure 13. The next step – available data were divided into two halves: the 

learning and testing sequence, keeping about 10% examples from ”BAD” class. 
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Figure 13 
Examples of triples of ”glued” images to be classified as ”BAD” or ”OK”. By “OK” triples we mean 

those that have a proper width – they are located in the middle of the wall. By “BAD” triples we 

understand those that are near the endpoints of the wall – they usually are too thick. These triples are 

fed as inputs for classifying algorithms in order to make a decision whether to keep the laser power at 

the nominal value or to decrease it near the endpoints. 

6.3 Naive Learning - Neglecting Class Imbalance 

In this section, we provide examples of positive and negative results of learning 

classifiers. The goals of presenting also negative results are the following: 

– To warn the reader that the task of change detection in sequences of 

images is nontrivial. 

– To document that classifiers that are believed to be the ”golden 

standard”, such as support vector machines (SVM) may fail when the 

class imbalance appears in the learning sequence. 

SVM classifier provided 88% correct classifications, when (after learning) was 

applied to the testing sequence. Unexpectedly, all triples classified by an expert as 

”BAD” were classified to ”OK” class by the SVM classifier. Notice that 

seemingly good result of 88% correct classifications was obtained, because the 

testing sequence contained only 12% of ”BAD” items and all of them were miss-

classified (see Table 1). The classifier had zero sensitivity (recall) to ”BAD” class, 

also F-score was zero. 

Table 1 

Confusion matrix of the SVM classifier 

A
ct

u
al

 

cl
as

s 

Predicted class sum 

 BAD OK  

BAD 0 54 54 

OK 0 395 395 

sum  0 449  
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”Naive Bayes” classifier provided 68% correct classifications when applied to 

the testing sequence. This time, almost all ”BAD” items were correctly classified, 

but at the expense of 1/3 ”OK” examples classified erroneously. The probability 

of detection (sensitivity, recall) of ”BAD” class is still rather low, namely, 0.26. 

The following classifiers were also tested: logistic regression and random forest 

(with 50 trees). The results were somewhat better than that for SVM and Naive 

Bayes, but still not satisfactory. 

6.4 5-NN Classifier Robust against "Naive" Learning 

Satisfactory results (without editing the learning and/or testing sequence for class 

imbalance) were obtained for 5 Nearest Neighbors (5-NN) classifier. Namely, it 

provided 98% correct classifications, simultaneously, 80% of ”BAD” testing 

examples were correctly classified. Furthermore, there were zero false alarms, as 

one can check from the confusion matrix in Table 2. Thus, 5-NN classifier 

occurred to be robust against naive learning in the class imbalance case. 

The only – well-known – drawback of this classifier is the necessity of storing the 

whole learning sequence, but storage resources of clouds reduce it considerably 

Table 2 

The confusion matrix of 5-NN classifier 

 
A

ct
u

al
 

cl
as

s 

 

Predicted class sum 

 BAD OK  

BAD 43 11 54 

OK 0 395 395 

  sum  43 406  

6.5 MND Classifier and Comparisons 

Satisfactory results were also obtained for the MND classifier. They are 

summarized in Table 3. The MND classifier provided 96.2% correct 

classifications, simultaneously, 78% of ”BAD” testing examples were correctly 

classified. Furthermore, there were only 1% of false alarms. Thus, also MND 

classifier occurred to be robust against naive learning in the class imbalance case. 

Table 3 

The confusion matrix of MND classifier 

 
A

ct
u

al
 

cl
as

s 

 

Predicted class sum 

 BAD OK  

BAD 42 12 54 

OK 5 390 395 

  sum  47 402  
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Table 4 contains the summary of testing classifiers. As one can observe, the 

popular SVM and naïve Bayes classifiers provide unexpectedly bad results. The 

reason is in that they do not take into account the class imbalance. In opposite, 5-

NN and MND classifier give quite good results since they are – to some extent – 

insensitive to the class imbalance. Their confusion matrices (see Table 2 and 3) 

are almost the same. 

