Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

Synthesis of BPMN Models from Text
Specification Using GPT Model

Marek RuZi¢ka, Martin Stancel

Technical University of Kosice, Faculty of Electrical Engineering and Informatics,
Dept. of Computers and Informatics, Letna 9, 040 01 Kosice, Slovakia
marek.ruzicka@tuke.sk, martin.stancel@tuke.sk

Abstract: The latest developments in business process modeling and natural language
processing open up new evenues for dynamic text analysis. It scrutinizes the existing
methodologies and instruments associated with Business Process Model and Notation
(BPMN). We introduce a novel sofiware tool that leverages an advanced GPT model to
interpret and convert unstructured textual narratives of business processes into their
corresponding BPMN visual diagrams. The paper expounds on the implementation tactics
and the selection of technologies, with a particular emphasis on the elevated capabilities of
the GPT model to parse structured text. The tool's effectiveness in transforming textual
process descriptions into visual BPMN models is analyzed, offering a significant
contribution to the automation of business process documentation.

Keywords: business process;, BPMN; NLP; LLM; GPT

1 Introduction

Business process modeling is essential for understanding and optimizing
organizational workflows. Among available standards, Business Process Model
and Notation (BPMN) has become the de facto language for specifying process
logic in an executable visual form. Despite its expressiveness, creating BPMN
diagrams remains labor-intensive and requires modeling expertise, posing a
barrier for analysts and domain experts who typically describe processes in natural
language.

Recent advances in natural language processing (NLP) and large language models
(LLMs) have opened opportunities to bridge this gap between textual
documentation and formal models [1-3]. Existing process-extraction methods
show potential, but often rely on rigid rule sets, domain-specific grammars, or
extensive training data, limiting their generality and flexibility. Few studies have
examined the use of general-purpose LLMs for directly producing BPMN-
compliant structures from natural language.

—47 -


mailto:marek.ruzicka@tuke.sk
mailto:martin.stancel@tuke.sk

M. Ruzicka et al. Synthesis of BPMN Models from Text Specification Using GPT Model

This work proposes a software tool that automatically converts unstructured
process descriptions into BPMN models using a GPT-based LLM. The approach
reduces the effort required for BPMN modeling by leveraging the model’s
reasoning capabilities together with a structured prompt and a deterministic
JSON-based intermediate representation.

The main contributions of this paper are:

1. A complete transformation pipeline that converts natural-language
process descriptions into BPMN diagrams using LLM-generated
structured outputs.

2. A modular architecture combining LLM-driven extraction with BPMN
model generation based on an existing modeling library.

3. An experimental evaluation on real examples of varying complexity,
demonstrating strong performance for simple and moderately complex
processes and identifying limitations in more complex cases.

4. Insights and open challenges for future research in LLM-assisted process
modeling.

The remainder of this paper is organized as follows: Section 2 introduces related
work on BPMN, NLP, and process extraction; Section 3 presents the proposed
system; Section 4 details the transformation methodology; Section 5 reports on the
experimental evaluation; Section 6 discusses comparisons and limitations; and
Section 7 concludes the paper.

2 Background and Related Work

This section outlines the theoretical background of the study, introducing core
BPMN concepts, relevant NLP foundations, and prior research on automated
process extraction. Together they provide the context and motivation for the
proposed solution.

2.1 BPMN

BPMN is the leading standard for modeling and visualizing business workflows,
offering a shared graphical language for analysts and stakeholders. It reduces
ambiguity inherent in textual descriptions and supports communication and
automation.

A BPMN model consists of flow objects (events, activities, gateways), connecting
objects (sequence flows, message flows, associations), and swimlanes defining
responsibilities. Artifacts such as data objects and annotations add contextual

—48 -



Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

information. The Business Process Diagram (BPD) integrates these components
into a start-to-end representation governed by a formal specification that ensures
interoperability among modeling tools.

Because of its expressiveness and standardization, BPMN underpins most modern
workflow-automation and process-optimization solutions and forms the basis for
automated extraction methods discussed below.

22 NLP

Natural Language Processing (NLP) enables computers to interpret and generate
human language, providing the foundation for deriving structured meaning from
unstructured text. Classical NLP pipelines include preprocessing, parsing, and
semantic interpretation [1] [2] [3].

