Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

Enhancing UML Model Dynamics:
A Source Code Generation Approach

Michal Staiio!, Matej Ciernik?, Ladislav Hluchy’,
Martin Bobak! and Jean Rosemond Dora!

! Institute of Informatics, Slovak Academy of Sciences, Bratislava, Slovakia
{michal.stano, ladislav.hluchy, martin.bobak, jeanrosemond.dora} @savba.sk
2 Touch4lIT, Bratislava, Slovakia; matej.ciernik@touch4it.com

Abstract: This work aimed to develop functionality for generating source code from dynamic
models, specifically, UML sequence diagrams, using the Object Action Language (OAL).
The existing prototype, AnimArch, will use the generated source code to provide animation
of UML model dynamics. The paper includes the theoretical background of software
modelling, the technologies applied, and reviews of relevant existing publications. This paper
also contains a study focused on evaluating the final solution, its practical applicability, and
the relevance of our approach in generating OAL source code from sequence diagrams.
The following results demonstrate the efficiency and practical utility of the developed
solution in enhancing the capabilities of the AnimArch prototype.

Keywords: code synthesis; UML sequence diagram; Object Action Language; model-driven
development; automated code generation; model-based design; software modelling;
dynamic model transformation

1 Introduction

The primary objective of this research is to develop functionality that enables the
generation of source code from dynamic models, specifically UML sequence
diagrams, using the Object Action Language (OAL). This generated code will be
integrated into the AnimArch prototype, a tool designed to support the animation of
UML model dynamics.

Model-driven development (MDD) promotes the creation and use of domain
models, which developers generate to automate the production of software artefacts,
thereby increasing software productivity and maintainability. In this context,
xtUML and OAL are crucial as they provide platform-independent action
definitions and facilitate the translation of abstract models into executable code [1].

—203 -

M. Stario et al. Enhancing UML Model Dynamics: A Source Code Generation Approach

In this study, we present the technologies used and evaluate the practicality of our
solution. The research project aims to highlight the results of generating source code
from dynamic models and to inspire consideration of ways to assist users of the
AnimArch prototype.

2 Related Work

Significant effort has been devoted to transforming dynamic models into source
code in model-driven development (MDD). This section outlines our approach's
main related works and methodologies, explicitly converting sequence diagrams
into Object Action Language (OAL) code within the Executable and Translatable
UML (xtUML) framework. We also review related publications that partially
overlap with our research objectives.

Model-driven development (MDD) is an approach to software development focused
on creating and utilizing domain models to automate code generation and other
software artefacts. The primary goal of MDD is to increase software productivity
and maintainability through the abstraction and automation of repetitive and non-
technical programming activities [2-3].

Executable and Translatable UML (xtUML) is a language for model-based systems
engineering that extends UML with executable semantics and supports model-
driven approaches. OAL is part of xtUML and describes model behavior. With
OAL, action definitions are platform-independent, facilitating the transformation
from abstract models to platform-specific code [4-5].

Several studies have examined the transformation of dynamic models into source
code. Among the notable ones is the article "Design of Rules for Transforming
Sequence Diagrams into Java Code" [6], which presents work on transforming
sequence diagrams into Java code using transformation rules and metamodels. This
method specifies transformations to be applied when converting sequence diagram
patterns into rule schemas for code generation.

Another significant publication is "Mapping UML Sequence Diagram into the Web
Ontology Language" [7], which proposes a technique for transforming UML
sequence diagrams into the Web Ontology Language (OWL). This work aims to
develop a semantic web framework for UML models, not deviating from the
primary UML model but utilizing the model for web-based system applications.

The study "Automatic Test Case Generation Using Sequence Diagram" provides a
framework for generating test cases from UML sequence diagrams [8]. This
proposed framework systematically extracts test cases, ensuring that the generated
tests reflect the specified behavior of the sequence diagrams [9].

— 204

Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

Furthermore, the article "Novel Approach to Transform UML Sequence Diagram
to Activity" explains a unique methodology for transforming UML sequence
diagrams into activity diagrams [10]. This approach focuses on preserving the
behavioral semantics of the original sequence diagram while providing an
alternative representation that may be more suitable for certain types of analysis and
experiments. This methodology highlights the flexibility and adaptability of model
transformations within MDD [11].

