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Abstract: The latest developments in business process modeling and natural language 
processing open up new evenues for dynamic text analysis. It scrutinizes the existing 
methodologies and instruments associated with Business Process Model and Notation 
(BPMN). We introduce a novel software tool that leverages an advanced GPT model to 
interpret and convert unstructured textual narratives of business processes into their 
corresponding BPMN visual diagrams. The paper expounds on the implementation tactics 
and the selection of technologies, with a particular emphasis on the elevated capabilities of 
the GPT model to parse structured text. The tool's effectiveness in transforming textual 
process descriptions into visual BPMN models is analyzed, offering a significant 
contribution to the automation of business process documentation. 
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1 Introduction 

Business process modeling is essential for understanding and optimizing 
organizational workflows. Among available standards, Business Process Model 
and Notation (BPMN) has become the de facto language for specifying process 
logic in an executable visual form. Despite its expressiveness, creating BPMN 
diagrams remains labor-intensive and requires modeling expertise, posing a 
barrier for analysts and domain experts who typically describe processes in natural 
language. 

Recent advances in natural language processing (NLP) and large language models 
(LLMs) have opened opportunities to bridge this gap between textual 
documentation and formal models [1-3]. Existing process-extraction methods 
show potential, but often rely on rigid rule sets, domain-specific grammars, or 
extensive training data, limiting their generality and flexibility. Few studies have 
examined the use of general-purpose LLMs for directly producing BPMN-
compliant structures from natural language. 
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This work proposes a software tool that automatically converts unstructured 
process descriptions into BPMN models using a GPT-based LLM. The approach 
reduces the effort required for BPMN modeling by leveraging the model’s 
reasoning capabilities together with a structured prompt and a deterministic 
JSON-based intermediate representation. 

The main contributions of this paper are: 

1. A complete transformation pipeline that converts natural-language 
process descriptions into BPMN diagrams using LLM-generated 
structured outputs. 

2. A modular architecture combining LLM-driven extraction with BPMN 
model generation based on an existing modeling library. 

3. An experimental evaluation on real examples of varying complexity, 
demonstrating strong performance for simple and moderately complex 
processes and identifying limitations in more complex cases. 

4. Insights and open challenges for future research in LLM-assisted process 
modeling. 

The remainder of this paper is organized as follows: Section 2 introduces related 
work on BPMN, NLP, and process extraction; Section 3 presents the proposed 
system; Section 4 details the transformation methodology; Section 5 reports on the 
experimental evaluation; Section 6 discusses comparisons and limitations; and 
Section 7 concludes the paper. 

2 Background and Related Work 

This section outlines the theoretical background of the study, introducing core 
BPMN concepts, relevant NLP foundations, and prior research on automated 
process extraction. Together they provide the context and motivation for the 
proposed solution. 

2.1 BPMN 

BPMN is the leading standard for modeling and visualizing business workflows, 
offering a shared graphical language for analysts and stakeholders. It reduces 
ambiguity inherent in textual descriptions and supports communication and 
automation. 

A BPMN model consists of flow objects (events, activities, gateways), connecting 
objects (sequence flows, message flows, associations), and swimlanes defining 
responsibilities. Artifacts such as data objects and annotations add contextual 
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information. The Business Process Diagram (BPD) integrates these components 
into a start-to-end representation governed by a formal specification that ensures 
interoperability among modeling tools. 

Because of its expressiveness and standardization, BPMN underpins most modern 
workflow-automation and process-optimization solutions and forms the basis for 
automated extraction methods discussed below. 

2.2 NLP 

Natural Language Processing (NLP) enables computers to interpret and generate 
human language, providing the foundation for deriving structured meaning from 
unstructured text. Classical NLP pipelines include preprocessing, parsing, and 
semantic interpretation [1] [2] [3]. 

Modern approaches rely on deep-learning architectures, particularly transformers, 
which capture contextual and long-range dependencies [4] [5]. Large language 
models (LLMs) trained on extensive corpora achieve strong results in text 
generation, summarization, and information extraction. Although they do not 
possess human-like understanding, their statistical reasoning and contextual 
generalization make them suitable for interpreting complex textual process 
descriptions when guided by appropriate prompt design [6]. 

2.3 Process Extraction From Text 

Automated derivation of process models from textual narratives seeks to 
transform business descriptions into formal structures such as BPMN. Earlier 
research explored rule-based, machine-learning, and hybrid approaches. While 
rule-based systems offer transparency, they are brittle with respect to language 
variation. Statistical and deep models improve robustness but require annotated 
data and often struggle with implicit relations or cross-sentence dependencies [7] 
[8] [9] [10]. 

