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Abstract: Simultaneous localization and mapping (SLAM) has been highly studied in the 
last decade. It allows the estimation of the camera pose of a mobile device and the creation 
of a map of the surrounding environment concurrently. Recently, Visual SLAM (VSLAM) 
has become the most widely used state-of-the-art technique to implement SLAM tasks due 
to its reduced cost, lower size, and affordability. However, the intensive computation of 
VSLAM systems does not fit in a wide range of limited resources and energy mobile 
devices. A possible solution is to split its functionality between mobile devices and the edge 
cloud. This solution showed the necessity for efficient visual data compression methods to 
be integrated within VSLAM systems. This work proposes a multi-level encoding method 
for visual data frame compression integrated within the monocular Oriented FAST and 
Rotated BRIEF-SLAM (ORB-SLAM) system. The performance results of the proposed 
system are compared to corresponding ORB-SLAM systems adopting the most popular 
classical still image compression standards; the Joint Photographic Experts Group (JPEG) 
and the advanced version, the JPEG 2000, in terms of reconstruction quality, robot’s 
trajectory estimation, and computational complexity. 

Keywords: ORB-SLAM; data compression; JPEG; pose estimation; visual perception; 
localization and mapping, cloud computing 

1 Introduction 

In recent years, SLAM (Simultaneous Localization and Mapping) has earned great 
attention in research and industry due to the expansion of robotics applications. 
SLAM aims to create a map of an anonymous environment while concurrently 
determining the mobile device’s trajectory and position [1]. It can also helpreduce 
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estimation errors when the robot is in a previously mapped area. The mobile 
device can be an indoor robot [2], an Autonomous Vehicle (AV) [3], an 
Unmanned Autonomous Vehicle (UAV) [4], or an Unmanned Ground Vehicle 
(UGV) [5]. The SLAM algorithm performs map construction and robot 
localization based on data obtained from different sensors, such as Light Detection 
and Ranging (LiDAR) [6], radio signals [7], or visual sensors [8]. The camera-
based SLAM system, commonly known as Visual SLAM (VSLAM), is interesting 
nowadays due to its low cost, rich information gathering, more straightforward 
object detection and tracking, and compact size. VSLAM obtains environmental 
information from a single camera in monocular VSLAM [9], multiple cameras 
(stereo VSLAM [10]), or Red, Green, and Blue with Depth (RGB-D) [11] cameras 
for mapping and localization tasks. VSLAM is traditionally deployed onboard the 
robot and directly interfaced with a camera that captures non-compressed video 
frames. However, VSLAM algorithms demand intensive computational resources, 
which has been a significant challenge in the last decade. Tracking and mapping 
are the two general tasks to be executed in parallel, which requires high 
computational costs. Such demanding computing requirements need powerful 
onboard resources, making them less suitable for mobile devices with severe 
hardware constraints that decrease their range and usage time. Recent studies have 
been conducted to provide solutions to reduce weight, save energy, and keep 
mobile device sizes small by offloading these computationally intensive 
processing tasks to edge servers and cloud platforms [12, 13]. This practical 
solution exhibits the need for efficient encoding methods to compress the image 
data before transmission to decrease bandwidth when performing VSLAM at the 
edge or in the cloud. Therefore, data compression is necessary to manage and 
transmit visual information and preserve as much information as possible, 
especially in high-latency communication environments. While image 
compression provides the clear advantages of reducing data load and minimizing 
bandwidth requirements, it introduces challenges for VSLAM, such as 
degradation of feature quality, mismatched feature descriptors, and increased 
computational complexity [14]. 