Table 4 

Comparison of classifiers: SVM, NM – naïve Bayes, 5 NN and MND classifier, according to % of 

correct and % of misclassifying BAD as OK 

Classifier SVM NB 5 NN MND cl. 

% correct 88 68 98 96.2 

% BAD as OK 100 0 20 22 

6.6 Decision Making 

After the learning phase, the 5-NN classifier can be used for making control 

decisions, as shown below. Let X denote current triple of images. 

1) Classify X to class ”BAD” or ”OK”. 

2) If X ∈ ”BAD”, reduce the laser power (by a pre-specified amount) so as 

to attain the temperature of the melted lake about 2140 C (this is done by 

the PI controller). 

3) If X ∈ ”OK”, keep the nominal laser power  (or return to it, if previously 

X ∈ ”BAD”). The nominal laser power corresponded to the lake 

temperature 2445 C. 

4) Acquire new image and form new X by adding it to X and throwing out 

the oldest one from it. Go to 1). 

6.7 Laboratory Experiment 

In order to check to what extent one can reduce unpleasant ”end effects”, the wall 

was first built with a constant laser power. In the upper panel of Figure 14, one 

can notice to wide ends of the wall. When the laser power was reduced each time 

when the laser head was near one of the endpoints (see Sec. 6.5) the resulting wall 

has more proper endpoints (see the lower panel of this figure). The wall has the 

length of about 60 mm. The speed of the laser head was about 10 mm/sec., while a 

stainless steel powder was supplied with the feed rate at 0.06 g/sec. 

In fact, the wall at the lower panel of Figure 16 was obtained under more subtle, 

gradual change of the laser power, but this aspect is outside the scope of this 

paper. 
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Conclusions 

Our first step was an attempt to provide some systematics for images and image 

sequences, from the viewpoint of their classification. At this stage, the class of 

images and image sequences having matrix (tensor) normal distribution was 

selected as sufficiently general, but still, a manageable class distribution. The 

MND class distributions have the covariance matrices that take into account only 

the inter-row and the inter-column covariances. Therefore, they are easier to 

estimate than in a general case. However, a specialized form of the covariance 

matrices leads to more specific classifiers than in the general case. Their structure 

was derived and their empirical forms were proposed as the classifiers for further 

investigations. 

Finally, these classifiers were tested on the problem of detecting, from short image 

sequences, whether a laser head is near the endpoints of a cladding wall. In other 

words, the proposed classifier is used in the problem of change detection from 

image sequences. Its performance is quite satisfactory. Its behavior was also 

compared with a general purpose and widespread classifiers that do not take into 

account a special covariance structure or the class imbalance. As it was 

documented by the laboratory images, only 5-NN classifier can be comparable 

with the proposed approach since it is – to some extent – robust against a naïve 

learning. 

Clearly, one can consider other methods for image feature representation and 

classification, e.g., in [47] the spectral and wavelet analysis as feature extraction 

techniques were employed, in [48] the feature extraction is based on a com-

bination of a self-organized map used for image vector quantization and those 

generated by a neural network, a kernel sparse representation, which produces 

discriminative sparse codes to represent features in a high-dimensional feature 

space, is proposed in [49], while in [50] non-conventional approaches to feature 

extraction were proposed. A feature extraction is a common focal point of all 

these approaches. It is laborious, human-invented and dedicated to a particular 

application. In opposite, we stress that the proposed approach does not need a 

feature extraction step. Instead, “raw” images are supplied as inputs for a 

classifier, providing an acceptable level of proper classifications. This approach is 

less laborious, but its applicability is limited to cases when there is no need to 

consider very subtle differences between images. 