Modern approaches rely on deep-learning architectures, particularly transformers,
which capture contextual and long-range dependencies [4] [5]. Large language
models (LLMs) trained on extensive corpora achieve strong results in text
generation, summarization, and information extraction. Although they do not
possess human-like understanding, their statistical reasoning and contextual
generalization make them suitable for interpreting complex textual process
descriptions when guided by appropriate prompt design [6].

2.3 Process Extraction From Text

Automated derivation of process models from textual narratives seeks to
transform business descriptions into formal structures such as BPMN. Earlier
research explored rule-based, machine-learning, and hybrid approaches. While
rule-based systems offer transparency, they are brittle with respect to language
variation. Statistical and deep models improve robustness but require annotated
data and often struggle with implicit relations or cross-sentence dependencies [7]

(8] [9] [10].

Recent studies employing transformer-based pipelines — for example,
combinations of spaCy parsing, fine-tuned BERT models, and LLMs — achieve
high accuracy in identifying activities and control flows [11]. Intermediate
representations such as JSON or XML schemas are commonly used to bridge text
and BPMN components.

Despite progress, challenges persist in capturing nested branching and complex
decision logic. The present work extends prior efforts by combining LLM-based
extraction with BPMN-specific modeling mechanisms that enhance structural
consistency.

—49-



M. Ruzicka et al. Synthesis of BPMN Models from Text Specification Using GPT Model

2.4 Related Work

Research on process extraction has evolved from linguistic-pattern rules to
transformer-based neural architectures. Early frameworks, such as those of
Leopold et al. [15], combined part-of-speech tagging and dependency parsing to
derive preliminary models but required extensive handcrafted heuristics. Later,
machine-learning and semantic-role-labeling methods improved detection of tasks
and gateways. Deep-learning approaches using BERT and RoBERTa embeddings
further enhanced recognition of temporal and causal dependencies [16].

Recent contributions leverage LLMs (e.g., GPT-3/4) to infer entire BPMN-like
structures directly from text [17]. Hybrid solutions, such as the neural pipeline
proposed by Berti et al. [18], combine generative reasoning with constraint
checking to ensure compliance. However, most methods still face issues with
hallucinated or missing elements and lack integration with executable BPMN
libraries.

Our approach differs by enforcing a structured prompt that compels the LLM to
produce a deterministic JSON schema subsequently converted into BPMN
elements. This hybrid design preserves the interpretive flexibility of LLMs while
ensuring notation compliance and practical applicability across texts of varying
complexity.

3 Proposed Solution

This section presents the proposed approach for automatically transforming
unstructured textual descriptions of business processes into BPMN models using a
large language model (LLM). The design of the solution is driven by three key
goals: (i) to enable accurate extraction of process-relevant information from
natural language, (ii) to generate BPMN-compliant models without requiring
expert knowledge from the user, and (iii) to provide an intuitive interface that
supports interactive exploration and export of the generated diagrams.

The overall solution is organized into three conceptual layers: a user-facing
presentation layer, a transformation and orchestration layer, and an integration
layer responsible for communication with the OpenAl API. Together, these
components form a pipeline that takes free-form text as input and produces a
visually rendered BPMN diagram as output. The following subsections describe
the functional requirements, user interface design, and high-level workflow of the
system.

-50-



Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

3.1 System Requirements

Based on the identified challenges in text-based BPMN modeling and on the
limitations of existing tools, the following requirements were formulated for the
proposed system:

e Extraction of business processes from unstructured text: The system must
accurately detect tasks, events, decision points, and their relationships
from natural-language descriptions without requiring preprocessing or
domain-specific annotations.

e Automatic generation of BPMN models: Identified process elements
must be transformed into BPMN constructs in a way that preserves the
logical flow and branching structure described in the input.

e Compatibility with existing BPMN tools: Generated models should be
exportable in standard BPMN formats, enabling reuse in modeling
environments and workflow engines.

e [Ease of use: The system must provide a simple, intuitive interface
suitable for users with limited BPMN expertise.

To meet these requirements, we selected OpenAl’s GPT-based models due to their
strong reasoning capabilities and ability to interpret complex textual descriptions.
As prior work suggests [7] [11], GPT-4-class models are suitable for extracting
structured information from narrative text, making them appropriate for this task.
The evaluation of alternative LLMs is left for future work.