Image compression is the technique of reducing the image and video volumes by 
representing the spatial pixels in different compressed domains using fewer bits 
while maintaining visual information to a certain extent. In general, image 
compression approaches can be classified into two major categories: lossless and 
lossy compression. Lossy compression methods involve reducing the size of an 
image and perceiving every detail of the original image by eliminating statistical 
redundancy only [15]. The counterpart method is lossy compression, which aims 
to achieve high compression ratios by discarding some of the less significant 
image information for perception. Lossy compression is popular in machine vision 
tasks as it provides more data reduction capabilities [16]. However, it may 
influence  image quality adversely, making features more intricate to detect and 
track during visual SLAM operation and affecting localization accuracy 
negatively. There are two different approaches in the literature regarding cloud-
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based machine vision applications. The first transmits the image-extracted features 
of pre-processed raw data on the mobile device. This approach is referred to as 
Analyze then Compress (ATC). The second is compressing the raw data directly 
and transmitting it to the server cloud, which is referred to as Compress then 
Analyze (CTA). These approaches differ in the order of steps, the amount of data 
to be transmitted, and the end-to-end latency from the moment of visual data 
capturing to the destination [14]. 

Many studies have researched the offloading of VSLAM architecture on edge 
devices and cloud platforms to perform trajectory mapping and localization of 
mobile reboots. Riazuelo et al. [17] proposed and implemented a cloud framework 
for Cooperative Tracking and Mapping (C2TAM). The proposed architecture 
involves implementing a centralized map on the cloud server while tracking is still 
running on mobile devices. In this manner, the mobile devices send the detected 
keyframes to the cloud server in a non-compressed format of 640×480 Red, 
Green, and Blue (RGB) images. That means an average throughput of 1 MBs is 
required for transmission. Despite the study not evaluating the transmission rate of 
keyframes, transmitting all raw-sized keyframes demands significant bandwidth. 
In [18], the Portable Network Graphic (PNG) standard was used to compress the 
extracted keyframes in collaborative 3D dense visual odometry assisted by the 
cloud. The cloud integrates the received keyframes, m erging them with maps 
constructed from other robots, then optimizes the pose and relays it to the mobile 
device. Fabrizio et al. [19] analyzed the influence of lossy data compression on the 
data size and accuracy. The H264 video codec is adapted to reduce the size of 
depth data captured by a Kinect camera and 3D LiDAR on a mobile robot.  
The study aimed to solve the problem of transmitting range data streams over low 
bandwidth networks. The proposed method proved that highly compressed depth 
images can still be used in dense mapping algorithms. In contrast, Jingao et al. 
presented a real-time VSLAM for edge agents. The proposed architecture 
integrates lossy compression for raw data encoding. It demonstrated that the lower 
bit rates introduced by lossy compression have a negative effect on the feature 
extraction quality [20]. In the literature, many compression standards are 
introduced. These methods can be categorized as classical methods and learn-
based methods. Classical methods use predefined mathematical techniques such as 
transforms and entropy encoding. In contrast, learn-based image compression 
methods use machine learning techniques to compress data to higher compression 
ratios. However, classical methods are still a reasonable choice for mobile device 
implementation due to their lower computational complexity compared to the 
massive computational demands of learned methods [21, 22, 23]. 

The main contribution of this article is to present novel multi-encoding visual data 
compression methods used to compress input frames to high compression ratios 
while preserving the information quality. It examines the feasibility of integrating 
within the CTA and ATC frameworks of ORB-VSLAM. The proposed method is 
compared to corresponding VSLAM architectures using the JPEG standard and 
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the more advanced version, the JPEG 2000 standard. The JPEG is the typical and 
widely used traditional lossy compression standard, while the JPEG 2000 is a 
more efficient lossy compression standard employing multiresolution capabilities 
based on the Discrete Wavelet Transform (DWT) [24]. Inherently, this work also 
demonstrates the effect of using lossy compression on the system performance in 
terms of data size, execution time, and trajectory estimation accuracy.  
The subsequent sections of this article are outlined as follows: Section 2 provides 
an in-depth explanation of the ORB-VSLAM architecture and operational 
mechanism. Section 3 presents the proposed end-to-end multi-encoding method in 
detail, while Section 4 demonstrates the experimental results achieved from the 
implementation of the proposed methods, with a comparative analysis against the 
JPEG and JPEG 2000 standards. Finally, the conclusion section encapsulates the 
key findings of the study and indicates further future directions. 

