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Abstract: Kinetics of the loading surface of a material gives precious information on the 

level of the hardening of the material. This paper is concerned with the evolution of the 

loading surface during successive actions, such as: (i) plastic deformation, (ii) annealing of 

the pre-strained specimen, and (iii) secondary creep of the treated material. The analysis of 

the loading surface is carried out in terms of the synthetic theory of irrecoverable 

deformation. 
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1 Introduction 

Numerous experiments testify that mechanical-thermal treatment (MTT) is an 

effective tool to improve the strength of metals [2, 4, 9, 10]. MTT involves (i) 

plastic deformation of a specimen at room temperature ( 0T ), e.g. in uniaxial 

tension (we give the acting stress symbol 
0

σ x  and we will mark as 
0

ε x  the 

plastic strain induced by 
0

σ x ), and (ii) annealing of the cold-worked specimen in 

unloaded state (let us denote the annealing temperature and duration as 1T  and 1t , 

respectively). As seen in Figures 1 and 2, if we subject the treated specimens to 

creep with stress xσ  and temperature 2T , the creep rate ( xε ) is not a monotonous 

function of the plastic pre-strain 
0

ε x  (with the proviso that the values of xσ , 2T , 

1T , and 1t  are unchangeable). Figure 1 demonstrates the steady-state creep rate 

xε  ( MPa 25σ x , C7002 T ) of Ni+1.18% alloy against plastic pre-strain at 

room temperature 
0

ε x  developed in the course of preliminary MTT (the 

annealing temperature and duration C70021  TT  and hour 11 t , 
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respectively). Figure 2 shows the steady-state creep rate ( MPa 15σ x , 

C5002 T ) of copper as a function of plastic pre-strain at room temperature 

developed in MTT ( C50021 TT , hour 11 t ). In these figures, the points are 

the experiment [2,4], and the solid line is the analytical curve. 

According to Figures 1 and 2, there exists an optimal level of plastic pre-straining 

after which (with intermediate annealing) the rate of stationary creep is minimal. 

The existence of different types of behavior of the tested specimens subjected to 

creep is connected with distinctions in the initial structure of the material formed 

as a result of plastic pre-straining and annealing. Indeed, the structure affects the 

intensity of the processes of polygonization and recrystallization, which control 

the rate of stationary creep. 

 

 

 

 

 

 

 

 

 
Figure 1 

Steady-state creep rate of Ni+1.18% alloy against plastic pre-strain 

 
Figure 2 

Dependence of the steady-state creep rate of copper on the level of preliminarily induced plastic strains 

Another positive effect of MTT is an increase in the duration of the secondary 

creep [2,4], which can be concluded from cavities nucleation and development 

[3]. 
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Due to a plastic strain, the initial (relatively perfect) crystals suffer fragmentation 

and the sizes and orientation of fragments depend on the level of strains. The 

boundaries between the fragments form a three-dimensional grid of dislocations 

which can be regarded as a pileup of dislocations. Subsequent annealing 

ambiguously affects the preliminarily formed dislocation structure promoting the 

initiation of the thermally controlled processes of polygonization and 

recrystallization. The course of one of these processes depends on the level of pre-

straining and the temperature of annealing [5-7, 12]. 

In the case of annealing of an insignificantly cold-hardened material, we observe 

the redistribution of dislocations of the same sign in the form of rearrangement 

into vertical walls. As a result, poorly formed cells appearing as a result of plastic 

deformation become completely surrounded with low-angle boundaries and 

gradually turn into well-formed subgrains in the body of which the density of 

dislocations is lower than in the deformed matrix. The higher (to a certain degree) 

the value of plastic pre-straining, the greater the number of appearing subgrains, 

i.e., the higher the intensity of polygonization. The polygonized structure formed 

in the process of preliminary TMT decreases the level of sliding (both coarse and 

fine) in testing for creep. This fact can be explained by the restriction of the free 

path of dislocations imposed by the preliminarily formed grid of subgrain 

boundaries. 