The proposed approach may be useful, at least, at one more area of applications, 

namely, in using classifiers to detect states of industrial gas burners from image 

sequences (see [39]). It seems that further efforts are necessary in order to sketch a 

wider class of applications for which the proposed approach outperforms a general 

purpose classifiers when they are applied to image sequences. 
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Figure 14 

Upper panel – the wall produced with constant laser power along the wall length. Lower panel – the 

wall produced with controlled laser power trajectory along the pass. 

Acknowledgement 

This research has been supported by the National Science Center under grant: 

2012/07/B/ST7/01216. 

Special thanks are addressed to Professor J. Reiner and to MSc. P. Jurewicz from 

the Faculty of Mechanical Engineering, Wroclaw University of Technology for 

common research on laser power control for additive manufacturing. 

The author express his thanks to the anonymous reviewers for many suggestions, 

leading to the improvements of the presentation. 

References 

[1] Fukunaga K.: “Introduction to Statistical Pattern Recognition”, Academic 

Press, 2013 

[2] Devroye L., Gyorfi L., Lugosi G.: “A Probabilistic Theory of Pattern 

Recognition”, Springer Science & Business Media, 2013 

[3] Han J., Chen C., Shao L., Hu X., Han J., Liu T.: “Learning Computational 

Models of Video Memorability from FMRI Brain Imaging”, IEEE Trans. on 

Cybernetics, 45(8), 2015, pp. 1692-1703 

[4] Ninio J.: “Testing sequence effects in visual memory: clues for a structural 

model”, Acta Psychologica, 116(3), 2004, pp. 263-283 

[5] Schyns P. G., Gosselin F.,  Smith M. L.: “Information processing algorithms 

in the brain”, Trends in Cognitive Sciences, 13(1), 2009, pp. 20-26 

[6] Stadler W., Schubotz R. I., von Cramon D. Y., Springer A., Graf M, Prinz 

W.: “Predicting and memorizing observed action: difierential premotor 

cortex involvement”, Human Brain Mapping, 32(5), 2011, pp. 677-687 

[7] Fulton, J. T., “Biological vision”, Trafford, 2004 

[8] Lee, N., Cichocki, A., “Fundamental tensor operations for large-scale data 

analysis using tensor network formats”, Multidimensional Systems and 

Signal Processing, 29(2), 2018, pp. 921-960 



Acta Polytechnica Hungarica Vol. 15, No. 4, 2018 

 – 259 – 

[9] Sean A., Jason L.: “Building and using a database of one trillion natural-

image patches”, IEEE Trans. Computer Graphics and Applications 31(1), 

2011, pp. 9-19 

[10] Tsymbal A., Meissner E., Kelm M., Kramer M.: “Towards cloud-based 

image-integrated similarity search in big data”, Biomedical and Health 

Informatics (BHI), 2014 IEEE-EMBS International Conference on, IEEE, 

2014, pp. 593-596 

[11] Assent I.: “Clustering high dimensional data”, Wiley Interdisciplinary 

Reviews: Data Mining and Knowledge Discovery, 2(4), 2012, pp. 340-350 

[12] Lin F., Chung L, Wang C, Ku, W., and Chou T.: “Storage and Processing of 

Massive Remote Sensing Images Using a Novel Cloud Computing 

Platform”, GIScience & Remote Sensing, 50(3), 2013, pp. 322-336 

[13] Yaqoob I. et al.: “Big data: From beginning to future”, Int. J. Information 

Management, 36(6), 2016, pp. 1231-1247 

[14] Megahed F. M., Woodall W. H.,  Camelio J. A.: “A review and perspective 

on control charting with image data”, J. Quality Technology, 43(2), 2011, 

pp. 83-98 

[15] Duchesne C., Liu J. J., MacGregor J. F.: “Multivariate image analysis in the 