2 Monocular ORB-SLAM 

Visual SLAM estimates the pose and reconstructs a map of the surrounding 
environment using data collected from visual sensors. It continuously updates the 
global map to decrease drifts, allowing localization and loop-closing detection. 
Generally, VSLAM methods are divided in to direct and indirect (feature-based) 
categories. Direct methods work directly on raw pixel data for pose estimation and 
reduce photo-metric errors, while indirect methods extract feature points (key 
points) and match them with subsequent ones. There are various feature detection 
algorithms, including Oriented FAST and Rotated BRIEF (ORB) [25], Speeded 
Up Robust Features (SURF) [26], Scale-Invariant Feature Transform (SIFT) [27], 
and Features from Accelerated Segment Test (FAST) [28]. 

A popular VSLAM framework is the ORB-SLAM proposed by [29]. It leverages 
ORB features for robust and efficient feature detection, extraction, and matching. 
Figure 1 illustrates the typical architecture of VSLAM [1]. The operation starts 
with map initialization, where two consecutive frames are used to construct 3D 
map points by extracting and matching the corresponding features. After the map 
is initialized successfully, the tracking extracts and matches features of the input 
frames to the map to localize the camera with each frame. Then, local mapping 
manages and optimizes the map by performing bundle adjustment of the current 
location in the environment. Finally, the loop closure distinguishes large loops and 
corrects camera trajectory drifts with the aid of a Bag of Words (BoW). The BoW 
is a technique that detects previously visited areas and loops by comparing the 
current pose with the previously mapped ones. Successful loop closing detection 
enhances the accuracy of the map and the camera trajectory, emphasizing the 
robustness and reliability of VSLAM [30]. 
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Figure 1 
ORB-SLAM Architecture 

3 Methodology 

This section demonstrates the end-to-end multi-level encoding methods tailored 
for the ORB-SLAM system. The proposed methods aim to optimize image 
compression while preserving essential visual information presented in video 
frames as features. 

3.1 Proposed Encoding Method 

The encoding algorithm is implemented on the mobile device, which receives the 
raw frame input data directly from the attached camera. It can be used in both 
CTA and ATC frameworks. In CTA, the mobile device compresses each input 
frame and transmits the encoded data to the cloud. The cloud decodes the received 
encoded data and processes the ORB-SLAM tasks. Regarding the ATC 
framework, the mobile device deploys both the proposed image encoding 
algorithm along with the tracking module to maintain instant real-time operation. 
In this case, the tracking is accomplished on the raw-sized data while the encoded 
frames are transmitted to the cloud for map reconstruction and loop-closing 
operation. These framework options are selected depending on the application at 
hand and the computational power of the mobile device itself. Figure 2 illustrates 
the proposed encoding method’s pipeline. The proposed method develops the 
basic JPEG compression standard for more efficient ORB-SLAM performance. 
The method starts by subdividing the input frame matrix into 8×8 sub-frames 
followed by Discrete Cosine Transform (DCT) to convert the frame to its 
frequency domain. For every sub-frame, 64 frequency components are produced, 
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one as a DC component and the other 63 as AC components. The DC component 
(average intensity) holds the most significant energy of the frame, while the AC 
components represent the variant frequency details. The DCT coefficients are then 
quantized using matrix and scalar quantization. The JPEG quantization table is 
updated by replacing the value of the DC component with 1 as well as the values 
of its five nearest AC components. The process of excluding the DC and the 
nearest five AC components from quantization is to increase the quality of the 
compressed frame by preserving image details. However, this process will 
decrease the compression ratio since it increases compressed frame quality.  
A multi-level encoding method is proposed to provide a high compression ratio 
for the encoded frames and perceive their quality as high. The quantized 
coefficients are converted into a 1D array by applying a zigzag scan, then a novel 
multi-level encoding algorithm is applied to reduce the 1D array size by a 
"number of levels" factor based on the user selection. Figures 3 and 4 demonstrate 
the multi-level encoding concept with two case study examples, a single-level and 
two-level encoding, respectively. 