In the case of annealing of a material with relatively high plastic strains, the 

density of dislocations built in the subgrain boundaries increases and, hence, the 

angle of their mutual orientation also increases. It is known that subgrains with 

large-angle boundaries play the role of centers of recrystallization, i.e., of the 

formation and growth of grains with more perfect structure. In the course of 

recrystallization, the resistance of the metal to plastic deformation significantly 

decreases since the rapid migration of the boundaries intensely “cleans” the 

deformed matrix, which facilitates the motion of dislocations under conditions of 

creep and increases the rate of stationary creep as compared with its optimal 

value. Thus, the optimal degree of plastic pre-straining should be chosen to avoid 

the possibility of intense recrystallization. 

Classic theories such as ageing (time-hardening) theory, flow theory, and strain-

hardening theory [1] are incapable of the modeling of the dependence 

 
0

εε xx f  due to the fact that, in terms of these theories, the creep rate is 

related to the acting stresses and the loading-prehistory is ignored. This fact 

motivates the author to model the effect of MTT utilizing a more efficient model 

able to embrace a wider circle of processes and their interplay: the synthetic 

theory of irrecoverable deformation (ST). 
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2 Mathematical Apparatus: Synthetic Theory 

The analytical description of the dependence of steady-state creep rate xε  on the 

plastic pre-strain 
0

ε x  in the course of MTT is carried out in terms of the synthetic 

theory of irrecoverable deformation [8-11]. The yield limit of a material in the 

three-dimensional subspace (R
3
) of five-dimensional stress deviator space has the 

shape of a sphere, which correspond to the von-Mises yield criterion: 

22
3

2
2

2
1

σ32
T

SSS   (1) 

where Tσ , depending on the problem considered, is the yield limit ( Sσ ) or the 

creep limit ( Sσ ) of the material; iS ( 3,2,1i ) are coordinate axes in R
3
. 

In terms of ST, the yield/loading surface is constructed as the inner envelope of 

tangent planes. In the virgin state, sphere (1) is the inner envelope of tangent 

planes, which are equidistant to the origin of coordinate in all directions. A 

loading is presented by a stress-vector, S


, whose components are defined in [8, 

11]. As the stress-vector grows, it translates on its endpoint tangent planes (the 

orientation of tangent plane does not vary during the motion). The planes which 

are not reached by S


 remain stationary. The displacement of a plane symbolizes 

the increment in plastic deformation (plastic slip) within an appropriate slip 

system at a point of a body. The plastic strain developed within one slip system 

defines a microlevel of deformation. The total strain (macrostrain) is calculated by 

the summation (threefold integrals) of the microstrains occurring in activated slip 

systems. 

Consider the case of uniaxial tension when the components of S


 are 

xS σ321  , 02 S , 03 S  [8]. As Sσ32S


, there is only one plane 

tangential to the sphere (1) reached by the vector S


, and it is perpendicular to the 

S


. During further elongation of the S


, new planes become located on the 

endpoint of the stress-vector and – following the rule that a loading surface is the 

inner envelope of planes – the loading surface take the shape of a cone symmetric 

relative to the S1-axis, and its generator is constituted of the boundary tangent 

planes reached by the stress-vector. This cone goes over to the initial sphere in the 

directions where tangent planes remain immovable. 

The plastic strain component in uniaxial tension, 1e , is calculated as [8-11] 



λβα

1 λβλcosβcosβsinφ
1

dd
r

e N ,   02 e , 03 e , (2) 
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where Nφ  is referred to as irrecoverable strain intensity (index N  stands for the 

vector normal to the tangent plane, which gives the orientation of the plane), 

which is defined by the following differential equation 

dtKrdd NNN ψφψ  , (3) 

where Nφ  is called defects intensity; dt  is the time differential, r  is the 

constant of material, and K  is a function of the homological temperature and 

current stresses: 

   3
σ32exp 21

K
xKKK  , (4) 

where iK  ( 3,2,1i ) are the material constants. 

 

Figure 3 

Orientation of the normal n


 in the subspace R3 

The defects intensity, according to [8, 9], is 

22 σ32ψ TNN H   ,   λcosβsinσ32λcos xNH  nSNS


, (5) 

where NH  ( 3,2,1i ) is a distance to the plane reached by stress-vector; angle β  

gives the orientation of a plane in R
3
 (the role of angle λ , which is immaterial 

within this article, can be found in [8]). In general, the orientation of the normal in 

R
3
,  βcosαsin,βcosαcos,βsinn


, is shown in Figure 3. The magnitude of NH  

shows the degree of the hardening of material. Actually, the greater the NH , the 

greater the stress-vector needed to reach the plane. 