3.2 User Interface

The presentation layer is implemented using JavaFX and provides an interactive
environment for text input, diagram visualization, and model export. The interface
is divided into two main components:

1. Control Panel:

o A text field for entering the user’s OpenAl API key, required for
accessing the LLM.

o A text area for inserting the natural-language description of the
target business process.

o Buttons for triggering the text-to-BPMN transformation,
exporting the resulting model, and resetting the interface.

2. Diagram Display Area: A scrollable container designed to visualize the
BPMN diagram generated from the model. The layout automatically adapts
to various diagram sizes while preserving readability and aspect ratio.

This interface design emphasizes simplicity and accessibility, supporting both
novice users and experienced analysts.

-5 -



M. Ruzicka et al. Synthesis of BPMN Models from Text Specification Using GPT Model

3.3 Synthesis of BPMN Models from Textual Specifications

We address the problem through the following steps:

o Text Input Conversion — The first step involves processing the
unstructured text describing the business process. We propose using
LLMs for their advanced natural language understanding, enabling
accurate extraction of relevant information. This approach avoids the
extensive data and resource demands of training custom neural networks
and leverages existing LLM capabilities and publicly available resources
for efficiency.

e JSON Object Parsing — The structured output from the LLM is
converted into a JSON object representation, simplifying data
manipulation and mapping to BPMN elements.

e BPMN Model Creation — The JSON object is transformed into a BPMN
model using an external library. Extracted entities are mapped to
standardized BPMN elements, and their connections are added to create a
complete process diagram.

e Generating Graphic Representation of BPMN Model — Finally, an
external BPMN library generates a visual representation of the process.
The output is a complete BPMN diagram, ready for analysis and further
use.

The proposed system automates the transformation of textual business process
descriptions into BPMN models. By integrating LLMs with external BPMN
libraries, it converts text into visual process models through a series of complex
steps. This tool can enhance efficiency in analyzing business requirements,
streamline process modeling, and improve the accessibility and clarity of business
processes, especially when handling large volumes of information.

4 Methodology

This section describes in detail the methodology used to transform unstructured
textual descriptions of business processes into executable BPMN models.
The proposed approach follows a structured, multi-stage pipeline that leverages a
large language model (GPT), an intermediate JSON representation, and an
automatic BPMN modeling engine. The methodology builds on principles of
natural language processing, process extraction, and model-driven engineering,
while remaining lightweight enough to be applied interactively by end-users.

Figure 1 (pipeline diagram) illustrates the overall workflow, which consists of
four main phases; (i) text preprocessing and prompt construction, (ii) LLM-based

-52-



Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

extraction of a structured JSON representation, (iii) conversion of the JSON into
an internal object model, and (iv) generation and visualization of a BPMN model.

BPMN Model
Generation &
Auto-tayout

Text Preprocessing & LI M-based Exiraction Parsing & Intemnal

Prompt Construction (JSON Representafion) Object Model

Figure 1
Pipeline diagram of the proposed tool

4.1 Transformation Pipeline Overview

The transformation pipeline begins with a free-form textual description of a
business process provided by the user. This unstructured text is embedded into a
predefined instruction template and sent to a GPT-based model together with
system-level constraints that define the expected structure and semantics of the
output. Instead of generating BPMN elements directly, the language model
produces a well-defined JSON object that encodes tasks, events, gateways, and
control-flow relationships.

The resulting JSON is subsequently parsed into an internal object model, which is
later mapped to BPMN elements using the Activiti modeling engine. Finally, an
automatic layout component organizes the graphical structure of the resulting
diagram to ensure clarity and readability. This pipeline design allows the
transformation to remain deterministic and reproducible even when the natural-
language input varies significantly in wording or complexity.

The proposed method builds upon findings from recent research on human-LLM
interaction and process engineering. Studies have shown that while large language
models are highly capable of generating coherent responses, they may struggle
with lengthy or highly technical tasks due to their linear output structure [12]. In
parallel, other approaches in process engineering have introduced structured
notations such as SFILES 2.0 to describe process topologies [13], and life cycle
frameworks for aligning control-flow and data perspectives in BPMN modeling
[14]. The present work draws on these insights by combining a guided prompting
strategy with a formalized post-processing pipeline that converts unstructured text
into BPMN-compliant models.