 
Figure 2 

The proposed image compression pipeline 

 
Figure 3 

A single-level encoding implementation 
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The multi-level encoding method encodes data based on randomly generated keys 
in the range of 0 to 1, which can be generated automatically or simply set 
manually. In every encoding level, the data is encoded based on the multiplying 
and summation operations of the selected keys with corresponding coefficient data 
based on the same number of keys selected in that level. The encoded information 
is stored as a table, which includes the original data probabilities as a header, as 
well as the encoded data without any duplication, and then it is further encoded 
later using arithmetic coding. Finally, the compressed data of the frame (in the 
CTA framework) or keyframe (in the ATC framework) is sent to the cloud server 
for tracking, mapping, and loop-closing operations. 

 
Figure 4 

A two-level encoding implementation 

3.2 Proposed Decoding Method 

The decoding pipeline is identical to the compression steps but in the opposite 
order. The proposed decompression block diagram is illustrated in Figure 5.  
The decompression algorithm is deployed on the cloud server. The received data 
stream is first arithmetically decoded to retrieve the header and the encoded data 
by the proposed encoding algorithm in the compression phase. After this step, the 
data can be decoded using two possible methods. The first one is to use the header 
data to reconstruct the original data. In this method, the data can be decoded 
instantly without any extra computations. The other method involves discarding 
the header data during the compression phase and estimating the original data 
using a fast sequential search with the aid of the same encoding keys adopted 
during compression, as can be demonstrated in Figure 6. This means we need to 
implement the same encoding module that was used previously in compression. 
This will increase the compression ratio since it just keeps the compressed data 
and discards the extra header data. However, the reconstruction time will be 
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significantly increased due to the massive estimation iterations needed. This could 
be less problematic if we take into consideration harnessing the great cloud 
computing capabilities. For the scope of this work, the second method is 
considered to achieve a high compression ratio. 

 
Figure 5 

The proposed image decoding pipeline 

 

Figure 6 
Mechanism of coefficient estimating using sequential search 

4 Experimental Results and Discussion 

The proposed method was implemented using MATLAB R2022a, running on an 
Intel Core i7-12700H processor, NVIDIA GeForce RTX3070 Graphical 
Processing Unit (GPU) with 8 GB of memory, and 32 GB of RAM (Random 
Access Memory). The TUM dataset [31] is used to evaluate the implementation 
results and to compare the performance of the proposed methods with the 
traditional JPEG and JPEG 2000 standards. It is a widely used dataset for 
evaluating the performance of VSLAM systems providing RGB images, depth 
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maps, and the camera trajectory’s ground truth [32]. The RGB images and ground 
truth of the sequence “freiburg3 long office household” are used in this work. It is 
an indoor dataset captured using the Asus Xtion sensor containing 2585 frames 
recorded at a frame rate of 30 fps. The trajectory diameter of the dataset is 5.12 m 
×4.89 m×0.54 m, and its duration is 87.09 s with a resolution of 640×480 pixels. 
The ending of the trajectory overlaps well with the beginning to reveal loop 
closure. 

Firstly, the traditional ORB-SLAM is implemented when using full-sized raw 
visual data. The resulting estimated trajectory graph performance of this 
implementation is illustrated in Figure 7, which shows three trajectory graphs: the 
actual trajectory, the ORB-SLAM estimated trajectory, and the optimized 
trajectory. The map points are always corrected and updated according to the 
optimized pose trajectory graph, which is calculated from the actual trajectory and 
the estimated trajectory. The Root Mean Square Error (RMSE) is provided to 
evaluate the accuracy of the trajectory at each step of the simulation. The RMSE 
measures the absolute deviation between the estimated and ground truth 
trajectories. The initial coordinate starts at (0,0,0), and according to the dataset 
used in this work, the robot moves in the clockwise direction as indicated in 
Figure 7 and for the subsequent figures. 