Recent studies employing transformer-based pipelines ‒ for example, 
combinations of spaCy parsing, fine-tuned BERT models, and LLMs ‒ achieve 
high accuracy in identifying activities and control flows [11]. Intermediate 
representations such as JSON or XML schemas are commonly used to bridge text 
and BPMN components. 

Despite progress, challenges persist in capturing nested branching and complex 
decision logic. The present work extends prior efforts by combining LLM-based 
extraction with BPMN-specific modeling mechanisms that enhance structural 
consistency. 
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2.4 Related Work 

Research on process extraction has evolved from linguistic-pattern rules to 
transformer-based neural architectures. Early frameworks, such as those of 
Leopold et al. [15], combined part-of-speech tagging and dependency parsing to 
derive preliminary models but required extensive handcrafted heuristics. Later, 
machine-learning and semantic-role-labeling methods improved detection of tasks 
and gateways. Deep-learning approaches using BERT and RoBERTa embeddings 
further enhanced recognition of temporal and causal dependencies [16]. 

Recent contributions leverage LLMs (e.g., GPT-3/4) to infer entire BPMN-like 
structures directly from text [17]. Hybrid solutions, such as the neural pipeline 
proposed by Berti et al. [18], combine generative reasoning with constraint 
checking to ensure compliance. However, most methods still face issues with 
hallucinated or missing elements and lack integration with executable BPMN 
libraries. 

Our approach differs by enforcing a structured prompt that compels the LLM to 
produce a deterministic JSON schema subsequently converted into BPMN 
elements. This hybrid design preserves the interpretive flexibility of LLMs while 
ensuring notation compliance and practical applicability across texts of varying 
complexity. 

3 Proposed Solution 

This section presents the proposed approach for automatically transforming 
unstructured textual descriptions of business processes into BPMN models using a 
large language model (LLM). The design of the solution is driven by three key 
goals: (i) to enable accurate extraction of process-relevant information from 
natural language, (ii) to generate BPMN-compliant models without requiring 
expert knowledge from the user, and (iii) to provide an intuitive interface that 
supports interactive exploration and export of the generated diagrams. 

The overall solution is organized into three conceptual layers: a user-facing 
presentation layer, a transformation and orchestration layer, and an integration 
layer responsible for communication with the OpenAI API. Together, these 
components form a pipeline that takes free-form text as input and produces a 
visually rendered BPMN diagram as output. The following subsections describe 
the functional requirements, user interface design, and high-level workflow of the 
system. 
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3.1 System Requirements 

Based on the identified challenges in text-based BPMN modeling and on the 
limitations of existing tools, the following requirements were formulated for the 
proposed system: 

• Extraction of business processes from unstructured text: The system must 
accurately detect tasks, events, decision points, and their relationships 
from natural-language descriptions without requiring preprocessing or 
domain-specific annotations. 

• Automatic generation of BPMN models: Identified process elements 
must be transformed into BPMN constructs in a way that preserves the 
logical flow and branching structure described in the input. 

• Compatibility with existing BPMN tools: Generated models should be 
exportable in standard BPMN formats, enabling reuse in modeling 
environments and workflow engines. 

• Ease of use: The system must provide a simple, intuitive interface 
suitable for users with limited BPMN expertise. 

To meet these requirements, we selected OpenAI’s GPT-based models due to their 
strong reasoning capabilities and ability to interpret complex textual descriptions. 
As prior work suggests [7] [11], GPT-4-class models are suitable for extracting 
structured information from narrative text, making them appropriate for this task. 
The evaluation of alternative LLMs is left for future work. 

3.2 User Interface 

The presentation layer is implemented using JavaFX and provides an interactive 
environment for text input, diagram visualization, and model export. The interface 
is divided into two main components: 

1. Control Panel: 
o A text field for entering the user’s OpenAI API key, required for 

accessing the LLM. 
o A text area for inserting the natural-language description of the 

target business process. 
o Buttons for triggering the text-to-BPMN transformation, 

exporting the resulting model, and resetting the interface. 
2. Diagram Display Area: A scrollable container designed to visualize the 

BPMN diagram generated from the model. The layout automatically adapts 
to various diagram sizes while preserving readability and aspect ratio. 