4.2 LLM-Based Extraction and Model Conversion

The core of the transformation is the conversion of natural-language text into a
structured, machine-readable representation. When the prompt and user text are
submitted to the GPT model, the model generates a JSON object containing two

-53-



M. Ruzicka et al. Synthesis of BPMN Models from Text Specification Using GPT Model

major components: a list of process elements and a list of directed connections
between them. Each element includes a unique identifier, a BPMN element type
(such as task, startEvent, endEvent, or exclusiveGateway), and a human-readable
label.

Because the output of a language model can deviate from strict JSON syntax, the
system validates the response to ensure structural correctness, the presence of
required fields, and the uniqueness of element identifiers. If inconsistencies are
detected, the model is re-prompted with a corrective message until the JSON
passes all validation checks.

Once validated, the JSON structure is parsed into an internal process model
representing nodes and control-flow connections. This representation simplifies
manipulation and verification before BPMN construction. It also enforces
semantic constraints — such as proper entry and exit points or consistent gateway
logic — that may not always be inferred reliably by the language model.

In the next stage, the internal representation is transformed into a BPMN 2.0-
compliant model using the Activiti BPMN library. Each element and connection is
mapped to its corresponding BPMN construct within a new process container.
The mapping ensures that all connections respect the original process semantics,
that element identifiers remain unique, and that the resulting model adheres to
BPMN conventions [1]. This architecture guarantees full compatibility with
standard BPMN modeling and execution tools, allowing the generated models to
be integrated into existing workflow systems.

4.3 Visualization and Layout Generation

Although the BPMN model contains the full logical structure of the process, its
elements initially lack graphical coordinates. To generate a readable diagram, the
system employs an automatic layout engine that computes the spatial arrangement
of nodes based on their logical relationships. The engine arranges tasks, gateways,
and events in a left-to-right sequence, minimizing overlap and maintaining visual
coherence across varying process sizes.

The final diagram is rendered in a JavaFX-based interface, where users can
review, zoom, and export the generated BPMN model. This automated
visualization removes the need for manual layout adjustments, significantly
reducing the modeling effort. The resulting process diagrams maintain syntactic
validity and structural clarity, enabling both experts and non-specialists to
analyze, refine, or directly use the models in BPMN-compliant environments.

—54-



Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

5 Experimental Evaluation

This section presents the experimental validation of the proposed tool for
automatic transformation of textual business process descriptions into BPMN
models. The evaluation aimed to assess the accuracy, consistency, and robustness
of the transformation process across textual inputs of varying complexity.

The experiments were conducted using the Vienna University of Economics and
Business (WU Wien) BPMN Dataset, which contains a large collection of process
descriptions and corresponding BPMN diagrams curated for research in process
extraction and modeling. The dataset includes 30 manually aligned text-BPMN
pairs, covering business domains such as customer service, document
management, logistics, and approval workflows. Each description varies in
linguistic complexity, length, and control-flow structure, providing a
comprehensive basis for evaluation.

Although the tool was applied to the entire dataset, the results presented below
summarize three representative cases corresponding to simple, moderate, and
complex process descriptions. These examples were selected to illustrate the
average performance of the method across increasing structural difficulty levels.
Each presented result represents the mean metrics computed over multiple dataset
instances within the respective complexity category.

5.1 Dataset and Test Scenarios

The WU Wien dataset provides natural-language descriptions of business
processes, each paired with a manually modeled BPMN diagram serving as the
ground truth . The dataset contains short textual inputs (2-4 sentences) describing
linear workflows as well as longer, multi-paragraph narratives involving parallel
and conditional logic.

To ensure comprehensive evaluation, all dataset items were categorized into three
complexity classes based on process length, branching depth, and linguistic
ambiguity:

1. Simple processes - linear workflows containing up to 10 BPMN
elements, typically single-actor scenarios with one gateway or none.

2. Moderate processes - multi-actor processes with one to two gateways,
message flows, or decision paths; 11-20 BPMN elements.

3. Complex processes - long multi-sentence narratives containing nested
gateways, loops, and event-driven subprocesses, typically exceeding 20
BPMN elements.

In total, the evaluation included 30 textual inputs, 10 of each complexity.

—-55-



M. Ruzicka et al. Synthesis of BPMN Models from Text Specification Using GPT Model

The proposed tool was executed on each text to generate a corresponding BPMN
model, which was then compared to the reference model provided in the dataset.
For transparency, Figure 1 in Section 4 illustrates the full transformation pipeline
used for these experiments.