Therefore, transforming dynamic models into source code is a well-researched area
within MDD. Our work further elaborates on existing approaches, considering the
specifics of OAL and xtUML, and contributes to advancing model-driven
techniques in the broader context of software engineering challenges.

3 Our Approach

In the following chapter, we describe the generation of source code from dynamic
models, particularly sequence diagrams. The methodology consists of the following
essential pillars and valuable tools: ANTLR for parsing and using the prototypes
AnimArch and SQD Tunder.

3.1 Useof ANTLR

We began with ANTLR (Another Tool for Language Recognition) to parse the input
JSON files that define the sequence diagrams. An example of the contents of these
JSON files is shown in Figure 1. ANTLR is a powerful parser generator capable of
interpreting, processing, executing, or translating structured text [12-13]. Figure 2
illustrates some of the rules of our parser grammar used by ANTLR for parsing the
input files defining the sequence diagrams. However, we believed that ANTLR
might not be as effective as we had anticipated due to the complexity of the input
JSON files. The sequence diagrams were so complex that they required a more
custom-tailored solution capable of handling the nuances of our data.

Error Handling and Edge Cases in Parsing

To ensure reliable operation and maintain output quality, our parsing process
incorporates a multi-level error handling and recovery strategy:

e Lexical errors: Unknown or invalid characters are mapped to a special
error token. The parser logs the error location (line, column) while
continuing in panic-mode recovery, allowing other valid parts of the file
to be processed.

e Syntactic errors: In lenient mode, we use ANTLR’s DefaultErrorStrategy

—205—

M. Stario et al. Enhancing UML Model Dynamics: A Source Code Generation Approach

e For local recovery (token insertion/deletion). In strict mode, we apply

BailErrorStrategy to stop parsing at the first critical error.

e Semantic errors: After building the parse tree, we verify semantic

correctness, including class and method existence, message
sender/receiver validity and fragment structure consistency. Invalid
references or malformed elements are reported with suggestions for
correction.

Each incident is classified (LEX, SYN, or SEM) and recorded with its type, exact
position in the source file, and recommended resolution. This approach allows us to
process incomplete or partially erroneous inputs, generating OAL code from valid
segments while marking unresolved elements for later revision.

3.2

Generating OAL Code

The generation of Object Action Language (OAL) code from sequence diagrams
represented a core functionality of our method [14]. This process was modelled and
documented in an activity diagram shown in Figure 3. The individual steps are
outlined as follows:

1

Creation of the Sequence Diagram: The sequence diagram was created
using the SQD Tunder prototype, which saves the diagram into a standalone
file. This prototype is described in detail in Section 3.3.

Analysis Using ANTLR: We used ANTLR to perform lexical, syntactic, and
semantic analysis. This process involves generating a lexer to split the input
file into tokens, creating a parsing tree from these tokens, and traversing the
parsing tree to collect information necessary for generating OAL code. Error
handling during this stage is described in Section 3.1.

Pre-processing: Due to the complexity of the sequence diagrams, pre-
processing was required. This step ensures that the parsed data is complete,
consistent, and ready for translation into OAL code. Our pre-processing stage
includes:

Normalization: Standardizing class names, lifeline identifiers, and message
labels (case-insensitive comparison, removal of diacritics) to avoid duplicate
or mismatched elements.

Structural validation: Verifying that control fragments (LOOP, ALT, OPT,
PAR) are complete, properly nested, and syntactically correct. Unclosed or
improperly nested fragments are flagged as errors.

Reference validation: Ensuring that every message has both a valid sender
and a valid receiver, and that referenced classes or methods exist in the model.

—206 -

Acta Polytechnica Hungarica

Vol. 23, No. 2, 2026

7) Default handling: For optional attributes (e.g., missing guard conditions),
safe default values are applied, and a comment is inserted in the generated
code (e.g., // default guard: true).

8) Detection of unused or isolated elements: Identifying lifelines or messages
not connected to the primary interaction flow. In lenient mode, these are
retained but marked; in strict mode, they result in process termination.

9) Error handling in pre-processing:

All detected issues are logged with their type, location, and recommended fix.

