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Abstract: This work aimed to develop functionality for generating source code from dynamic 
models, specifically, UML sequence diagrams, using the Object Action Language (OAL).  
The existing prototype, AnimArch, will use the generated source code to provide animation 
of UML model dynamics. The paper includes the theoretical background of software 
modelling, the technologies applied, and reviews of relevant existing publications. This paper 
also contains a study focused on evaluating the final solution, its practical applicability, and 
the relevance of our approach in generating OAL source code from sequence diagrams.  
The following results demonstrate the efficiency and practical utility of the developed 
solution in enhancing the capabilities of the AnimArch prototype. 
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1 Introduction 

The primary objective of this research is to develop functionality that enables the 
generation of source code from dynamic models, specifically UML sequence 
diagrams, using the Object Action Language (OAL). This generated code will be 
integrated into the AnimArch prototype, a tool designed to support the animation of 
UML model dynamics. 

Model-driven development (MDD) promotes the creation and use of domain 
models, which developers generate to automate the production of software artefacts, 
thereby increasing software productivity and maintainability. In this context, 
xtUML and OAL are crucial as they provide platform-independent action 
definitions and facilitate the translation of abstract models into executable code [1]. 
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In this study, we present the technologies used and evaluate the practicality of our 
solution. The research project aims to highlight the results of generating source code 
from dynamic models and to inspire consideration of ways to assist users of the 
AnimArch prototype. 

2 Related Work 

Significant effort has been devoted to transforming dynamic models into source 
code in model-driven development (MDD). This section outlines our approach's 
main related works and methodologies, explicitly converting sequence diagrams 
into Object Action Language (OAL) code within the Executable and Translatable 
UML (xtUML) framework. We also review related publications that partially 
overlap with our research objectives. 

Model-driven development (MDD) is an approach to software development focused 
on creating and utilizing domain models to automate code generation and other 
software artefacts. The primary goal of MDD is to increase software productivity 
and maintainability through the abstraction and automation of repetitive and non-
technical programming activities [2-3]. 

Executable and Translatable UML (xtUML) is a language for model-based systems 
engineering that extends UML with executable semantics and supports model-
driven approaches. OAL is part of xtUML and describes model behavior. With 
OAL, action definitions are platform-independent, facilitating the transformation 
from abstract models to platform-specific code [4-5]. 

Several studies have examined the transformation of dynamic models into source 
code. Among the notable ones is the article "Design of Rules for Transforming 
Sequence Diagrams into Java Code" [6], which presents work on transforming 
sequence diagrams into Java code using transformation rules and metamodels. This 
method specifies transformations to be applied when converting sequence diagram 
patterns into rule schemas for code generation. 

Another significant publication is "Mapping UML Sequence Diagram into the Web 
Ontology Language" [7], which proposes a technique for transforming UML 
sequence diagrams into the Web Ontology Language (OWL). This work aims to 
develop a semantic web framework for UML models, not deviating from the 
primary UML model but utilizing the model for web-based system applications. 

The study "Automatic Test Case Generation Using Sequence Diagram" provides a 
framework for generating test cases from UML sequence diagrams [8]. This 
proposed framework systematically extracts test cases, ensuring that the generated 
tests reflect the specified behavior of the sequence diagrams [9]. 
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Furthermore, the article "Novel Approach to Transform UML Sequence Diagram 
to Activity" explains a unique methodology for transforming UML sequence 
diagrams into activity diagrams [10]. This approach focuses on preserving the 
behavioral semantics of the original sequence diagram while providing an 
alternative representation that may be more suitable for certain types of analysis and 
experiments. This methodology highlights the flexibility and adaptability of model 
transformations within MDD [11]. 

Therefore, transforming dynamic models into source code is a well-researched area 
within MDD. Our work further elaborates on existing approaches, considering the 
specifics of OAL and xtUML, and contributes to advancing model-driven 
techniques in the broader context of software engineering challenges. 

3 Our Approach 

In the following chapter, we describe the generation of source code from dynamic 
models, particularly sequence diagrams. The methodology consists of the following 
essential pillars and valuable tools: ANTLR for parsing and using the prototypes 
AnimArch and SQD Tunder. 

3.1 Use of ANTLR 

We began with ANTLR (Another Tool for Language Recognition) to parse the input 
JSON files that define the sequence diagrams. An example of the contents of these 
JSON files is shown in Figure 1. ANTLR is a powerful parser generator capable of 
interpreting, processing, executing, or translating structured text [12-13]. Figure 2 
illustrates some of the rules of our parser grammar used by ANTLR for parsing the 
input files defining the sequence diagrams. However, we believed that ANTLR 
might not be as effective as we had anticipated due to the complexity of the input 
JSON files. The sequence diagrams were so complex that they required a more 
custom-tailored solution capable of handling the nuances of our data. 

