
Acta Polytechnica Hungarica Vol. 19, No. 1, 2022

‒ 93 ‒

Measuring the Algorithmic Skills of Students

Working with Low- and High-Mathability

Programming Approaches

Katalin Sebestyéna, Gábor Csapóa, Mária Csernochb,

Kálmán Abaric

aUniversity of Debrecen, Doctoral School of Informatics

Kassai út 26, H-4028 Debrecen, Hungary

{sebestyén.katalin, csapo.gabor}@inf.unideb.hu

bUniversity of Debrecen, Faculty of Informatics

Kassai út 26, H-4028 Debrecen, Hungary

csernoch.maria@inf.unideb.hu

cUniversity of Debrecen, Faculty of Arts and Humanities

Egyetem tér 1, H-4032 Debrecen, Hungary

abari.kalman@arts.unideb.hu

Abstract: In spite of the fact that teaching programming is obligatory in Hungarian public

ICT education, the low number of lessons accompanied by the lack of students’ knowledge

and interest marginalizes the topic. Research and experience show that even when working

with experienced teachers, students have a hard time mastering imperative and object-

oriented programming languages. These languages usually approach problem-solving from

a mathematical perspective, with a minimal design IDE (Integrated Development

Environment) and output screen. As an alternative solution, schools and courses apply

various visual programming environments that make it possible to create colorful motivating

games and animations even in one lesson. In our research, we compared two visual

programming environments: Scratch (control group), developed for education, and

Construct 3 (experimental group), developed for game and software development.

We conducted measurement of the efficacy of the two environments for teaching

programming in two grade-8 groups. The students learned the topic by solving traditional

algorithmic tasks but taking advantage of the visual interfaces. The results, in accordance

with previous findings, show that in developing the students’ algorithmic skills there is no

difference between these visual programming languages. Furthermore, we found proof that

the selected teaching methods play a crucial role in the development of said skills of the

students.

Keywords: visual programming; algorithmic skills; Bebras; ICT education; programming

education; Construct 3; Scratch

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 94 ‒

1 Introduction

The process of developing students’ computational thinking and algorithmic skills

is restricted to the programming topic of ICT (Information and Communications

Technology) education, according to the Hungarian Base Curricula [1] and Frame

Curricula [2]. The low number of lessons, the ambiguous requirements of the Frame

Curricula [3], and the outdated programming knowledge of ICT teachers

marginalize the programming topic. This not only means that programming receives

much less emphasis on the subject than was originally intended, but in several cases

the topic is completely ignored or the focus is strictly on the tools, such as Scratch

and robots instead of programming.

To teach programming in ICT education, several programming approaches and

environments are widely accepted. The modern object-oriented languages (for

example C++, C#, Python and Java) are present, but students can also encounter

procedural languages which are outdated and are rarely used in the industry (like

Pascal). Learning programming is difficult and challenging for beginners,

considering both the problem-solving aspect and the syntactical rules of these high-

level programming languages [3] [5] [6]. To make programming education more

effective and more easily understandable for students, several educational

programming languages (EPLs) have been introduced and have become widely

accepted in the meantime. These languages usually take a different approach to

create the code compared to text-based languages. [7] [8] [9] [10] [11] [12].

However, despite these attempts, students at the end of their secondary education

do not possess the required level of algorithmic skills even for solving simple

problems [12].

2 Visual Programming

In visual programming, students use pre-defined graphical language elements to

construct the code of the program. This process emphasizes the building of

algorithms without the burden of syntactical rules. The widespread use of this

programming method in the industry is supported by several programming

environments and game engines alongside the text-based options [14] [15] [16].

The visual representation of codes and the rapid developmental experience make

visual programming languages compelling choices for the educational field, as well

[17] [18].

It is worth noting that the various visual languages are not compatible with each

other: a code created in one environment cannot be transferred directly to other

environments. Analyzing the visual programming languages present in education

and industry, we can define four categories based on their concepts [19] [20]:

– behavior-based,

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 95 ‒

– event-action based,

– block-based,

– node-based.