In lenient mode, non-critical errors (such as missing optional attributes or isolated
elements) do not stop generation. These elements are either skipped or replaced with
defaults, and the generated OAL includes // TODO comments.

In strict mode, any structural or reference error is considered critical and stops the
generation process to ensure model integrity:

e Translation to OAL Code: The validated and pre-processed sequence
diagram elements are translated into OAL code and stored in text files for
subsequent execution and animation. Any unresolved elements are
explicitly marked in the output code for later manual review.

e Integration with AnimArch: The generated OAL code is integrated into
the AnimArch prototype for animation purposes. This integration assumes
that the corresponding class diagram has been created and is consistent
with the sequence diagram to ensure correct animation playback.

"Xmi TdRef"

"message":

"¥miIdRef"

"Eragment”: [

"XmiTdRef" :

"XmiTdRef" :

I5L2 Tuttj MgMTA

: “MTY4OTAYN]U2dW1SOKXpyVSH1MDMWM] KOM3 ki AyMyAXMDOYNT0zMy4 AMTY="

"NZQWOTgXNzZYwdW1 sOkxpZMYS1MDMYM; kviM3 AyMyAXMDOYNTOzMy4 AMTY="

"XmiIdRef":

"XmiIdRe£": "

1MDMuM3 kvM TozMydaury="

TozMydaMTe="

MTG4NTEZOTK20HV 1MDMvM kvM

+ "LTE4MzCINDgyMIR1bHW6THV. L2I5L2TuMjMg!

"XmiIdRef" : "MzgwODM3MIQ4dN1s0k93 Y3VyCmVuY2VTCGYS aWZpY2F 5

"XmiTdRef" : "NDg3NTULMz14dW150k93 Y 3VyCnVuY2VICGY]aWzpy 5

"XmiTdRe£" : "NTKOMjczNDAAd150k93 Y 3VycmVuY2VTCGY I aWzpY 2F 3

"XmiTdRef" : ") TkxNDg4:

150k93 ¥3VyCemVuY2VTCGV]awzpy 2F (§ kvMiAy

name
: ‘"name"’ ‘:’ value

xmild
: V"XmiId"’ :f value

xmiTdRef

Figure 1

JSON files defining the sequence diagram

: “"XmiIdRef"’ ‘:’ value
lifeline

: STRING ‘:’ “"uml:Lifeline"’
nessage

: STRING ‘:’ ‘"uml:Message"’
occurenceSpecification

: STRING ‘:’ ‘"uml:OccurrenceSpecification"’
combinedFragment

: STRING ‘:’ ‘"uml:CombinedFragment"’
interactionOperand

: STRING ‘:’ ‘"uml:InteractionOperand"’

Figure 2

Parser grammar rules

—207 -

M. Stario et al. Enhancing UML Model Dynamics: A Source Code Generation Approach

3.3 Prototypes: SQD Tunder and AnimArch

Two prototypes were developed to support the creation and animation of sequence
diagrams: SOD Tunder and AnimArch:

SQD Tunder: This tool was used to create sequence diagrams, which were
subsequently saved into standalone files for further processing. Figure 4 shows an
example of this prototype.

AnimArch: Although AnimArch did not directly contribute to generating OAL
code, it was extended to allow the creation of animations based on the generated
sequence diagrams. These animations could be run in AnimArch, provided the
corresponding class diagram had been created beforehand. Figure 5 illustrates the
animated UML model in the AnimArch prototype. The separation between the SQD
Tunder model creation interface and the code generation and animation logic in
AnimArch follows a similar design principle to that of RAIN [15], where the REST
API layer is decoupled from the asynchronous execution engine. Such separation
improves responsiveness and enables concurrent processing without blocking user
interaction.