This interface design emphasizes simplicity and accessibility, supporting both 
novice users and experienced analysts. 
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3.3 Synthesis of BPMN Models from Textual Specifications 

We address the problem through the following steps: 

• Text Input Conversion ‒ The first step involves processing the 
unstructured text describing the business process. We propose using 
LLMs for their advanced natural language understanding, enabling 
accurate extraction of relevant information. This approach avoids the 
extensive data and resource demands of training custom neural networks 
and leverages existing LLM capabilities and publicly available resources 
for efficiency. 

• JSON Object Parsing ‒ The structured output from the LLM is 
converted into a JSON object representation, simplifying data 
manipulation and mapping to BPMN elements. 

• BPMN Model Creation ‒ The JSON object is transformed into a BPMN 
model using an external library. Extracted entities are mapped to 
standardized BPMN elements, and their connections are added to create a 
complete process diagram. 

• Generating Graphic Representation of BPMN Model ‒ Finally, an 
external BPMN library generates a visual representation of the process. 
The output is a complete BPMN diagram, ready for analysis and further 
use. 

The proposed system automates the transformation of textual business process 
descriptions into BPMN models. By integrating LLMs with external BPMN 
libraries, it converts text into visual process models through a series of complex 
steps. This tool can enhance efficiency in analyzing business requirements, 
streamline process modeling, and improve the accessibility and clarity of business 
processes, especially when handling large volumes of information. 

4 Methodology 

This section describes in detail the methodology used to transform unstructured 
textual descriptions of business processes into executable BPMN models.  
The proposed approach follows a structured, multi-stage pipeline that leverages a 
large language model (GPT), an intermediate JSON representation, and an 
automatic BPMN modeling engine. The methodology builds on principles of 
natural language processing, process extraction, and model-driven engineering, 
while remaining lightweight enough to be applied interactively by end-users. 

Figure 1 (pipeline diagram) illustrates the overall workflow, which consists of 
four main phases; (i) text preprocessing and prompt construction, (ii) LLM-based 
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extraction of a structured JSON representation, (iii) conversion of the JSON into 
an internal object model, and (iv) generation and visualization of a BPMN model. 

 
Figure 1 

Pipeline diagram of the proposed tool 

4.1 Transformation Pipeline Overview 

The transformation pipeline begins with a free-form textual description of a 
business process provided by the user. This unstructured text is embedded into a 
predefined instruction template and sent to a GPT-based model together with 
system-level constraints that define the expected structure and semantics of the 
output. Instead of generating BPMN elements directly, the language model 
produces a well-defined JSON object that encodes tasks, events, gateways, and 
control-flow relationships. 

The resulting JSON is subsequently parsed into an internal object model, which is 
later mapped to BPMN elements using the Activiti modeling engine. Finally, an 
automatic layout component organizes the graphical structure of the resulting 
diagram to ensure clarity and readability. This pipeline design allows the 
transformation to remain deterministic and reproducible even when the natural-
language input varies significantly in wording or complexity. 

The proposed method builds upon findings from recent research on human-LLM 
interaction and process engineering. Studies have shown that while large language 
models are highly capable of generating coherent responses, they may struggle 
with lengthy or highly technical tasks due to their linear output structure [12]. In 
parallel, other approaches in process engineering have introduced structured 
notations such as SFILES 2.0 to describe process topologies [13], and life cycle 
frameworks for aligning control-flow and data perspectives in BPMN modeling 
[14]. The present work draws on these insights by combining a guided prompting 
strategy with a formalized post-processing pipeline that converts unstructured text 
into BPMN-compliant models. 

4.2 LLM-Based Extraction and Model Conversion 

The core of the transformation is the conversion of natural-language text into a 
structured, machine-readable representation. When the prompt and user text are 
submitted to the GPT model, the model generates a JSON object containing two 
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major components: a list of process elements and a list of directed connections 
between them. Each element includes a unique identifier, a BPMN element type 
(such as task, startEvent, endEvent, or exclusiveGateway), and a human-readable 
label. 

Because the output of a language model can deviate from strict JSON syntax, the 
system validates the response to ensure structural correctness, the presence of 
required fields, and the uniqueness of element identifiers. If inconsistencies are 
detected, the model is re-prompted with a corrective message until the JSON 
passes all validation checks. 

Once validated, the JSON structure is parsed into an internal process model 
representing nodes and control-flow connections. This representation simplifies 
manipulation and verification before BPMN construction. It also enforces 
semantic constraints ‒ such as proper entry and exit points or consistent gateway 
logic ‒ that may not always be inferred reliably by the language model. 