 
Figure 7 

Standard ORB-SLAM trajectory estimation performance (RMSE=0.22114) 

Secondly, the ORB-SLAM system is implemented by integrating the JPEG 
standard to encode the input data frames. The process of decoding, tracking, 
mapping, and loop closing is deployed as a single module emulating the cloud 
processing. The cloud module receives the encoded data, decodes it, and performs 
the trajectory estimation. This cloud-based ORB-SLAM architecture will be also 
applied to both the JPEG 2000-based system and the proposed system. In general, 
the purpose of using lossy image compression is to provide high compression 
ratios by quantizing the coefficients obtained from the discrete transformation. 
Therefore, additional different scalar Quantization Factors (QFs) are applied to 
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increase the compression ratio. Furthermore, this will demonstrate the trade-off 
between visual data quality and trajectory estimation accuracy. Figure 8 displays 
the trajectory estimation performance of the ORB-SLAM utilizing the JPEG 
standard as an end-to-end encoding and decoding framework. It illustrates the 
trajectory estimation among different QFs in the range of 5 to 20 with a step value 
of 5. It can be deduced from Figure 8 that JPEG compression guaranteed robust 
ORB-SLAM function among QF up to 15, and the loop closure in these cases has 
been detected accurately. However, when the quantization is increased up to 20, 
the trajectory drifts, and the system cannot continue mapping the remaining 
environment because not enough features are detected in this area. The reason 
behind this failure is that JPEG compression adds compression noise introduced as 
artifacts in the reconstructed frame, thereby negatively affecting the process of 
detecting and matching ORB features. Table 1 summarizes the ORB-SLAM 
performance metrics that adopted the JPEG compression. It previews the 
compression ratio, Peak Signal-to-Noise Ratio (PSNR), Structural Similarity 
Index Measure (SSIM), and execution time against different quantization values. 

Thirdly, the ORB-SLAM is implemented by integrating the JPEG 2000 standard 
within the ORB-SLAM architecture to encode and decode data frames. 

 
Figure 8 

ORB-SLAM trajectory estimation performance adopting JPEG compression 
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The same procedure of splitting the cloud-based ORB-SLAM tasks between the 
mobile device and the cloud demonstrated in JPEG-based system implementation 
is applied. Unlike the JPEG standard, JPEG 2000 compresses the input frames 
according to a desired Compression Ratio (CR) parameter rather than specifying a 
quantization parameter. Figure 9 shows the trajectory estimation performance of 
the ORB-SLAM system employing the JPEG 2000 as an end-to-end encoding and 
decoding framework across different CRs. Examining Figure 9, the JPEG 2000 
maintained a robust trajectory estimation up to a CR value of 97%, while at a 
higher value (CR= 98%) the system didn’t detect loop closure. Table 2 displays 
the encoding and decoding performance metrics of the JPEG 2000-based system. 

Table 1 
Encoding performance metrics of the ORB-SLAM integrated JPEG compression 

Sample 
frame 

Nr. 

Original 
size 

[KB] 
QF Compressed 

size [KB] 
PSNR 
[dB] SSIM CR 

[%] 
Exe. time [s] 

Enc. Dec. 

1132 472 

5 153 34.8052 0.9579 68 0.3457 0.5991 
10 144 33.2016 0.9330 69 0.2341 0.5305 
15 141 32.3478 0.9148 70 0.2279 0.5279 
20 140 29.5512 0.8842 71 0.2217 0.5071 

2398 505 

5 166 34.8084 0.9414 67 0.2283 0.5394 
10 164 33.2872 0.9354 68 0.2205 0.5162 
15 163 32.4000 0.9167 68 0.2195 0.5139 
20 162 30.7533 0.8874 70 0.2306 0.5212 

Table 2 
Encoding performance metrics of the ORB-SLAM integrated JPEG 2000 compression 

Sample 
frame Nr. 