Error Handling and Edge Cases in Parsing 

To ensure reliable operation and maintain output quality, our parsing process 
incorporates a multi-level error handling and recovery strategy: 

• Lexical errors: Unknown or invalid characters are mapped to a special 
error token. The parser logs the error location (line, column) while 
continuing in panic-mode recovery, allowing other valid parts of the file 
to be processed. 

• Syntactic errors: In lenient mode, we use ANTLR’s DefaultErrorStrategy 
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• For local recovery (token insertion/deletion). In strict mode, we apply 
BailErrorStrategy to stop parsing at the first critical error. 

• Semantic errors: After building the parse tree, we verify semantic 
correctness, including class and method existence, message 
sender/receiver validity and fragment structure consistency. Invalid 
references or malformed elements are reported with suggestions for 
correction. 

Each incident is classified (LEX, SYN, or SEM) and recorded with its type, exact 
position in the source file, and recommended resolution. This approach allows us to 
process incomplete or partially erroneous inputs, generating OAL code from valid 
segments while marking unresolved elements for later revision. 

3.2 Generating OAL Code 

The generation of Object Action Language (OAL) code from sequence diagrams 
represented a core functionality of our method [14]. This process was modelled and 
documented in an activity diagram shown in Figure 3. The individual steps are 
outlined as follows: 

1) Creation of the Sequence Diagram: The sequence diagram was created 
using the SQD Tunder prototype, which saves the diagram into a standalone 
file. This prototype is described in detail in Section 3.3. 

2) Analysis Using ANTLR: We used ANTLR to perform lexical, syntactic, and 
semantic analysis. This process involves generating a lexer to split the input 
file into tokens, creating a parsing tree from these tokens, and traversing the 
parsing tree to collect information necessary for generating OAL code. Error 
handling during this stage is described in Section 3.1. 

3) Pre-processing: Due to the complexity of the sequence diagrams, pre-
processing was required. This step ensures that the parsed data is complete, 
consistent, and ready for translation into OAL code. Our pre-processing stage 
includes: 

4) Normalization: Standardizing class names, lifeline identifiers, and message 
labels (case-insensitive comparison, removal of diacritics) to avoid duplicate 
or mismatched elements. 

5) Structural validation: Verifying that control fragments (LOOP, ALT, OPT, 
PAR) are complete, properly nested, and syntactically correct. Unclosed or 
improperly nested fragments are flagged as errors. 

6) Reference validation: Ensuring that every message has both a valid sender 
and a valid receiver, and that referenced classes or methods exist in the model. 
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7) Default handling: For optional attributes (e.g., missing guard conditions), 
safe default values are applied, and a comment is inserted in the generated 
code (e.g., // default guard: true). 

8) Detection of unused or isolated elements: Identifying lifelines or messages 
not connected to the primary interaction flow. In lenient mode, these are 
retained but marked; in strict mode, they result in process termination. 

9) Error handling in pre-processing: 

All detected issues are logged with their type, location, and recommended fix. 

In lenient mode, non-critical errors (such as missing optional attributes or isolated 
elements) do not stop generation. These elements are either skipped or replaced with 
defaults, and the generated OAL includes // TODO comments. 

In strict mode, any structural or reference error is considered critical and stops the 
generation process to ensure model integrity: 

• Translation to OAL Code: The validated and pre-processed sequence 
diagram elements are translated into OAL code and stored in text files for 
subsequent execution and animation. Any unresolved elements are 
explicitly marked in the output code for later manual review. 

• Integration with AnimArch: The generated OAL code is integrated into 
the AnimArch prototype for animation purposes. This integration assumes 
that the corresponding class diagram has been created and is consistent 
with the sequence diagram to ensure correct animation playback. 

 

Figure 1 
JSON files defining the sequence diagram 

 

Figure 2 
Parser grammar rules 
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3.3 Prototypes: SQD Tunder and AnimArch 

Two prototypes were developed to support the creation and animation of sequence 
diagrams: SQD Tunder and AnimArch: 

SQD Tunder: This tool was used to create sequence diagrams, which were 
subsequently saved into standalone files for further processing. Figure 4 shows an 
example of this prototype. 