2.1 Scratch

The well-known Scratch, block-based visual programming environment is present

at all levels of ICT education [11] [21]. It is primarily designed for beginner

programmers, especially for students who could not imagine themselves as

programmers before working with Scratch [11]. The environment includes several

components designed for education (for example the ability to share projects or the

public availability of project source codes). Despite the fact that students find this

environment easy to use, several studies have encountered problems in terms of its

effectiveness. Testing grade-5 students in a primary school, Kalelioglu & Gülbahar

found that focusing on the spatial-visual aspect of Scratch did not increase problem-

solving skills compared to traditional approaches [22]. Students tend to develop and

follow bad programming habits while working with Scratch. For example, they

include all blocks in a program code that might be needed or might be connected to

the problem, without analyzing the original problem and the tools available.

Additionally, students tend to over-deconstruct problems without logical coherence

between the elements [23]. It is also important to emphasize that Scratch does not

reinitialize variables upon re-executing a project. This leads to bad initialization

habits and makes knowledge-transfer to further programming environments more

difficult [24].

2.2 Construct 3

Our research group selected the HTML5 based general-purpose Construct 3

environment [25] which uses an implementation of the event-action-based and

behavior-based visual programming approaches. With Construct 3, students can

create simple 2D games and multimedia web applications quickly and easily.

Consequently, the environment fulfills all the requirements of teaching fundamental

programming concepts.

Construct 3 provides a complete graphical interface for creating projects. The users

work with objects that are placed on layouts representing how the application will

look visually on screen. These objects are pre-made elements that cover different

functionalities of a project (like displaying a sprite or playing a sound).

The environment includes various pre-programmed behaviors (for example

different movement algorithms) which can be attached to objects. For creating

custom logic, the users can use event-sheets to build up the visual code connecting

actions to events referencing the objects. Further details on the workflow of the

Construct environment are presented in our previous paper [19].

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 96 ‒

Construct 3 is well-documented, which aids its integration into classes [26] [27]

[28] [29] [30]. To further support the education processes, the environment provides

an option, similarly to Scratch, to publicly share students’ work online. The free

version of the environment can only be used with limitations. However, the

capabilities of the free version are sufficient to teach programming in elementary

and secondary ICT education.

2.3 Helping Materials and Tasks

Similar to other topics in ICT education [31] [32] [33], programming is also exposed

to erroneous tasks, algorithms, and source codes that are built up without deeper

understanding or logic. In general, low-mathability approaches are applied in the

teaching-learning process, where the focus is on the tools instead of the problem

[34].

Even the environments designed for educational contexts are burdened with such

tasks. Figure 1 presents the source code of a Scratch task [34] which writes out the

numbers divisible by five in the range of 100-150. The source code is based on

several unusual solutions: for no apparent reason, the program only runs when the

user presses the “o” character, and it uses an infinite loop (forever command) to

write out the numbers which is only stopped by a separate if statement. This could

be interpreted as a do-while loop; however, the task description in [34] includes no

information on this knowledge item whatsoever.

Figure 1

An example task in the Scratch environment for writing outnumbers divisible by five in the range 100‒

150 [34] (left) The modified version of the original source code (right) (The source codes are the

English translation of the original Hungarian version)

We selected this task to highlight the erroneous problem-solving strategies present

in ICT education. Note that the task presented and the errors included in it do not

represent the whole world of ICT, as one can find educational materials and tasks

of outstanding quality, just as there are ICT teachers who are accurate and

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 97 ‒

professional (expert teachers) Error! Reference source not found. [36]. In

general, we can conclude that it is time to rethink, correct, and transform ineffective

practices, and that this is in the interest of all parties involved in education.

2.4 Our Goals

In this paper, we present an analysis of the effectiveness of the Scratch and

Construct 3 environments’ development of students’ algorithmic skills. Our goal

was to examine how different visual programming approaches affect the

development of said skills by solving tasks with methods that focus on problem-

solving – high mathability [38] – instead of on the graphical interfaces and visual

capabilities of the environments – low mathability [34] [38] [39] [41].