Original 
size [KB] 

CR 
[%] 

Compressed 
size [KB] 

PSNR 
[dB] SSIM Exe. time [s] 

Enc. Dec. 

1132 472 

73 134 44.03 0.9823 0.110 0.440 
82 89.8 41.43 0.9721 0.136 0.412 
85 72 40.09 0.9647 0.112 0.444 
91 41 37.49 0.9483 0.195 0.532 
97 15 34.82 0.9279 0.192 0.492 
98 8.9 29.53 0.8647 0.212 0.417 

2398 505 

73 137.7 44.69 0.9819 0.112 0.432 
82 90 42.11 0.9708 0.121 0.403 
85 71.9 40.99 0.9460 0.115 0.515 
91 40.9 38.65 0.9485 0.109 0.636 
97 14.3 36.28 0.9303 0.181 0.636 
98 9 29.53 0.8835 0.162 0.512 

Finally, ORB-SLAM is implemented by adopting the proposed multi-level 
encoding algorithm as an end-to-end visual data encoding and decoding.  
The trajectory estimation plots of the corresponding quantization and compression 
ratio conditions in both the adopted JPEG and the JPEG 2000 methods are 
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applied. The obtained simulation results of the trajectory estimation performance 
are presented in Figure 10 and Figure 11, while Table 3 summarizes the 
compression performance metrics of two implementations: a single-level and a 
two-level encoding scheme. 

 
Figure 9 

Trajectory estimation performance of ORB-SLAM system adopting JPEG 2000 
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The PSNR and SSIM metrics presented in Table 3 for both methods are the same 
since they achieved the same decompression quality. The reason behind the 
equivalent quality of the two schemes is that the multi-level encoding is lossless 
and does not add additional lossy compression to the encoded data. 

Comparing the results of the proposed system to the JPEG-based system, at all QF 
cases (5 to 20), the proposed method showed robust pose estimation, and the loop 
closure was detected successfully as shown clearly in Figure 10. Higher values of 
QFs are further applied beyond the quantization values used in the JPEG-based 
ORB-SLAM method to evaluate the proposed method’s performance under severe 
quantization. The proposed method showed robust trajectory estimation up to a 
QF value of 75. However, at higher quantization (QF=100) the proposed system 
failed to detect loop closure, these cases can be shown in Figure 11. Given the 
encoding metrics in Tables 1 and 2, it can be demonstrated that the ORB-SLAM 
integrated with the proposed system overcomes the equivalent JPEG-based system 
in terms of compression ratio, PSNR, and SSIM. This clear superiority is 
attributed to the multi-encoding module added to the compression system. 
However, this addition increased the execution time, which can be seen clearly in 
low QF values. 

 
Figure 10 

Multi-level based-ORB-SLAM trajectory estimation performance at lower QFs and CRs 
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As the QF increased, more duplicated values and zeros were present in the data, 
yielding faster processing, low header and encoded data size, and higher 
compression ratios. Nevertheless, this higher execution time does not affect real-
time operation if we consider the transmission latency, which is beyond the scope 
of this work; transmitting smaller data sizes could compensate for the difference 
in execution time. 

 
Figure 11 

Multi-level based-ORB-SLAM trajectory estimation performance at higher QFs and CRs 