Create OAL code fles

e

((Parser the JSON fledescribing the sequence diagram with ANTLR B Convert sequence diagram elements to OAL code:

Preprocess sequence diagram objects

Converting sequence diagram objects o OAL code

Map parsed data to lass objects

FimAch

fanimation filis NOT consistent with the dlass diagram]

Figure 3
Process for Generating OAL Source Code from a UML Dynamic Model Sequence Diagram

—208 -

Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

3.4 Results

Our approach to transforming sequence diagrams into executable OAL code
involved multiple phases of validation and refinement. The primary outcomes were
as follows:

e Transformation of sequence diagrams: We successfully converted various
sequence diagrams into OAL code, accurately capturing the dynamic
behavior.

e Validation of sequence diagrams: Although validation was not a mandatory
part of the translation process, sequence diagrams were checked for correct
behavior. We confirmed their validity based on our predefined rules. In cases
where the diagrams did not adhere to these rules, the user was notified of the

discrepancies.
Display Froe Aspeot [scale 175¢ [Maximize on Play [mute Audio [stars [azmos

(+] New Layer

Figure 4
A sample of prototype SOD_Tunder

[+ Jsof o)l &

Subject Class Method Relation
Observer] Select class.

Unregister(Observer Obs): vold ReceiveVaccine(string Date): vold
VaccinateAnimals(: void - Directly click on the

diagram and select
Random pallete e
the initial calass.

Color selection Play

Time per animation:
Cat

Veterinarian oo
e BomIess VetrmarianSubject G —
&% RegistredAnimal: Observer [s boon e 0,8s
} ame:sing

-~ * Name:string
StartCase(:void | Unregister(Observer Obs): void ‘

b oNoNo]

VaccinationDate:string

Figure 5
Example of running animation of UML model processes in the AnimArch prototype

—209 -

M. Stario et al. Enhancing UML Model Dynamics: A Source Code Generation Approach

We have successfully developed a robust and reliable process for generating code
from dynamic models. The complexity of the input data presented significant
challenges, which led us to adopt a cautious approach to iterative development.
The following section presents a detailed evaluation and the results of our approach.

4 Evaluation

The generated source code in this study was evaluated by comparing the expected
OAL code with the OAL code generated by our solution. This process required
several steps, which we will present in the following subsection. Subsection 4.2 will
show the sequence diagram cases upon which our solution is evaluated.

4.1 Evaluation Process

0 Qa Color selection Play

Subject Class Method Relation
Observer n n Select class.
Directly click on the

diagram and select
Random pallete the initial calass.

Register(Observer Obs, string Date): vold
Id

Unregister(Observer Obs}: vl ReceiveVaccine(string Date}:vold

Time per animation:
Veterinarian oy Cat P
CurrentDate: string.
@on RegistredAnimal: Observer [| 0,85 en@u—
Register(Observer Obs, string Date): void HETCEATY Name:string
StartCase(: void Unregister(Observer Obs): void [VacaationDate; gl .
VaccinateAnimals(): void .

SetDate(string Date): void

Figure 5
Example of running animation of UML model processes in the AnimArch prototype

This part presents our evaluation process, summarized in Figure 6. It follows from
preparing the expected OAL code, generating and comparing the source code, and
calculating the resulting precision and recall values.

Preparation of Expected OAL Code

We received functional OAL codes, from which we had to develop the most
accurate sequence diagrams to describe them, or the functional OAL code was
provided directly along with the sequence diagram. Using our method, we utilized
the provided sequence inputs in each scenario to generate OAL codes. These OAL
codes served as our benchmarks for relevance during the evaluation process.

-210-

Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

Generation and Comparison

Through our implementation, we generated source code from the sequence diagram.
We then compared the expected OAL code with the generated code by counting the
specific elements. The elements considered included the number of classes,
methods, instance creations, loops (for each and while), parallel blocks (par
construct), and terminations of loops, commands, threads, and parallel blocks (end
construct).

Comparison Methods

For comparison, we employed precision and recall metrics. False positives (FP)
refer to elements in the generated OAL code that did not belong to the expected
OAL code. In contrast, false negatives (FN) refer to elements missing in the
generated OAL code but present in the expected OAL code.

Determination of Precision and Recall Values

We calculated precision and recall values based on the elements in the expected
OAL and the generated OAL. Precision was determined as the ratio of correctly
generated aspects to the total number of generated elements. Similarly, recall was
calculated as the ratio of correctly generated aspects to the total elements inherent
in the expected OAL.

H Prepare Expected OAL Code Generate OAL Code Using Our Me!hoa

Eompare Expected and Generated OAL Coda

/
Heﬁ Practical UsabilitHbrmine Precision and Recall Valug

Figure 6

Activity diagram of the evaluation process

Practical Usability

We also validated the practical usability of the code generated by our method. This
process involved evaluating the extent to which the generated code can be integrated
and effectively utilized within the AnimArch prototype.