3 Applied Methods, Tools, and Strategies

3.1 Research Environment

We analyzed the effectiveness of the methods used in programming education in

two grade-8 groups in a local high school (experimental and control groups).

The students took part in the 6-year training program of the school and during their

previous education, they had not encountered the programming topic. Both groups

progressed and learned the knowledge items at the same pace. The experimental

group used Construct 3, while the control group learned with the Scratch

environment. During the teaching period, we aimed to minimalize the differences

between the two environments by developing customized tasks. Therefore, both

groups followed the same schedule and worked on the same tasks optimized for

their environment. The experimental group studied the topic for 18 lessons, while

the control group for 17 lessons, one lesson per week.

3.2 Applied Methods

The main roles of the first tasks were that the students could finish simple projects

and get feedback on their work, and additionally, learn the fundamentals of creating

projects in their environment. After the groups grasped the essence of the interface,

and it did not hinder the real problem-solving process, the complexity of the tasks

was increased.

To solve the tasks, the students were guided by the coaching method [42], based on

Pólya’s [42] concept-based problem-solving approach:

1) Presenting the task.

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 98 ‒

2) Understanding the problem: Analyzing the complete task and

decomposing it into subtasks.

3) Setting the goal of the subtasks. Highlighting the input and output values

of the subtasks.

4) Building the algorithm.

5) Precoding in natural language: While following the structure of the visual

programming language, phrasing the conditions and statements required to

code.

6) Coding.

7) Testing: Running the code and discussing the outputs.

8) Debugging and correcting the errors.

9) Combining the subtasks: debugging, discussion, abstraction.

Note, that designing tasks for visual programming environments involves additional

factors that teachers must take into consideration. Besides the creation of the project

and the algorithms included in it, the visual design of the project also plays an

important role in the success of each task. During our work, besides minimalizing

the differences originating from the two environments, we also focused on avoiding

error prone approaches). The teaching of both the experimental and control groups

was carried out by the same teacher from our research group.

The problems, the students worked on were presented in visually engaging smaller

projects. At the beginning of these projects, the teacher presented the complete work

and started a discussion following the aforementioned approach. The projects were

then decomposed into smaller subtasks which the groups analyzed further, before

starting the development process. For example, in one of the projects the groups

created a game with randomly appearing targets and a sling that could shoot

projectiles. The students analyzed the problem both from the point of the required

objects and assets and from the point of the algorithms behind the behavior of these

elements. During the teaching period, the following projects were created:

– crossing the street (simple movement, collision detection, handling

variables, outputting text referencing variables, and random number

generation),

– target practice (handling user input, creating advanced logic),

– UFO attack (exercise task).

3.3 Data Collection

We collected data in pre- and post-tests, using paper-based test sheets. The pre-test

was carried out before the first programming lesson to avoid affecting the prior

knowledge of the students. The post-test was administered during the lesson

following the last programming class.

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 99 ‒

Table 1

The number of students in the experimental and control groups

 experimental group control group

number of students 14 14

pre-test 10 13

post-test 12 13

paired tests 7 12

Based on the Frame Curricula and the local curricula of the school, the

programming topic only appears in grade-8 and grade-10 classes. In the school year

of the measurement, only one grade-8 class was enrolled, and the class was divided

into two groups.

The low number of students in both groups made it possible to ensure a similar

progression in the topic (Table 1). The fluctuation in the number of students

(especially considering the paired tests in the experimental group) can be explained

by the students’ absences and various school activities.

3.4 Tests

To measure the algorithmic skills of the students, we composed a test that relies on

Bebras tasks [44] [45], making it independent of the programming environment.

We analyzed and selected the Bebras tasks we included to make them cover several

aspects of the algorithmic skills, requiring differing thinking processes and

strategies to solve. The selected tasks were not focused directly on the knowledge

items present in the problems solved. Instead, our goal was to measure the

algorithmic and problem-solving skills developed during the teaching-learning

period. It is important to note that we found differences between the original tasks

[46] and the Hungarian versions we used [44]. However, these differences are

minimal and have no effect on the skills measured. We changed several multiple-

choice tasks to open-answer tasks so that students did not have predefined options

from which they could select one randomly if they could not solve the problem.