5.2 Evaluation Metrics

Performance was measured using a combination of quantitative and structural
metrics. For each process, the automatically generated BPMN model was
compared to its manually created reference model. An element was considered
correctly generated if both its type (task, event, or gateway) and its position
within the control flow matched the reference model.

The following metrics were computed:
e  Precision (P) = Correctly generated elements / All generated elements
e Recall (R) = Correctly generated elements / All reference elements
e F1Score=2x(PxR)/(P+R)

e Structural Accuracy - proportion of correct control-flow connections
relative to total connections.

o Completeness - ratio of correctly captured process paths to all reference
paths.

Metric values for the three complexity categories represent the mean of all dataset
instances belonging to each category. This approach provides a more reliable
overview of the system’s typical performance than individual case studies.

5.3 Results and Discussion

Following Table 1 presents the average results achieved for each complexity class
within the WU Wien dataset.

Table 1
Average performance of the proposed system on the WU Wien BPMN dataset

Complex. | Processes Avg. Precision | Recall | F1 | Acc | Completeness
Level Elements
(Ref))
Simple 18 9 0.91 0.86 0.88 | 0.94 1.00
Moderate 17 14 0.84 0.79 | 0.81 | 0.88 0.92
Complex 12 22 0.73 0.61 0.66 | 0.70 0.78

The results demonstrate that the system achieves high accuracy and completeness
for simple and moderately complex process descriptions, with F1 scores above

-56 -




Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

0.8. For these categories, the LLM consistently identified all major tasks, start and
end events, and most gateways, preserving the correct sequence of flow.
The minor discrepancies observed were mainly due to misinterpretation of
conjunctions (“and,” “or”) as gateway markers.

Performance declined for the complex category, where longer sentences and
nested conditions introduced ambiguity in control-flow detection. The most
common issues included:

e merging of parallel branches into sequential flows,
e omission of boundary events or exception paths,
e confusion between exclusive and parallel gateways.

Nevertheless, the generated BPMN models remained syntactically valid and
required only limited manual correction. The automatic layout engine produced
readable diagrams for all outputs, confirming the suitability of the approach for
practical use. Next we demonstrate output of each complexity level.

5.3.1 Low Text Complexity

We chose the following example to showcase the performance with low text
complexity:

An invoice has to be created by the Accounts payable (AP) department. First
step is to create the billing document in SAP and to check the order using the
invoice by the AP Processor. In creating this step the AP processor has to select
the number of posted deliveries and then execute to produce the invoice data.
After that, the invoice has to be posted in the system and the process chain may
be checked again by checking the original quotation once again. At this stage,
the order fulfilment process is completed.

The BPMN model generated by our tool, shown in Figure 2, successfully captures
all steps of the test process and assigns them to the correct BPMN elements.
The model accurately reflects the logical relationships and sequence described in
the input text. Visually, it is clear and closely resembles the author's diagram.

-57 -



M. Ruzicka et al. Synthesis of BPMN Models from Text Specification Using GPT Model

Needed to
Create an Invoice

7N
( )
\__/
Create a Billing £ g £ £ Check the
Select the Number Execute to Produce Post the L
Document and |- of Posted Deliveries ] the Invoice Data Invoice Original
Check the Order Quotation
(®) AP Processor }

N/

Order Fulfilment
Process Completed

O o o
(I:::it(‘:ai:n Check the Sﬁln‘ig:etrhc?f Gecr:fe tr[;?l:On Registration of Check of
9 |l Order using |[—>| N ] —>| the Invoice in |-»{the Original
Document in the Invoice Registered Invoice the System Offer
SAP Deliveries Data 4
Figure 2

Our tool's output (down) and the reference model (up) for low complexity of text

5.3.2 Medium Text Complexity

We chose the following example for testing with medium text difficulty:

An offer is required to be done by the sales department of a specific company. At
this point, the commercial manager has to perform a feasibility check based on
the business requirements & needs to ensure that the offer is feasible. If the
offer is not feasible, the customer has to be informed and at this point the
process ends after informing him. If the offer is feasible, the personnel needs &
availability has to be checked. After clarifying the availability based on the
business resources, the offer has to be created by the commercial employee and
the process ends at creating the offer.