In the next stage, the internal representation is transformed into a BPMN 2.0-
compliant model using the Activiti BPMN library. Each element and connection is 
mapped to its corresponding BPMN construct within a new process container.  
The mapping ensures that all connections respect the original process semantics, 
that element identifiers remain unique, and that the resulting model adheres to 
BPMN conventions [1]. This architecture guarantees full compatibility with 
standard BPMN modeling and execution tools, allowing the generated models to 
be integrated into existing workflow systems. 

4.3 Visualization and Layout Generation 

Although the BPMN model contains the full logical structure of the process, its 
elements initially lack graphical coordinates. To generate a readable diagram, the 
system employs an automatic layout engine that computes the spatial arrangement 
of nodes based on their logical relationships. The engine arranges tasks, gateways, 
and events in a left-to-right sequence, minimizing overlap and maintaining visual 
coherence across varying process sizes. 

The final diagram is rendered in a JavaFX-based interface, where users can 
review, zoom, and export the generated BPMN model. This automated 
visualization removes the need for manual layout adjustments, significantly 
reducing the modeling effort. The resulting process diagrams maintain syntactic 
validity and structural clarity, enabling both experts and non-specialists to 
analyze, refine, or directly use the models in BPMN-compliant environments. 
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5 Experimental Evaluation 

This section presents the experimental validation of the proposed tool for 
automatic transformation of textual business process descriptions into BPMN 
models. The evaluation aimed to assess the accuracy, consistency, and robustness 
of the transformation process across textual inputs of varying complexity. 

The experiments were conducted using the Vienna University of Economics and 
Business (WU Wien) BPMN Dataset, which contains a large collection of process 
descriptions and corresponding BPMN diagrams curated for research in process 
extraction and modeling. The dataset includes 30 manually aligned text-BPMN 
pairs, covering business domains such as customer service, document 
management, logistics, and approval workflows. Each description varies in 
linguistic complexity, length, and control-flow structure, providing a 
comprehensive basis for evaluation. 

Although the tool was applied to the entire dataset, the results presented below 
summarize three representative cases corresponding to simple, moderate, and 
complex process descriptions. These examples were selected to illustrate the 
average performance of the method across increasing structural difficulty levels. 
Each presented result represents the mean metrics computed over multiple dataset 
instances within the respective complexity category. 

5.1 Dataset and Test Scenarios 

The WU Wien dataset provides natural-language descriptions of business 
processes, each paired with a manually modeled BPMN diagram serving as the 
ground truth . The dataset contains short textual inputs (2-4 sentences) describing 
linear workflows as well as longer, multi-paragraph narratives involving parallel 
and conditional logic. 

To ensure comprehensive evaluation, all dataset items were categorized into three 
complexity classes based on process length, branching depth, and linguistic 
ambiguity: 

1. Simple processes - linear workflows containing up to 10 BPMN 
elements, typically single-actor scenarios with one gateway or none. 

2. Moderate processes - multi-actor processes with one to two gateways, 
message flows, or decision paths; 11-20 BPMN elements. 

3. Complex processes - long multi-sentence narratives containing nested 
gateways, loops, and event-driven subprocesses, typically exceeding 20 
BPMN elements. 

In total, the evaluation included 30 textual inputs, 10 of each complexity. 
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The proposed tool was executed on each text to generate a corresponding BPMN 
model, which was then compared to the reference model provided in the dataset. 
For transparency, Figure 1 in Section 4 illustrates the full transformation pipeline 
used for these experiments. 

5.2 Evaluation Metrics 

Performance was measured using a combination of quantitative and structural 
metrics. For each process, the automatically generated BPMN model was 
compared to its manually created reference model. An element was considered 
correctly generated if both its type (task, event, or gateway) and its position 
within the control flow matched the reference model. 

The following metrics were computed: 

• Precision (P) = Correctly generated elements / All generated elements 

• Recall (R) = Correctly generated elements / All reference elements 

• F1 Score = 2 × (P × R) / (P + R) 

• Structural Accuracy - proportion of correct control-flow connections 
relative to total connections. 

• Completeness - ratio of correctly captured process paths to all reference 
paths. 

Metric values for the three complexity categories represent the mean of all dataset 
instances belonging to each category. This approach provides a more reliable 
overview of the system’s typical performance than individual case studies. 