Following these conditions, the testing process included these altered tasks

(Appendix, section 0).

3.5 Analyzing the Data

To store the data collected with the tests, we created a database where the tasks were

decomposed into items. Due to the particularities of the tasks, the student answers

were on a narrow scale as several tasks required a character or number as the answer,

despite the open questions. Therefore, the decomposition of the students’ answers

into items was limited.

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 100 ‒

Figure 2

The popularity task (2015-CA-01) [45] [46]

During the analysis of the data, we stored additional information on the students’

answers where the tasks justified it. The popularity task is an example of this, where

a frequently chosen answer was the character who seemingly has the most

connections (Figure 2).

In this case, we not only marked the answer incorrect but grouped it into a separate

category to make it possible to observe the differences in how students applied fast-

thinking [47]. Similarly, in the spherical robot task (Figure 3), we also separated

those answers which guided the ball into the goal with unnecessary instructions

from those that completed the task perfectly.

Figure 3

The spherical robot task (2016-JP-03) [44] [46]

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 101 ‒

4 Analyzing the Effectiveness of Programming Tools

Table 1

The results (%) of the pre- and post-tests in the experimental (exp.) and control groups by task, along

with the p-values of the differences between the groups

Tasks
Pre-test

p
Post-test

p
exp. control exp. control

rotating puzzle 90.00 69.23 0.226 83.33 84.62 0.934

popularity 70.00 38.46 0.030 70.83 53.85 0.059

beaver code 100.00 100.00 100.00 100.00

party guests 70.00 63.08 0.718 83.33 87.69 0.752

hierarchy 80.00 84.62 0.784 91.67 100.00 0.339

spherical robot 50.00 76.92 0.195 91.67 84.62 0.606

deactivatin 80.00 23.08 0.005 66.67 69.26 0.896

concurrent directions 80.00 53.85 0.197 91.67 86.92 0.329

four errands 65.00 84.62 0.254 100.00 86.54 0.047

kix code 22.50 42.31 0.292 89.58 65.38 0.130

blossom 46.00 81.54 0.074 91.67 98.46 0.413

total 59.61 65.97 0.429 88.46 83.13 0.396

To measure the effectiveness of the two programming interfaces (experimental

group: Construct 3, control group: Scratch) in developing the algorithmic skills of

students, we analyzed the results of the pre- and post-tests (Table 1). At this step of

the research, we included the results of all students, regardless of whether they were

present at both the pre- and the post-tests. For analyzing the data and the difference

between the groups, we used the SPSS software package [48].

Considering the results of the pre-test, both groups provided a high proportion of

correct answers. This meant that no significant differences could be found between

the experimental and control groups (p = 0.429), except for two tasks: popularity

(p = 0.030) and deactivatin (p = 0.005).

Popularity: The experimental group completed the task more successfully, with

70%, while the control group achieved 38.46%. A high proportion of students

marked the incorrect option, i.e. “Gila”, who has the most direct connections.

This implies that they answered the task by relying on their first impression without

further analyzing the problem in hyper-attention mode [49] [50] (Figure 2).

Deactivatin: Students giving incorrect answers mostly marked jars D or E, which

can be explained by a shallow interpretation of the task, again applying the hyper-

attention mode [49] [50] (Figure 4).

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 102 ‒

Figure 4

The deactivatin task (2016-HU-06) [44] [46]

Considering the results of the post-test, the groups completed the test with similar

rates of success, without significant differences (p = 0.396). Analyzing the tasks,

only the four errands task shows a significant difference between the experimental

and control groups (p = 0.047).

Examining the results of both the pre- and post-tests, both groups show significant

development in the topic (experimental group: p = 0.002; control group: p = 0.022).

Furthermore, in the post-test the experimental and control groups showed no

significant difference in solving the Bebras tasks [44] [46]. This allows us to

conclude that the development of the students’ algorithmic skills is independent of

the visual programming environment.