21—

M. Stario et al. Enhancing UML Model Dynamics: A Source Code Generation Approach

4.2 Specific Sequence Diagram Cases

Extended Evaluation Cases in response to the need for a more comprehensive
evaluation, we extended our test set to include a broader range of UML sequence
diagram scenarios reflecting real-world modelling challenges. In addition to the
original cases, the following new cases were analysed:

e Nested Parallel and Conditional Flows: A complex diagram combining
parallel execution paths (PAR) with nested conditional branches (ALT,
OPT), testing the correct handling of concurrent and conditional
interactions.

e Error and Exception Handling: A scenario representing message flows
interrupted by error conditions and exception signals, assessing the
system’s capability to model and translate exceptional behaviour.

e Multi-level Looping Structures: Sequence diagrams with loops nested
within loops, ensuring correct translation of repetitive interactions with
varying loop conditions.

e Integration with External Components: A diagram demonstrating
asynchronous communication between the primary system and an external
service, validating message synchronisation and event handling.

For each case, precision and recall metrics were computed following the
methodology described in Section 4.1. Results confirmed that the proposed
approach maintained high accuracy across all scenarios, with only minor recall
reductions in diagrams involving complex asynchronous flows. These results
further validate the robustness of the method when applied to a broad spectrum of
realistic modelling patterns.

The evaluation included six specific sequence diagram cases:
1. Simple Sequence Diagram: Assessed the basic continuous message flow
2. Order of Messages: Focused on the correct sequence of messages

3. Sequence Diagram with Fragments: Tested more complex interactions
within the diagram

4. Observer Pattern: Evaluated using the observer design pattern
5. Abstract Factory: Evaluated using the abstract factory design pattern

6. Parallel Processes: Parallel processing within the abstract factory pattern
was included

For instance, in the "Complex Interactions" evaluation case, the complex
interactions within the sequence diagram were analyzed. The sequence diagram for
this evaluation case (Figure 7) involves 4 classes: multiple messages distributed

-212—

Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

throughout the diagram, a LOOP fragment, a nested ALT fragment within the
LOOP fragment, and an OPT fragment. This diagram is from the book "UML
Distilled: A Brief Guide to the Standard Object Modelling Language" by M. Fowler
[16]. As with the other evaluation cases, the precision and recall metrics were
calculated by comparing the generated and expected OAL codes. The comparison
of OAL codes is illustrated in Figures 8 and 9.

. careful : regular :
Order ‘ Disibutor Disrbuter | | Messenger
dispatch_| \ [

Il i

loop) [for each line item ‘
|

operator at] value > $10000] | frame;
dispatch ‘

[else] |
dispatch
guard

\ [j

T T

opt [needsConfirmation] ; confirm ;

i T T

L \ \ u
Figure 7

Sequence diagram used in the third evaluation case (Complex Interactions) [16]

class Order
int[] items;
bool needsConfirmation;
method StartMethod()
for each line_item in items
if (line_item > 10000)
create object instance inst_Careful_ of Careful;
Careful_inst.dispatch();
else
create object instance inst_Regular of Regular;
Regular_inst.dispatch();
end if;
end for;
if (needsConfirmation)
create object instance inst_Messenger of Messenger;
Messenger_inst.confirm();
end if;
end method;
end class;

class Careful
method dispatch()
end method;

end class;

class Regular
method dispatch()
end method;

end class;

class Messenger
method confirm()
end method;

end class;

class Order
method StartMethod()
for each line item
if (value > 10000)
create object instance Careful_inst of Careful;
Careful_inst.dispatch();
else
create object instance Regular_inst of Regular;
Regular_inst.dispatch();
end if;
end for;
if (needsConfirmation)
create object instance Messenger_inst of Messenger;
Messenger_inst.confirm();
end if;
end method;
end class;

class Careful
method dispatch()
end method;

end class;

class Regular
method dispatch()
end method;

end class;

class Messenger
method confirm()
end method;

end class;

Figure 8

Figure 9

Sample of expected code for the 3™ evaluation case ~ Sample of the generated code for the 3™ evaluation case

Table 1 below compares the number of elements in the generated and expected OAL
codes.