5.3 Results and Discussion 

Following Table 1 presents the average results achieved for each complexity class 
within the WU Wien dataset. 

Table 1 
Average performance of the proposed system on the WU Wien BPMN dataset 

Complex. 
Level 

Processes Avg. 
Elements 

(Ref.) 

Precision Recall F1 Acc Completeness 

Simple 18 9 0.91 0.86 0.88 0.94 1.00 
Moderate 17 14 0.84 0.79 0.81 0.88 0.92 
Complex 12 22 0.73 0.61 0.66 0.70 0.78 

The results demonstrate that the system achieves high accuracy and completeness 
for simple and moderately complex process descriptions, with F1 scores above 
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0.8. For these categories, the LLM consistently identified all major tasks, start and 
end events, and most gateways, preserving the correct sequence of flow.  
The minor discrepancies observed were mainly due to misinterpretation of 
conjunctions (“and,” “or”) as gateway markers. 

Performance declined for the complex category, where longer sentences and 
nested conditions introduced ambiguity in control-flow detection. The most 
common issues included: 

• merging of parallel branches into sequential flows, 

• omission of boundary events or exception paths, 

• confusion between exclusive and parallel gateways. 

Nevertheless, the generated BPMN models remained syntactically valid and 
required only limited manual correction. The automatic layout engine produced 
readable diagrams for all outputs, confirming the suitability of the approach for 
practical use. Next we demonstrate output of each complexity level. 

5.3.1 Low Text Complexity 

We chose the following example to showcase the performance with low text 
complexity: 

An invoice has to be created by the Accounts payable (AP) department. First 
step is to create the billing document in SAP and to check the order using the 
invoice by the AP Processor. In creating this step the AP processor has to select 
the number of posted deliveries and then execute to produce the invoice data. 
After that, the invoice has to be posted in the system and the process chain may 
be checked again by checking the original quotation once again. At this stage, 
the order fulfilment process is completed. 

The BPMN model generated by our tool, shown in Figure 2, successfully captures 
all steps of the test process and assigns them to the correct BPMN elements.  
The model accurately reflects the logical relationships and sequence described in 
the input text. Visually, it is clear and closely resembles the author's diagram. 
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Figure 2 

Our tool's output (down) and the reference model (up) for low complexity of text 

5.3.2 Medium Text Complexity 

We chose the following example for testing with medium text difficulty: 

An offer is required to be done by the sales department of a specific company. At 
this point, the commercial manager has to perform a feasibility check based on 
the business requirements & needs to ensure that the offer is feasible. If the 
offer is not feasible, the customer has to be informed and at this point the 
process ends after informing him. If the offer is feasible, the personnel needs & 
availability has to be checked. After clarifying the availability based on the 
business resources, the offer has to be created by the commercial employee and 
the process ends at creating the offer. 

The BPMN model generated by our tool is shown in Figure 3 alongside the 
reference diagram from the course. The tool accurately identified all process steps, 
decision points, and branches, correctly assigning corresponding BPMN elements. 
The output captures the logical relationships and sequence described in the input 
text. The diagram is clear, intuitive, and closely resembles the author's layout. 
However, it lacks information about the decision conditions and branch usage. 
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Figure 3 

Our tool's output (down) and the reference model (up) for medium complexity of text 

5.3.3 High Text Complexity 

For testing with high text complexity, we chose the following example: 

Upon realizing that a book lending is required, the student has to request to lend 
the book. Afterwards, a reply on the book status will be sent and the book maybe 
either on loan/unavailable or available. If the book is available, the student has 
to submit the order to lend it and process ends with lending the book. On the 
other hand, if the book is unavailable/on loan, the student may either decide to 
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cancel the request if it is on loan for 1 month and the process ends with 
canceling the request or if the book is on loan for only 2 weeks the student will 
chose to hold the request and request to hold the book for the next reservation. 
After 2 weeks, the student will receive the availability of the book status and get 
the book. Finally, the process ends when the book is lent. 

The BPMN model generated by our tool is shown in Figure 4 along with the result 
of this task. While the tool identified all process steps and assigned the correct 
BPMN elements, it only partially met the test criteria. The output model failed to 
fully capture the logical relationships, with sequential flows not accurately 
reflecting the input text. Although the first decision point was correctly branched, 
subsequent branching was incorrect. The visual layout is unclear, and branching 
information is missing. 