Comparing the results of the proposed system to the JPEG 2000-based system, the 
two systems exhibited close behaviors, with the JPEG 2000-based system 
demonstrating slightly better performance in decoding frame quality and 
execution time. Nevertheless, this slight encoding metrics advantage did not 
significantly enhance the overall ORB-SLAM system’s performance.  
The proposed multi-level encoding system successfully estimated the path at a 
compression ratio of 96%, while the JPEG 2000-based system successfully 
estimated the path at a compression ratio of up to 97%. This minor difference 
came at the expense of increased computational complexity.  The three 
implemented systems adopting the JPEG, the JPEG 2000, and the multi-level 
encoding are analyzed according to the computational complexity by calculating 
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the total basic operations: Multiplications (Mults.), Additions (Adds.), bit 
operations (Bit ops.), comparisons (Comps.), shifts, Memory Reads (M/R), and 
Memory Writes (M/W) for each stage. Tables 4, 5, and 6 show the computational 
complexity metrics for the three implemented systems processing a single input 
frame, while Figure 12 visualizes these complexity metrics. 

Table 3 
Encoding performance metrics of the ORB-SLAM integrating the proposed multi-level method 

QF PSNR 
[dB] SSIM 

Single level implementation Two levels implementation 
size 

[KB] 
CR 
[%] 

Exe. time [s] size 
[KB] 

CR 
[%] 

Exe. time [s] 
Enc. Dec. Enc. Dec. 

Frame sequence 1132, Frame size 472 KB 
5 35.2333 0.9515 87 82 0.7773 0.7201 86 82 0.8800 0.8307 
10 33.5493 0.9398 68 86 0.6951 0.6093 67 86 0.7252 0.6966 
15 32.6696 0.9328 59 88 0.6274 0.5198 58 88 0.7370 0.6451 
20 32.2144 0.9271 54 89 0.5139 0.4351 50 89 0.6045 0.6160 
50 31.0675 0.8961 38 92 0.4203 0.3960 30 94 0.4826 0.4378 
75 30.1511 0.8721 32 93 0.3831 0.3106 22 95 0.4163 0.3926 

100 29.2537 0.8501 27 94 0.3013 0.2877 17 96 0.3937 0.3616 
Frame sequence 2398, Frame size 505 KB 

5 35.3702 0.9517 104 79 0.7932 0.7213 102 80 1.0329 0.9067 
10 33.7746 0.9410 81 83 0.6231 0.6134 79 84 0.8411 0.7957 
15 33.0977 0.9345 69 86 0.5932 0.4929 67 87 0.7535 0.6757 
20 32.6712 0.9291 64 87 0.4982 0.4036 60 89 0.6904 0.6510 
50 32.2985 0.8945 42 92 0.3864 0.3289 37 93 0.5370 0.4647 
75 30.2647 0.8662 32 94 0.3225 0.2854 28 94 0.4656 0.4186 

100 29.2861 0.8439 29 94 0.3019 0.2978 23 95 0.4337 0.3908 

Table 4 
Complexity analysis metrics of JPEG encoding (processing frame sequence 1132) 

Stage Mults. Adds. Bit ops. Comps. Shifts M/R M/W Total ops. 
Compression Metrics 

DC shift 0 307200 0 0 0 307200 307200 921600 
DCT 307200 537600 0 0 0 307200 307200 1459200 

Quantization 307200 0 307200 0 307200 307200 307200 1536000 
Huffman cod. 0 0 399360 337920 61440 307200 61440 1167360 

Total ops. 614400 844800 706560 337920 368640 1228800 983040 5084160 
Decompression Metrics 

Huffman dec. 0 0 92160 61440 61440 61440 307200 583680 
Dequantization 307200 0 307200 0 307200 307200 307200 1536000 

IDCT 307200 537600 0 0 0 307200 307200 1459200 
Inv. DC shift 0 307200 0 0 0 307200 307200 921600 

Total ops. 614400 844800 399360 61440 368640 983040 1228800 4500480 

Table 5 
Complexity analysis metrics of JPEG 2000 (processing frame sequence 1132) 
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Stage Mults. Adds. Bit ops. Comps. Shifts M/R M/W Total ops. 
Compression Metrics 

DC shift 0 307200 0 0 0 307200 307200 921600 
DWT 8184000 6547200 0 0 3273600 3273600 1636800 22915200 