When calculating “immediate” plastic deformation ( 0dt ), the formula takes the 

form 

NN rφψ  . (6) 
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For the case of secondary creep ( 0ψ N ), from (3) we have 

rK NN ψφ  . (7) 

The steady-state creep rate strain component is expressed by the relationship 

where the integrand is Nφ . 

If annealing a work-hardened specimen in an unloaded state ( 0φ d ), the formula 

yields 

dtKd NN ψψ  . (8) 

The solution of differential equation (8) is 

 KtNN  expψψ
0

,  

where 
0

ψN  is the defects intensity in the work-hardened material. Therefore, on 

account of formula (5), the distance to the planes after the plastic deformation and 

annealing is 

  22 σ32expψ
0 TNN

KtH  . (9) 

Formula (9) expresses the motion of the planes toward the origin of coordinates. 

This motion for each plane will terminate as it touches the sphere (1). 

3 The Generalization of the Synthetic Theory to the 

Case of MTT 

To evaluate the steady-state creep rate of a metal after MTT, we replace formulae 

(5) and (4) by 

22ψ
NN TNM HH  , (10) 

    3
max21max exp,
K

M HKKHfK  , (11) 

where 
NTH  is the distance to a plane after MTT, which characterizes the thermal 

stability of the polygonization structure against the recrystallization during creep. 

In the absence of MTT, PTN
H σ32  and the relation for 

NMψ  from (10) 

degenerates to (5). In formula (10), maxH  is the maximal distance to planes for 

the whole loading history at a given temperature. 
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3.1 Tension of Specimen at Room Temperature 

The plastic strain component, 
01e , is calculated as [8] 

 
00 101 βsin ae ,   ra

S
9πσ2

0  ,  
00

σσβsin 1 xS , (12) 

2

2
4222

ξ

1

ξ

ξ11
lnξ3ξ1ξ5ξ12)ξ(


















 . (13) 

The loading surface is shown in Figure 4a. The value of maxH  in the plastic 

loading can be obtained from (5) at 2πβ  , 0λ  . 

3.2 Annealing of Deformed Specimen 

Consider the case when the annealing temperature coincides with the temperature 

of the following creep: 21 TT  . 

As seen from (5), the heating of the specimen to the temperature 1T  results in a 

decrease of NH  due to a drop in the value of Tσ  caused by the temperature 

gradient. Since the temperatures of annealing and creep are assumed to be equal, 

the effect of MTT on the steady-state creep rate can be revealed by studying the 

positions of tangent planes relative to the value of Pσ  at 1TT  . If we ignore an 

immaterial duration of the heating from 0T  to 1T , the decrease in NH  can be 

assumed to be of a step-wise nature, which symbolizes the step-wise motions of 

planes toward the origin of coordinates. This fact means that the values of angles 

01λ  and 
01β  remain unchangeable during annealing. Therefore, formula (9) at 

0t  takes the form 

  












λλ      ,ββ2πσ

λλ0  ,2πββ,σσλcosβsinσ

3

2

00

000

11
2

11
222

2

P

PSx
NH . (14) 

Consider the distance from the origin of coordinates to the point of intersection of 

tangent plane with S1-axis,  tL ,λ,β . For simplicity, while not distorting the 

result, we study the value of L  at 0λ  . From Figure 4a it follows that 

  βsin,β NHtL  . (15) 

In active loading,  
0

σ32β xconstL   for 2πββ
01  . The value of L  

due to the temperature decrease, 01 TTT  , according to (14) and (15), is 
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    





  βsinσσσ
3

2
0,β 22222

0 PSx
tL ,       2πββ

01  . (16) 

As seen from formula (16), the loading surface maintains its shape but the tangent 

planes from the range 2πββ
01   are not on the cone tip (Figure 4b). 

During annealing, according to (9), (11), and (15), we have 

  













  22222 σexpσβsinσ
3

2

0 PMSxN tKH . (17) 

       





  βsinσexpσexpσ
3

2
,β 22222

0 PMSMx
tKtKtL , 2πββ

01  . (18) 

Distance 
NTH  is determined by Eq. (17) at 1tt  . 