-213-

M. Stario et al. Enhancing UML Model Dynamics: A Source Code Generation Approach

As mentioned earlier, we calculated the precision and recall metrics to evaluate the
accuracy of the generated OAL code. Precision was defined as the ratio of correctly
generated OAL code elements to the total number of generated elements. Recall
was defined as the ratio of correctly generated OAL code elements to the total
number of elements in the expected OAL code.

In this evaluation, the value for True Positives (TP) was 21, for False Positives (FP)
was 0, and for False Negatives (FN) was 2.

Table 1

Comparison of the number of code elements in the 3rd evaluation case

OAL Code Elements | Number of Elements| Number of Elements
in Expected Code in Generated Code

Class 4 4

Method 4 4

Instance Creation 3 3

Method Call 3 3

for each Loop 1 1

if’ Statement 2 2

else Statement 1 1

end Construct 3 3

Class Attributes 2 0

All Elements 23 21

Using these values, the precision and recall were calculated as follows:

Precision = ——— = —~ = 1.0 (1)
TP + FP 21+0
Recall= —— = 2L =21 5 091 2)
TP + FN 21+ 2 23

A high recall value indicates that the generated code contains no extraneous
elements. In contrast, a slightly lower recall value suggests the absence of some
elements compared to the expected OAL code. However, this gap does not imply
the incompleteness of our approach; instead, it is a result of the limitations of the
SOD_Tunder prototype in certain aspects. Specifically, the SOD Tunder prototype
does not support representing more complex structures, such as lists or assigning
elements to variables. Therefore, the lower recall metric reflects the mentioned
prototype's limitations, not our approach's shortcomings.

4.3 Overall Evaluation Results

The metrics analysis demonstrated that our developed method is applicable within
the context of the AnimArch prototype. Comparison with the expected OAL code
revealed only minor deviations in recall and precision metrics, indicating that the

—214-

Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

approach can generate source code from sequence diagrams with a high degree of
accuracy under the tested conditions.

The precision and recall results suggest that the method performs effectively for the
evaluated cases, covering relevant elements identified and retrieved during the
process. The expected OAL codes were used as relevance judgments to provide a
consistent reference for comparison; however, we recognise that this measure
reflects alignment with a predefined target output rather than serving as an absolute
proof of system effectiveness.

While earlier evaluation was conducted on a single representative example, we have
now extended the set of evaluation cases to include a broader variety of sequence
diagram structures (see Section 4.2). This expansion provides a stronger basis for
assessing the method’s performance, though further large-scale testing on
industrial-scale models would be needed to make definitive claims about robustness
across all modelling scenarios.

The results indicate that the proposed approach is particularly suitable when the
UML diagrams do not require code structures that are currently unsupported by the
SQD Tunder prototype. For mapping more complex constructs into OAL code, the
prototype would need to be extended in future work.

Conclusions

During this research, we developed and validated functionalities for generating
source code from UML sequence diagrams in the OAL language for use within the
AnimArch prototype. Our work represents a significant step forward for the future
development of the AnimArch prototype [17], providing a robust and reliable
foundation for further model-driven engineering research. The proposed method
achieved high accuracy in transforming dynamic models into executable code, as
confirmed by precision and recall analysis across a diverse set of evaluation cases.

The practical value of adaptive modelling and code generation approaches is further
illustrated by related work such as Scalable Real-Time Confusion Detection for
Personalized Onboarding Guides [18], which demonstrates the successful
deployment of real-time user behaviour analysis in large-scale, multi-user
environments. This alignment with real-world applications underscores the broader
applicability of our approach within software engineering practice.

Future work will focus on extending the SQD Tunder prototype to support more
complex code structures, such as lists, variable assignments, and advanced control
flows, as well as on large-scale evaluation with industrial-grade models. These
developments will further enhance the precision, coverage, and usability of the
system, strengthening its role as a reliable tool for transforming UML sequence
diagrams into executable OAL code within model-driven development workflows.

Acknowledgements

This work was supported by the following projects:

-215—

M. Stario et al. Enhancing UML Model Dynamics: A Source Code Generation Approach

Funded by the EU NextGenerationEU through the Recovery and Resilience Plan
for Slovakia under the project No. 09105-03-V02-00055.