Quantization 307200 0 0 307200 307200 307200 307200 1536000 
Tier1 coding 0 0 3932160 2949120 0 1310720 655360 8847360 
Tier2 coding 614400 614400 3072000 0 0 614400 307200 5222400 

Total ops. 9105600 7468800 7004160 3256320 3580800 5813120 3213760 39442560 
Decompression Metrics 

Tier2 decoding 0 307200 1843200 0 0 307200 307200 2764800 
Tier1 decoding 0 0 2621440 983040 0 655360 327680 4587520 
Dequantization 307200 0 0 0 307200 307200 307200 1228800 

IDWT 6547200 4910400 0 0 1636800 1636800 1636800 16368000 
Inv. DC shift 0 307200 0 0 0 307200 307200 921600 

Total ops. 6854400 5524800 4464640 983040 1944000 3213760 2886080 25870720 

Table 6 
Complexity analysis metrics of the proposed method using a single-level encoding (processing frame 

sequence 1132) 

Stage Mults. Adds. Bit ops. Comps Shifts M/R M/W Total ops. 

Compression Metrics 
DCT 307200 268800 307200 4800 0 307200 307200 1502400 

Quantization 307200 0 307200 0 0 307264 307200 1228864 
Minimization 307200 204800 102400 307200 0 307200 102400 1331200 

Arithmetic 
coding 0 102400 819200 102400 819200 102400 102400 2048000 

Total ops. 921600 576000 1536000 414400 819200 1024064 819200 6110464 
Decompression Metrics 

Arithmetic 
decoding 0 102400 819200 102400 819200 102400 102400 2048000 

Sequential 
search 1536000 1536000 307200 1536000 0 1536000 307200 6758400 

Dequantization 307200 0 307200 4800 0 307264 307200 1233664 
IDCT 307200 268800 38400 4800 0 307200 307200 1233600 

Total ops. 2150400 1907200 1472000 1648000 819200 2252864 1024000 11273664 

Examining the results presented in Tables 4, 5, 6, and Figure 12, the proposed 
method exhibited a clear advantage in terms of the computational complexity of 
both encoding and decoding modules compared to JPEG 2000. This obvious 
advantage comes with relatively equivalent trajectory estimation efficiency. On 
the other hand, the JPEG system shows slightly less complexity than the proposed 
system. However, the JPEG system showed much worse performance compared 
to the JPEG 2000 and the proposed systems. This makes the proposed system a 
reasonable compromise between the three implemented systems to be used in 
mobile robots. Another outcome of this work is to study the impact of lossy data 
compression on the reliability of ORB-SLAMs. The encoding performance results 
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presented in Tables 1, 2, and 3 demonstrated that ORB-SLAM is less robust when 
PSNR values go below 30 and SSIM values below 0.87. 

 
Figure 12 

Computational complexity of the three implemented systems 

Conclusions 

This article presents a novel multi-level image encoding method tailored for 
cloud-based ORB-SLAM systems. The proposed method demonstrated 
outstanding performance compared to ORB-SLAM architectures employing JPEG 
and JPEG 2000 compression standards. The proposed system achieved superior 
performance compared to a corresponding JPEG-based system in terms of 
decoded frame quality metrics and robot trajectory estimation with only a minimal 
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increase in computational complexity. In addition, the proposed method 
demonstrated comparable performance results to the JPEG 2000-based system. In 
contrast, the mathematical operations analysis showed the high efficiency of the 
proposed system in terms of computational complexity compared to the JPEG 
2000-based system, making it a practical solution for cloud-based ORB-SLAM 
systems. A future direction includes neglecting the compressed data header and 
harnessing the cloud computing power to directly decode the results without 
estimating them, which can significantly increase the compression ratio. 
Furthermore, research is needed for efficient hardware implementation using 
cutting-edge devices, like Field Programmable Gate Arrays (FPGA), since it is 
well suited to deploying the multiply accumulated operation presented in the 
proposed method. 
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