The presence of MK  in (17) makes it possible to describe the displacement of 

planes even in a load-free state. Indeed, since the distance maxH  appearing in the 

definition of MK  (14) is non-zero ( 0σ
0max  xH ), formula (17) governs the 

displacement of planes during the annealing as 0σ x . Another important feature 

of MK  is that the intensity of the displacements depends, via 
0

σx , on the level of 

plastic pre-strain. 

The behavior of function  βL  at 1tt   depends on the relationships between the 

values of  1
2 expσ tKMS

  and 
2σ
P

. If   2
1

2 σexpσ
PMS

tK  ,  βL  grows with 

increasing β ,   0β' L . Otherwise,  βL  is a decreasing function of β . 

The fact that   0β' L  means that, during the annealing, the planes from the 

directions 2πββ
01   travel such distances toward the origin of coordinates 

that their points of intersection with S1-axis lie to the right to the cone tip. 

Therefore, it can be concluded that the loading surface at the end of annealing 

( 1tt  ) retains the shape formed at 0t . 

If   2
1

2 σexpσ
PMS

tK  , L()=const, i.e. the loading surface has a form of cone 

on whose tip there are all the planes that were reached by stress vector at plastic 

loading. The decreasing dependence of  βL  on β  means that the loading surface, 

being the inner envelope of tangent planes, loses the angular point (Figure 4c). 
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Figure 4 

Evolution of loading surface in the course of preliminary MTT and subsequent creep (boundary planes 

are shown only) 
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3.3 Steady-State Creep of Metal Treated by MTT 

The loading surface in creep (   consttx σ ), similarly to a plastic deformation, 

has a shape of a cone (Figure 4d) which does not vary in time. Insert 
NTH  into 

(6): 

        

   











λ,βσλcosβsinσ

λ,β,σexpσλcosβsinσλcosβsinσ

3

2
ψ

1
22

1
2

1
222

00

Px

PMSxx
M

tK

N
, (19) 

where  λ,β
01  is the range of angles β  and λ : 2πββ

01  , 
01λλ0  ; 

 λ,β1  stands for 
011 βββ  , 11 λλλ

0
 . Here we restrict ourselves to the 

case when the creep stress vector S


 is such that the range  λ,β1  is greater than 

 λ,β
01 . As such, the values of 1λ  and 1β  are calculated by equating the 

NMψ  

and 1λ  from  λ,β1  to zero [8, 11]: 

 βsinσσ)β(λcos 1 xP ,   xP σσβsin 1  . (20) 

It must be noted that the loading surface in creep without preliminary MTT is 

formed by the same set of tangent planes,  λ,β1 . However, the planes from the 

diapason  λ,β
01  travel greater distances on the endpoint of the S


 than those 

for the treated material. 

The creep strain rate after MMT, Me1 , is determined by formulae (20), (19), (7), 

and (2): 

  

    
























2/π

β

22

λ

0

1

2/π

β

22

λ

0

1

01

0

01

1

1

βλλcosβcosβsinσλcosβsinσexp

βλλcosβcosβsinσλcosβsinσ
3

~
π4

ddtK

dd
r

K
e

SxM

PxM

. (21) 

According to (5) and (2), the first integral in (21) gives the creep rate without 

MTT,   11 βsin ae ,  ra
P

9πσ2 , and the second one does the preliminary 

plastic strain 
01e  (formulae (12) and (13)). Therefore, 

  
00 11111 exp

~
eteKKee MM   , (22) 
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where the constK 
~

 is obtained from Eq. (11) at constH x  σ32max . 

For the case when MTT is not carried out, we have 0
01 e  and 11 ee M   . With 

an increase of pre-strain, the term   
01101  exp

~
eteKK M   first increases and 

then tends to zero. 

On the basis of formula (22), in Figure 1 and 2, the analytical and experimental [2, 

4] curves  
011 efe M   are plotted. Good agreement between the analytical and 

experimental data enables us to use formula (22) to predict the steady-state creep 

of metals as a function of preliminary plastic deformation in the course of MTT. 

Conclusions 

The analysis of the evolution of loading surface in the course of mechanical-

thermal treatment and subsequent steady-state creep has been studied. Depending 

on the value of plastic pre-strain, in the course of MTT, the loading surface can 

assume a conic or rounded shape. The analytical results give good agreements 

with experimental data. 
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