Conclusion

In this paper, we presented research on how an algorithm-driven teaching method

in different visual programming environments and languages develops the students’

algorithmic skills, and what differences can be observed between the groups.

The sample included two grade-8 student groups who studied the programming

topic at a similar pace. The experimental group studied with Construct 3, while the

control group with Scratch. Both groups had the same teacher and worked on the

same programming problems using a concept-based [42], coaching method [42].

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 103 ‒

The data collection was carried out applying printed test sheets composed of Bebras

tasks. Considering the analysis of the data (Table 1) both groups completed both

tests at similar levels, without significant differences.

Based on the results, the Construct 3 environment created for software production

does not develop the students’ algorithmic skills more effectively than the Scratch

environment designed for educational purposes. However, both environments

develop the algorithmic skills of students significantly when the tasks focus on

problem-solving, instead of on the graphical, drawing functions of the programs.

The results show that while the used software environment does not have an effect

on the development of the students’ algorithmic skills, the method and/or the

teaching approach applied to Error! Reference source not found..

Acknowledgements

This work was supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002.

The project was supported by the European Union, co-financed by the European

Social Fund.

References

[1] NAT 2012: 110/2012 (VI. 4.) Government regulation on the publication,

introduction and application of the Base Curricula, 2012, In Hungarian:

Nemzeti Alaptanterv, 2012 [Online] Available: http://ofi.hu/sites/

default/files/attachments/mk_nat_20121.pdf [Accessed: 04-Nov-2019]

[2] OFI: Frame Curricula. In Hungarian: Kerettanterv. 51/2012. (XII. 21.) számú

EMMI rendelet – a kerettantervek kiadásának és jóváhagyásának rendjéről,

2012 [Online] Available: https://www.oktatas.hu/kozneveles/kerettantervek/

2012_nat [Accessed: 04-Febr-2020]

[3] Nagy T. K.: The paradox of the hungarian frame curricula in informatics.

The Turkish Online Journal of Educational Technology, INTE 2018, pp. 910-

922

[4] Booth, S.: Learning to program: A phenomenographic perspective. Acta

Universitatis Gothoburgensis, Gothenburg, Sweden, 1992

[5] Soloway, E.: Should we teach students to program? Communications of the

ACM, 1993, 36(10), pp. 21-25

[6] Ben-Ari, M. (2011). Non-myths about programming. Communications of the

ACM, 2011, 54(7), pp. 35-37

[7] Fincher, S. et al.: Comparing Alice, Greenfoot & Scratch. 41st ACM technical

symposium on Computer science education, ACM, 2010, pp. 192-193

[8] Fowler, A., Fristce, T. & MacLauren, M.: Kodu Game Lab: a programming

environment. The Computer Games Journal, 2012, 1(1), pp. 17-28

[9] Klassner, F. & Anderson, S. D.: Lego MindStorms: Not just for K-12

anymore. IEEE Robotics & Automation Magazine, 2003, 10(2), pp. 12-18

https://www.oktatas.hu/kozneveles/kerettantervek/%0b2012_nat
https://www.oktatas.hu/kozneveles/kerettantervek/%0b2012_nat

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 104 ‒

[10] Papadakis, S. et al.: Novice Programming Environments. Scratch & App

Inventor: a first comparison. Workshop on Interaction Design in Educational

Environments, ACM, 2014

[11] Resnick, M. et al.: Scratch: programming for all. Communications of the

ACM, 2009, 52(11), pp. 60-67

[12] Chmielewska, K. & Gilanyi, A.: Mathability and computer aided

mathematical education. 6th IEEE International Conference on Cognitive

Infocommunications (CogInfoCom), 2015, pp. 473-477

[13] Csernoch, M., Biró, P., Máth, J. & Abari, K.: Testing Algorithmic Skills in

Traditional and Non-Traditional Programming Environments. Informatics in

Education, 2015, 14(2), pp. 175-197

[14] “Blueprints Visual Scripting” Epic Games. [Online] Available:

https://docs.unrealengine.com/en-US/Engine/Blueprints/index.html

[Accessed: 10-Oct-2019]