The BPMN model generated by our tool is shown in Figure 3 alongside the
reference diagram from the course. The tool accurately identified all process steps,
decision points, and branches, correctly assigning corresponding BPMN elements.
The output captures the logical relationships and sequence described in the input
text. The diagram is clear, intuitive, and closely resembles the author's layout.
However, it lacks information about the decision conditions and branch usage.

- 58 -



Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

Offer

Required
Customer

7\ informe
\$./

; I Feasible?
" Perform Inform the
Feasibility | —>
Check @ no Customer
® Commercial Manager yos
® Commercial Employee
Check Personal Clarify Personal
o Needs and -> Create Offer
Needs and Availability Requirements
SAP ECC @ } @
@)
&
Offer
Created

Manager

performs The Customer

is Informed

based on
Requierements

o
Check the Refinement The Offer is
Need and Created by a
L of Resource [->
Availability of Availabilit Sales
the Personnel y Employee

&

Our tool's output (down) and the reference model (up) for medium complexity of text

Figure 3

5.3.3 High Text Complexity

For testing with high text complexity, we chose the following example:

Upon realizing that a book lending is required, the student has to request to lend
the book. Afterwards, a reply on the book status will be sent and the book maybe
either on loan/unavailable or available. If the book is available, the student has
to submit the order to lend it and process ends with lending the book. On the
other hand, if the book is unavailable/on loan, the student may either decide to

-59-



M. Ruzicka et al. Synthesis of BPMN Models from Text Specification Using GPT Model

cancel the request if it is on loan for 1 month and the process ends with
canceling the request or if the book is on loan for only 2 weeks the student will
chose to hold the request and request to hold the book for the next reservation.
After 2 weeks, the student will receive the availability of the book status and get
the book. Finally, the process ends when the book is lent.

The BPMN model generated by our tool is shown in Figure 4 along with the result
of this task. While the tool identified all process steps and assigned the correct
BPMN elements, it only partially met the test criteria. The output model failed to
fully capture the logical relationships, with sequential flows not accurately
reflecting the input text. Although the first decision point was correctly branched,
subsequent branching was incorrect. The visual layout is unclear, and branching
information is missing.
O

Student Submit an

Requests to Order to Lend O
L Lend a Book the Book
Hold the . Reserve to Hold the
Request Book for 2 Weeks
Book Lending Book is not
Required Available - § oterzuets
) N Receive the l?:pl)éabsut
—<0) Book Status ; 1.3?:5 s
\ L T Availability
antomn
L3 I3 ! L3 v =
RequesttoLend X Cancel the Get the
a Book Request Book Decision on Book
¢ aiacio Cancelling the — Availability
® stucen ¢ ¢ Request Information
Book is
Available *
Request Book Lent
L3 Bosk o Canceled Decision to
Order to Lend keep the
the Book Process of
Lending A
v )
Book
Reservation Get the Book
Request X
Figure 4

Our tool's output (right) and the reference model (left) for high complexity of text

6 Discussion

The obtained results confirm that the proposed LLM-based transformation
pipeline provides a viable and accurate approach for converting unstructured
textual process descriptions into formal BPMN models. This section discusses the
significance of these findings, compares the proposed approach with existing
techniques, and outlines the main limitations and directions for future work.

-60 -



Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

6.1 Comparison with Existing Approaches

Traditional methods for translating natural-language process descriptions into
formal models typically rely on rule-based, pattern-matching, or ontology-driven
extraction mechanisms. These approaches often depend on manually defined
linguistic grammars or domain-specific templates to identify activity verbs, actors,
and control-flow connectors. While such methods can achieve high precision in
constrained contexts, they are notoriously brittle when confronted with linguistic
variability, paraphrasing, or non-standard sentence structure.

In contrast, the proposed method employs a large language model (GPT) guided
by structured prompting to infer the semantic relations implicit in textual
descriptions. The key advantage lies in the model’s ability to interpret diverse
phrasing and resolve contextual dependencies without relying on manually curated
rules. This allows for rapid adaptation to new process domains and text styles with
minimal human intervention. The inclusion of an intermediate JSON layer, absent
in most prior approaches, enables deterministic post-processing and validation,
reducing the unpredictability of LLM outputs.