 
Figure 4 

Our tool's output (right) and the reference model (left) for high complexity of text 

6 Discussion 

The obtained results confirm that the proposed LLM-based transformation 
pipeline provides a viable and accurate approach for converting unstructured 
textual process descriptions into formal BPMN models. This section discusses the 
significance of these findings, compares the proposed approach with existing 
techniques, and outlines the main limitations and directions for future work. 



Acta Polytechnica Hungarica Vol. 23, No. 2, 2026 

 – 61 – 

6.1 Comparison with Existing Approaches 

Traditional methods for translating natural-language process descriptions into 
formal models typically rely on rule-based, pattern-matching, or ontology-driven 
extraction mechanisms. These approaches often depend on manually defined 
linguistic grammars or domain-specific templates to identify activity verbs, actors, 
and control-flow connectors. While such methods can achieve high precision in 
constrained contexts, they are notoriously brittle when confronted with linguistic 
variability, paraphrasing, or non-standard sentence structure. 

In contrast, the proposed method employs a large language model (GPT) guided 
by structured prompting to infer the semantic relations implicit in textual 
descriptions. The key advantage lies in the model’s ability to interpret diverse 
phrasing and resolve contextual dependencies without relying on manually curated 
rules. This allows for rapid adaptation to new process domains and text styles with 
minimal human intervention. The inclusion of an intermediate JSON layer, absent 
in most prior approaches, enables deterministic post-processing and validation, 
reducing the unpredictability of LLM outputs. 

Compared to recent neural or hybrid systems that integrate syntactic dependency 
parsing with statistical learning, the proposed pipeline achieves comparable 
structural accuracy while maintaining full BPMN 2.0 compliance. Although fine-
tuned domain-specific models may outperform general-purpose LLMs in niche 
applications, the presented results demonstrate that high-quality process models 
can be generated even with a general GPT model when guided by a well-
engineered prompt and validation mechanism. 

6.2 Limitations and Future Work 

Despite its promising results, the current system has several limitations. First, the 
evaluation dataset comprises 30 process descriptions, which, although diverse, 
limits the statistical representativeness of the results. The categorization into 
simple, moderate, and complex cases offers useful insight, but larger-scale 
experiments are needed to confirm generalizability. 

Second, the evaluation procedure relied on manual alignment between generated 
and reference diagrams, which ensures accuracy but restricts scalability. 
Developing automated comparison metrics that align BPMN graphs based on 
semantic similarity would enable broader benchmarking and reproducibility. 

Third, handling of complex control-flow patterns remains a challenge. While the 
system performs well for simple and moderately complex processes, it struggles 
with nested gateways, loops, and event-driven subprocesses. Enhancing the 
prompt structure or integrating symbolic reasoning components could improve 
logical consistency in such cases. 
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Finally, domain-specific adaptation offers a promising avenue for future research. 
Fine-tuning or instruction-tuning the LLM on business process modeling corpora 
could significantly improve accuracy in complex scenarios. Integration with 
existing BPMN editing environments may also enhance usability for professional 
modelers. 

Conclusions 

This paper presented a novel approach for transforming unstructured textual 
descriptions of business processes into formal BPMN 2.0 models using large 
language models. The proposed methodology combines guided prompting, 
structured JSON-based representation, and deterministic post-processing to ensure 
syntactic validity and semantic coherence of the resulting diagrams. 

Evaluation on the WU Wien BPMN dataset confirmed the effectiveness of the 
approach, with mean F1 scores above 0.8 for simple and moderately complex 
process descriptions. The system consistently produced syntactically valid and 
structurally accurate BPMN models, demonstrating its potential as a practical 
assistant for semi-automated process modeling. 

While performance decreases for complex narratives involving nested control-
flow constructs, the overall transformation pipeline remains robust and 
interpretable. These results indicate that large language models, when combined 
with formal validation and layout automation, can bridge the gap between 
informal process documentation and formal model synthesis. 

Future work will focus on extending the dataset, integrating automated evaluation 
metrics, and exploring domain-specific fine-tuning to improve accuracy in 
complex scenarios. The long-term goal is to integrate the proposed approach into 
collaborative BPMN tools. Where the human analysts can refine automatically 
generated models, thus creating a hybrid workflow that leverages both human 
insight and machine intelligence. 

In conclusion, this study demonstrates that large language models can serve as 
reliable and efficient intermediaries between natural language and process 
modeling languages, opening new directions for research and practical 
deployment in intelligent business process design. 
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