process industries: A review”, Chemometrics and Intelligent Laboratory 

Systems, 117, 2012, pp. 116-128 

[16] Bharati M. H., MacGregor J. F.: “Multivariate image analysis for real-time 

process monitoring and control”, Industrial & Engineering Chemistry 

Research, 37(12), 1998, pp. 4715-4724 

[17] Zou C., Wang Z., Tsung F.: “A spatial rank-based multivariate EWMA 

control chart”, Naval Research Logistics, 59(2), 2012, pp. 91-110 

[18] Rafajlowicz E., Rafajlowicz W.: “Image-driven decision making with 

application to control gas burners”, IFIP International Conference on 

Computer Information Systems and Industrial Management, Springer, 2017, 

pp. 436-446 

[19] Lenhardt C., Conway M., Scott E., Blanton B., Krishnamurthy A., 

Hadzikadic M., Vouk M., Wilson A.: “Cross-institutional Research Cyber 

Infrastructure for Data Intensive Science”, High Performance Extreme 

Computing Conference (HPEC), IEEE, 2016, pp. 1-6 

[20] Prause A.,  Steland A.: “Detecting changes in spatial-temporal image data 

based on quadratic forms”, Stochastic Models, Statistics and Their 

Applications, Springer, 2015, pp. 139-147 



E. Rafajłowicz Data Structures for Pattern and Image Recognition with Application to Quality Control 

 – 260 – 

[21] Rafajlowicz E.: “Detection of essential changes in spatio-temporal processes 

with applications to camera based quality control”, Stochastic Models, 

Statistics and Their Applications, Springer, 2015, pp. 433-440 

[22] Kurzynski M.: “On the identity of optimal strategies for multistage 

classifiers”, Pattern Recognition Letters, 10(1), 1989, pp. 39-46 

[23] Kurzynski M.: “The optimal strategy of a tree classifier”, Pattern 

Recognition, 16(1), 1983, pp. 81-87 

[24] Schuermann J., Doster W.: “A decision theoretic approach to hierarchical 

classifier design”, Pattern Recognition, 17(3), 1984, pp. 359-369 

[25] Rafajlowicz E.: “Image-driven, model-free control of repetitive processes 

based on machine learning”, Multidimensional (nD) Systems (nDS), 2017 

10th International Workshop on, IEEE, 2017, pp. 1-6 

[26] Krzyśko M., Skorzybut M.: “Discriminant Analysis of Multivariate Repeated 

Measures Data with a Kronecker Product Structured Covariance Matrices”, 

Statistical Papers, 50(4), 2009, pp. 817-835 

[27] Krzyśko M., Skorzybut M., Wolynski W.: “Classifiers for Doubly 

Multivariate Data”, Discussiones Mathematicae: Probability & Statistics, 31, 

2011 

[28] Rafajlowicz E.: “Classifiers sensitive to external context-theory and 

applications to video sequences”, Expert Systems, 29(1), 2012, pp. 84-104 

[29] Skubalska-Rafajlowicz E., Krzyzak A., Rafajlowicz E.: “Dimensionality 

reduction using external context in pattern recognition problems with 

ordered labels”, Artificial Intelligence and Soft Computing, Springer, 2012, 

pp. 430-438 

[30] Rafajlowicz E., Wietrzych J.: “Recognition of nite structures with 

application to moving objects identification”, International Conference on 

Artificial Intelligence and Soft Computing, Springer, 2010, pp. 453-461 

[31] Rafajlowicz E., Krzyżak A.: “Pattern recognition with ordered labels”, 

Nonlinear Analysis: Theory, Methods & Applications, 71(12), 2009, pp. 

1437-1441 

[32] Rafajlowicz E.: “RBF nets in faults localization”, Artificial Intelligence and 

Soft Computing-ICAISC, 2006, pp. 113-122 

[33] Slivka J., Kovacevic A., Konjovic Z.: “Combining co-training with ensemble 

learning for application on single-view natural language datasets”. Acta 

Polytechnica Hungarica, 10(2), 2013, pp. 133-152 

[34] Ohlson M. Ahmad M. R., Von Rosen D.: “The multilinear normal 

distribution: Introduction and some basic properties”, J. Multivariate 

Analysis, 113, 2013, pp. 37-47 



Acta Polytechnica Hungarica Vol. 15, No. 4, 2018 

 – 261 – 

[35] Kobayashi T.: “Low-rank Bilinear Classification: Eficient Convex 

Optimization and Extensions”, Int. J. of Computer Vision, 110(3), 2014, pp. 