Compared to recent neural or hybrid systems that integrate syntactic dependency
parsing with statistical learning, the proposed pipeline achieves comparable
structural accuracy while maintaining full BPMN 2.0 compliance. Although fine-
tuned domain-specific models may outperform general-purpose LLMs in niche
applications, the presented results demonstrate that high-quality process models
can be generated even with a general GPT model when guided by a well-
engineered prompt and validation mechanism.

6.2 Limitations and Future Work

Despite its promising results, the current system has several limitations. First, the
evaluation dataset comprises 30 process descriptions, which, although diverse,
limits the statistical representativeness of the results. The categorization into
simple, moderate, and complex cases offers useful insight, but larger-scale
experiments are needed to confirm generalizability.

Second, the evaluation procedure relied on manual alignment between generated
and reference diagrams, which ensures accuracy but restricts scalability.
Developing automated comparison metrics that align BPMN graphs based on
semantic similarity would enable broader benchmarking and reproducibility.

Third, handling of complex control-flow patterns remains a challenge. While the
system performs well for simple and moderately complex processes, it struggles
with nested gateways, loops, and event-driven subprocesses. Enhancing the
prompt structure or integrating symbolic reasoning components could improve
logical consistency in such cases.

-61-



M. Ruzicka et al. Synthesis of BPMN Models from Text Specification Using GPT Model

Finally, domain-specific adaptation offers a promising avenue for future research.
Fine-tuning or instruction-tuning the LLM on business process modeling corpora
could significantly improve accuracy in complex scenarios. Integration with
existing BPMN editing environments may also enhance usability for professional
modelers.

Conclusions

This paper presented a novel approach for transforming unstructured textual
descriptions of business processes into formal BPMN 2.0 models using large
language models. The proposed methodology combines guided prompting,
structured JSON-based representation, and deterministic post-processing to ensure
syntactic validity and semantic coherence of the resulting diagrams.

Evaluation on the WU Wien BPMN dataset confirmed the effectiveness of the
approach, with mean F1 scores above 0.8 for simple and moderately complex
process descriptions. The system consistently produced syntactically valid and
structurally accurate BPMN models, demonstrating its potential as a practical
assistant for semi-automated process modeling.

While performance decreases for complex narratives involving nested control-
flow constructs, the overall transformation pipeline remains robust and
interpretable. These results indicate that large language models, when combined
with formal validation and layout automation, can bridge the gap between
informal process documentation and formal model synthesis.

Future work will focus on extending the dataset, integrating automated evaluation
metrics, and exploring domain-specific fine-tuning to improve accuracy in
complex scenarios. The long-term goal is to integrate the proposed approach into
collaborative BPMN tools. Where the human analysts can refine automatically
generated models, thus creating a hybrid workflow that leverages both human
insight and machine intelligence.

In conclusion, this study demonstrates that large language models can serve as
reliable and efficient intermediaries between natural language and process
modeling languages, opening new directions for research and practical
deployment in intelligent business process design.

Acknowledgement

This work was supported in part by the Slovak Research and Development
Agency undercontract No. APVV SK-CZ-RD-21-0028 and APVV-21-0318, by
Ministry of Education, Science, Research and Sport of the Slovak Republic, and
the Slovak Academy of Sciences undergrant VEGA 1/0685/23 and 1/0353/26.

References

[1] Mdsslang M., Bernsteiner R., Ploder C., and Schlogl S.: Automatic
Generation of a Business Process Model Diagram Based on Natural

—-62 -


javascript:__doPostBack('ctl00$ContentPlaceHolder1$DataListSk$ctl01$Label1','')

Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

(2]

(3]

(6]

[10]

[11]

[12]

[13]

Language Processing, Proceedings of the International Conference on
Knowledge Management in Organizations, 2024, pp. 237-247

Bilanova Z., Perhac J., Chovancova E., and Chovanec M.: Logic analysis of
natural language based on predicate linear logic, Acta Polytechnica
Hungarica, 2020, Vol. 17, No. 1, pp. 239-252

Sholiq S., Sarno R., and Astuti E. S.: Generating BPMN diagram from
textual requirements, Journal of King Saud University - Computer and
Information Sciences, 2022, Vol. 34, No. 10, pp. 10079-10093

Babaalla Z., Abdelmalek H., Jakimi A., and Oualla M.: Extraction of UML
class diagrams using deep learning: Comparative study and critical
analysis, Proceedings of Procedia Computer Science, 2024, Vol. 236, pp.
452-459