Al-Driven Self-awareness and Cognition for Compute Continuum, APVV-23-
0430.

Decentralized artificial intelligence in a distributed virtualized computing
environment 2/0081/26.

This work was carried out during the first author’s PhD studies at the Faculty of
Mathematics, Physics and Informatics, Comenius University in Bratislava.

References

[1] Pastor O, Espafia S, Panach JI, Aquino N. Model-driven development.
Informatik-Spektrum. 2008 Oct;31:394-407

[2] Selic B. The pragmatics of model-driven development. IEEE software. 2003
Sep 15;20(5):19-25

[3] Mellor SJ, Clark AN, Futagami T. Model-driven development. IEEE
software. 2003 Sep 1;20(5):14

[4] Mellor SJ, Balcer MJ. Executable UML: a foundation for model-driven
architecture. Addison-Wesley Professional; 2002

[5] xtUML.: Action Language (OAL) Tutorial. [Accessed 3-November-2023].
Avail-able at: https://xtuml.org/learn/action-language-tutorial/

[6] Thongmak M, Muenchaisri P. Design of rules for transforming uml sequence
diagrams into java code. InNinth Asia-Pacific Software Engineering
Conference, 2002, 2002 Dec. 4 (pp. 485-494) IEEE

[71 Elkashef N, Hassan YF. Mapping UML sequence diagram into the web
ontology language OWL. International Journal of Advanced Computer
Science and Applications. 2020;11(5)

[8] Panthi V, Mohapatra DP. Automatic test case generation using sequence
diagram. In Proceedings of International Conference on Advances in
Computing 2012 (pp. 277-284) Springer India

[9] Tatale S, Chandra Prakash V. Combinatorial test case generation from
sequence diagram using optimization algorithms. International Journal of
System Assurance Engineering and Management. 2022 Mar;13(Suppl
1):642-57

[10] Kulkarni DR, Srinivasa CK. Novel approach to transform UML Sequence
diagram to Activity diagram. Journal of University of Shanghai for Science
and Technology. 2021;23(07):1247-55

[11] Vahdati A, Ramsin R. Modeling and Model Transformation as a Service:
Towards an Agile Approach to Model-Driven Development. In International

—216 -

Acta Polytechnica Hungarica Vol. 23, No. 2, 2026

[12]
[13]

[16]

17]

[18]

Conference on Lean and Agile Software Development 2022 Jan 12 (pp. 116-
135) Cham: Springer International Publishing

Parr T. The definitive ANTLR 4 reference

Tomassetti G. The ANTLR mega tutorial. Federico Tomassetti-Software
Architect (2017-03-08) [2020-08-19] https://tomassetti. me/antlr-mega-
tutorial 2017

Ciccozzi F, Malavolta I, Selic B. Execution of UML models: a systematic
review of research and practice. Software & Systems Modeling. 2019 Jun
1;18:2313-60

Habala, Ondrej, Martin geleng, Michal Habala, Lubor Stuhl, Michal Staro,
and Ladislav Hluchy. "Scalable Cloud Application Deployment Service for
Versatile Cloud Service Deployment and Configuration." Computing and
Informatics 43, No. 6 (2024): 1416-1431

Fowler M. UML distilled: a brief guide to the standard object modeling
language. Addison-Wesley Professional; 2018 Aug 30

Radosky, Lukas, and Ivan Polasek. "Executable multi-layered software
models." In Proceedings of the 1% International Workshop on Designing
Software, pp. 46-51, 2024

Hucko, Michal, Robert Moro, and Maria Bielikova. "Scalable Real-Time
Confusion Detection for Personalized Onboarding Guides." In International
Conference on Web Engineering, pp. 261-276, Cham: Springer International
Publishing, 2020

-217 -

	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Use of ANTLR
	Error Handling and Edge Cases in Parsing

	3.3 Prototypes: SQD Tunder and AnimArch
	3.4 Results

	4 Evaluation
	4.1 Evaluation Process
	Comparison Methods
	Determination of Precision and Recall Values
	Practical Usability

	4.2 Specific Sequence Diagram Cases
	4.3 Overall Evaluation Results