308-327 

[36] Manceur A. M., Dutilleul P.: “Maximum Likelihood Estimation for the 

Tensor Normal Distribution: Algorithm, Minimum Sample Size, and 

Empirical Bias and Dispersion, J. Computational and Applied Mathematics, 

239, 2013, pp. 37-49 

[37] Dutilleul P.: “The MLE algorithm for the matrix normal distribution”, 

Journal of Statistical Computation and Simulation, 64(2), 2012, pp. 105-123 

[38] Werner K., Jansson M., Stoica P.: “On estimation of covariance matrices 

with Kronecker product structure”, IEEE Transactions on Signal Processing, 

56(2), 2008, pp. 478-491 

[39] Liu X., Wu J., Zhou Z.: “Exploratory Under-sampling for Class-imbalance 

Learning”, IEEE Transactions on Systems, Man, and Cybernetics, Part B 

(Cybernetics), 39(2), 2009, pp. 539-550 

[40] Horvath E., et al.: “Optimisation of Computer-aided Screen Printing 

Design”. Acta Polytechnica Hungarica, 11(8), 2014, pp. 29-44 

[41] Horvath, E., Harsanyi, G., Henap, G.,Torok,: “A mechanical modelling and 

life cycle optimisation of screen printing”, Journal of Theoretical and 

Applied Mechanics, 50(4), 2012, pp. 1025-1036 

[42] Frazier, W. E.: Metal additive manufacturing: a review”, Journal of Materials 

Engineering and Performance, 2014, 23(6), pp. 1917-1928 

[43] Murr L. E., et al.: “Fabrication of metal and alloy components by additive 

manufacturing: examples of 3D materials science”, Journal of Materials 

Research and Technology, 1(1), 2012, pp. 42-54 

[44] Chianrabutra V. M., Mellor S., Yang, S.: “Multiple material additive 

manufacturing–Part 1: a review”, Virtual and Physical Prototyping, 8(1), 

2013, pp. 19-50 

[45] Baraniecki T., Chlebus E., Dziatkiewicz M., Kedzia J.,  Reiner J., Wiercioch 

M.: ”System for laser microsurfacing of metal powders”, Welding 

International, 30(2), 2016, pp. 98-102 

[46] Rafajlowicz E., Rafajlowicz W.: “Camera in the control loop --  methods and 

selected industrial applications”, Polish Control Conference, Springer, 2017, 

pp. 261-270 

[47] Jurewicz P., Rafajlowicz W., Reiner J., Rafajlowicz E.: “Simulations for 

Tuning a Laser Power Control System of the Cladding Process”, IFIP 

International Conference on Computer Information Systems and Industrial 

Management, Springer, 2016, pp. 218-229 



E. Rafajłowicz Data Structures for Pattern and Image Recognition with Application to Quality Control 

 – 262 – 

[48] Somogyi B. B., Paláncz B.: “Classification of Cerebral Blood Flow 

Oscillation”, Acta Polytechnica Hungarica, 3(1), 2006 

[49] Chen, X., Nguyen, B. P., Chui, C. K., Ong, S. H. “An Automated 

Framework for Multi-label Brain Tumor Segmentation based on Kernel 

Sparse Representation”, Acta Polytechnica Hungarica, 14(1), 2017 

[50] Ban, J., F., Oravec, M., Pavlovicova, J.: “Non-conventional approaches to 

feature extraction for face recognition”, Acta Polytechnica Hungarica, 8(4), 

2011, pp. 75-90 