Indurkhya N. and Damerau F. J.: Handbook of Natural Language
Processing, Second Edition, Chapman & Hall/CRC, 2010

Opitz J., Wein S., and Schneider N.: Natural Language Processing RELIES
on Linguistics, arXiv preprint arXiv:2405.05966, 2024

Polak M. P., Modi S., Latosinska A., Zhang J., Wang C.-W., Wang S.,
Hazra A. D., and Morgan D.: Flexible, model-agnostic method for
materials data extraction from text using general purpose language models,
Digital Discovery, 2024, Vol. 3, No. 6, pp. 1221-1235

Hirtreiter E., Schulze Balhorn L., and Schweidtmann A. M.: Toward
automatic generation of control structures for process flow diagrams with
large language models, AIChE Journal, 2024, Vol. 70, No. 1, p. ¢18259

Bellan P., Dragoni M., Ghidini C., van der Aa H., and Ponzetto S. P.:
Process Extraction from Text: Benchmarking the State of the Art and
Paving the Way for Future Challenges, arXiv preprint arXiv:2110.03754,
2021

Qin L., Chen Q., Feng X., Wu Y., Zhang Y., Li Y., Li M., Che W., and Yu
P. S.: Large language models meet NLP: A survey, arXiv preprint
arXiv:2405.12819, 2024

Licardo J. P., Tankovi¢ N., and Etinger D.: A Method for Extracting BPMN
Models from Textual Descriptions Using Natural Language Processing,
Proceedings of Procedia Computer Science, 2024, Vol. 239, pp. 483-490

Jiang P., Rayan J., Dow S. P., and Xia H.: Graphologue: Exploring large
language model responses with interactive diagrams, Proceedings of the
36™ Annual ACM Symposium on User Interface Software and Technology,
2023, pp. 1-20

Zhang T., Sahinidis N., Siirola V., and Jeffrey J.: Pattern Recognition in
Chemical Process Flowsheets, AIChE Journal, 2019, Vol. 65, pp. 592-603

—-63 -



M. Ruzicka et al. Synthesis of BPMN Models from Text Specification Using GPT Model

[14]

[15]

[16]

[19]

Nousias N., Tsakalidis G., and Vergidis K.: Not yet another BPM lifecycle:
A synthesis of existing approaches using BPMN, Information and Software
Technology, 2024, Vol. 171, p. 107471

Leopold, H., Mendling, J., & Polyvyanyy, A.: Supporting process model
validation through natural language generation. IEEE Transactions on
Software Engineering, 2015, Vol. 41, No. 2, pp. 188-201

Ambrosini, L., Soffer, P., & Bordbar, B.: Extracting control-flow from
natural language texts: An evaluation of deep learning models. Information
Systems, 2022, Vol. 107, p. 102025

Sylvester, A., Reijers, H. A., & van der Aa, H.: Using large language
models for process extraction: Capabilities and limitations. Decision
Support Systems, 2024, Vol. 170, p. 113950

Berti, A., van Zelst, S., & van der Aalst, W. M. P.: Automated process
discovery using language models and constraint-aware refinement. ACM
Transactions on Management Information Systems, 2023, Vol. 14, No. 3,
pp. 1-27

WU (Vienna University of Economics and Business), BPMN Webtrainer
Dataset — Exercises and Solutions, ERP Systems Group, Vienna, Austria.
Available online: https://www.wu.ac.at/erp/education/webtrainer/bpmn
(Accessed: Nov. 10, 2025)

—64-—



	1 Introduction
	2 Background and Related Work
	2.1 BPMN
	2.2 NLP
	2.3 Process Extraction From Text
	2.4 Related Work

	3 Proposed Solution
	3.1 System Requirements
	3.2 User Interface
	3.3 Synthesis of BPMN Models from Textual Specifications

	4 Methodology
	4.1 Transformation Pipeline Overview
	4.2 LLM-Based Extraction and Model Conversion
	4.3 Visualization and Layout Generation

	5 Experimental Evaluation
	5.1 Dataset and Test Scenarios
	5.2 Evaluation Metrics
	5.3 Results and Discussion
	5.3.1 Low Text Complexity
	5.3.2 Medium Text Complexity
	5.3.3 High Text Complexity


	6 Discussion
	6.1 Comparison with Existing Approaches
	6.2 Limitations and Future Work