[15] Hutong Games: PlayMaker – Visual Scripting for Unit. [Online] Available:

https://hutonggames.com/ [Accessed: 10-Jan-2020]

[16] YoYo Games: Drag And Drop Overview [Online] Available:

https://docs2.yoyogames.com/ [Accessed: 10-Jan-2020]

[17] Fesakis, G. & Serafeim, K.: Influence of the familiarization with scratch on

future teachers’ opinions and attitudes about programming and ICT in

education. ACM SIGCSE Bulletin, ACM, 2009, 41(3), pp. 258-262

[18] Kim, H., Choi, H., Han, J. & So, H. J.: Enhancing teachers’ ICT capacity for

the 21st Century learning environment: Three cases of teacher education in

Korea. Australasian Journal of Educational Technology. 2012, 28(6) pp. 965-

982

[19] Csapó, G.: Placing event-action based visual programming in the process of

computer science education. Acta Polytechnica Hungarica, 2019, 16(2) pp.

35-57

[20] Csapó, G. & Sebestyén, K.: Educational Software for the Sprego Method.

The Turkish Online Journal of Educational Technology, INTE 2017 October,

pp. 986-999

[21] Lifelong Kindergarten Group:Scratch – Imagine, Program, Share [Online]

Available: https://scratch.mit.edu [Accessed: 10-Nov-2019]

[22] Kalelioglu, F. & Gülbahar, Y.: The effects of teaching programming via

Scratch on problem solving skills: a discussion from learners' perspective.

Informatics in Education, 2014, 13(1), pp. 33-50

[23] Meerbaum-Salant, O., Armoni, M. & Ben-Ari, M.: Habits of programming

in scratch. 16th annual joint conference on Innovation and technology in

computer science education. ACM, 2011, pp. 168-172

https://hutonggames.com/
https://docs2.yoyogames.com/
https://scratch.mit.edu/

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 105 ‒

[24] Franklin, D., Hill, C., Dwyer, H. A., Hansen, A. K., Iveland, A. & Harlow,

D. B.: Initialization in scratch: Seeking knowledge transfer. 47th ACM

Technical Symposium on Computing Science Education, ACM, 2016, pp.

217-222

[25] “Game Making Software – Construct 3” [Online] Available:

https://www.construct.net/en [Accessed: 21-Sep-2019]

[26] Alexander, J.: Construct 2 – From Beginner to Advanced - Ultimate Course!

| Udemy. 2016 [Online] Available: https://www.udemy.com/construct-2-

from-beginner-to-advanced-build-10-games [Accessed: 06-Dec-2019]

[27] Scirra: Welcome to the Construct 3 Manual. [Online] Available:

https://www.construct.net/en/make-games/manuals/construct-3 [Accessed:

21-Sep-2019]

[28] Scirra: Game Development Tutorials. [Online] Available:

https://www.construct.net/en/tutorials?flang=1 [Accessed: 21-Oct-2019]

[29] Scirra: Construct Forum [Online] Available:

https://www.construct.net/en/forum [Accessed: 21-Sep-2019]

[30] Scirra: ScirraVideos – YouTube [Online] Available:

https://www.youtube.com/user/ScirraVideos [Accessed: 20-Nov-2019]

[31] Papp, P.: Texting or text management? Teaching text management in ICT

textbooks. In Hungarian: Szövegelés vagy szövegszerkesztés?

Szövegkezelés tanítása az informatika tankönyvekben. Debreceni Egyetem

Informatikai Kar Tudományos Diákköri Konferencia 2019

[32] Erdélyi, A.: Down the yellow paved road of ICT textbooks. In Hungarian:

Végig az informatika-tankönyvek sárga köves útján – Avagy Pöttömföldről

eljutunk-e így az igazi varázslathoz? Debreceni Egyetem Informatikai Kar

Tudományos Diákköri Konferencia 2019

[33] Nagy, R. K.: Learning spreadsheet management from textbooks: do we only

manage the spreadsheets or do we solve problems? In Hungarian:

Táblázatkezelés elsajátítása tankönyvekből: a táblázatot csak kezeljük vagy

a problémát is megoldjuk? Debreceni Egyetem Informatikai Kar

Tudományos Diákköri Konferencia 2019

[34] Baranyi, P. & Gilányi, A.: Mathability: Emulating and Enhancing Human

Mathematical Capabilities, IEEE 4th International Conference on Cognitive

Infocommunications (CogInfoCom), 2013, pp. 555-558

[35] Burcsi: Scratch programming. In Hungarian: Scratch programozás [Online]

Available: http://www.burcsi.hu/_inf/Scratch/ [Accessed: 12-Nov-2019]

[36] Hattie, J.: Visible Learning for Teachers: Maximizing Impact on Learning,

Routledge, 2012

https://www.construct.net/en
http://www.burcsi.hu/_inf/Scratch/

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 106 ‒

[37] Csernoch, M.: Thinking Fast and Slow in Computer Problem Solving,

Journal of Software Engineering and Applications, 2017, 10(1), pp. 11-40

[38] Chmielewska, K. & Gilányi, A.: Computer Assisted Activating Methods in

Education. 10th IEEE International Conference on Cognitive

Infocommunications (CogInfoCom), 2019, pp. 241-246

[39] Biró, P. & Csernoch, M.: The mathability of computer problem solving

approaches. 6th IEEE International Conference on Cognitive

Infocommunications (CogInfoCom), 2015, pp. 111-114

[40] Biró, P. & Csernoch, M.: The mathability of spreadsheet tools. 6th IEEE

International Conference on Cognitive Infocommunications (CogInfoCom),

2015, pp. 105-110

[41] Chmielewska, K., Gilányi, A. & Łukasiewicz, A.: Mathability and

Mathematical Cognition. 7th IEEE International Conference on Cognitive

Infocommunications (CogInfoCom), 2016, pp. 245-250

[42] Chmielewska, K. & Matuszak, D.: Mathability and coaching. 8th IEEE

International Conference on Cognitive Infocommunications (CogInfoCom),

2017, pp. 427-432

[43] Pólya, G.: How To Solve It. A New Aspect of Mathematical Method. Second

edition (1957) Princeton University Press, Princeton, New Jersey, 1954

[44] ELTE IK T@T Labor: Archivum | e-Hód. [Online] Available: http://e-

hod.elte.hu/archivum/ [Accessed: 09-Aug-2019]

[45] Pohl, W. & Dagienė, V.: What is Bebras | www.bebras.org [Online]

Available: https://www.bebras.org/ [Accessed: 15-Jan-2020]

[46] Bebras: International Challenge on Informatics and Computational Thinking

[Online] Available: https://www.bebras.org [Accessed: 15-Jan-2020]

[47] Kahneman, D.: Thinking, Fast and Slow. Farrar, Straus and Giroux, New

York, 2011

[48] IBM SPSS software: IBM SPSS Statistics [Online] Available:

https://www.ibm.com/analytics/spss-statistics-software [Accessed: 01-Jan-

2020]

[49] Dani, E.: The HY-DE Model: An Interdisciplinary Attempt to Deal with the

Phenomenon of Hyperattention. Journal of Systemics, Cybernetics and

Informatics 2016, 13:(6) pp. 8-14

[50] Csernoch, M. & Dani, E.: Data-structure validator: an application of the HY-

DE model, 8th IEEE International Conference on Cognitive

Infocommunications (CogInfoCom), 2017, pp. 197-202

http://e-hod.elte.hu/archivum/
http://e-hod.elte.hu/archivum/
http://www.bebras.org/
https://www.bebras.org/
https://www.bebras.org/
https://www.ibm.com/analytics/spss-statistics-software

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 107 ‒

Appendix

1.1. The test sheet used for data-collection

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 108 ‒

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 109 ‒

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 110 ‒

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 111 ‒

K. Sebestyén et al. Measuring the Algorithmic Skills of Students Working
 with Low- and High-Mathability Programming Approaches

‒ 112 ‒