AnimArch: Although AnimArch did not directly contribute to generating OAL 
code, it was extended to allow the creation of animations based on the generated 
sequence diagrams. These animations could be run in AnimArch, provided the 
corresponding class diagram had been created beforehand. Figure 5 illustrates the 
animated UML model in the AnimArch prototype. The separation between the SQD 
Tunder model creation interface and the code generation and animation logic in 
AnimArch follows a similar design principle to that of RAIN [15], where the REST 
API layer is decoupled from the asynchronous execution engine. Such separation 
improves responsiveness and enables concurrent processing without blocking user 
interaction. 

 
Figure 3 

Process for Generating OAL Source Code from a UML Dynamic Model Sequence Diagram 
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3.4 Results 

Our approach to transforming sequence diagrams into executable OAL code 
involved multiple phases of validation and refinement. The primary outcomes were 
as follows: 

• Transformation of sequence diagrams: We successfully converted various 
sequence diagrams into OAL code, accurately capturing the dynamic 
behavior. 

• Validation of sequence diagrams: Although validation was not a mandatory 
part of the translation process, sequence diagrams were checked for correct 
behavior. We confirmed their validity based on our predefined rules. In cases 
where the diagrams did not adhere to these rules, the user was notified of the 
discrepancies. 

Figure 4 
A sample of prototype SQD_Tunder 

Figure 5 
Example of running animation of UML model processes in the AnimArch prototype 
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We have successfully developed a robust and reliable process for generating code 
from dynamic models. The complexity of the input data presented significant 
challenges, which led us to adopt a cautious approach to iterative development.  
The following section presents a detailed evaluation and the results of our approach. 

4 Evaluation 

The generated source code in this study was evaluated by comparing the expected 
OAL code with the OAL code generated by our solution. This process required 
several steps, which we will present in the following subsection. Subsection 4.2 will 
show the sequence diagram cases upon which our solution is evaluated. 

4.1 Evaluation Process 

This part presents our evaluation process, summarized in Figure 6. It follows from 
preparing the expected OAL code, generating and comparing the source code, and 
calculating the resulting precision and recall values. 

Preparation of Expected OAL Code 

We received functional OAL codes, from which we had to develop the most 
accurate sequence diagrams to describe them, or the functional OAL code was 
provided directly along with the sequence diagram. Using our method, we utilized 
the provided sequence inputs in each scenario to generate OAL codes. These OAL 
codes served as our benchmarks for relevance during the evaluation process. 

 

 

Figure 5  
Example of running animation of UML model processes in the AnimArch prototype 
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Generation and Comparison 

Through our implementation, we generated source code from the sequence diagram. 
We then compared the expected OAL code with the generated code by counting the 
specific elements. The elements considered included the number of classes, 
methods, instance creations, loops (for each and while), parallel blocks (par 
construct), and terminations of loops, commands, threads, and parallel blocks (end 
construct). 

Comparison Methods 

For comparison, we employed precision and recall metrics. False positives (FP) 
refer to elements in the generated OAL code that did not belong to the expected 
OAL code. In contrast, false negatives (FN) refer to elements missing in the 
generated OAL code but present in the expected OAL code. 

Determination of Precision and Recall Values 

We calculated precision and recall values based on the elements in the expected 
OAL and the generated OAL. Precision was determined as the ratio of correctly 
generated aspects to the total number of generated elements. Similarly, recall was 
calculated as the ratio of correctly generated aspects to the total elements inherent 
in the expected OAL. 

Practical Usability 

We also validated the practical usability of the code generated by our method. This 
process involved evaluating the extent to which the generated code can be integrated 
and effectively utilized within the AnimArch prototype. 

Figure 6 
Activity diagram of the evaluation process  
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4.2 Specific Sequence Diagram Cases 

Extended Evaluation Cases in response to the need for a more comprehensive 
evaluation, we extended our test set to include a broader range of UML sequence 
diagram scenarios reflecting real-world modelling challenges. In addition to the 
original cases, the following new cases were analysed: 

• Nested Parallel and Conditional Flows: A complex diagram combining 
parallel execution paths (PAR) with nested conditional branches (ALT, 
OPT), testing the correct handling of concurrent and conditional 
interactions. 

• Error and Exception Handling: A scenario representing message flows 
interrupted by error conditions and exception signals, assessing the 
system’s capability to model and translate exceptional behaviour. 

• Multi-level Looping Structures: Sequence diagrams with loops nested 
within loops, ensuring correct translation of repetitive interactions with 
varying loop conditions. 

• Integration with External Components: A diagram demonstrating 
asynchronous communication between the primary system and an external 
service, validating message synchronisation and event handling. 

For each case, precision and recall metrics were computed following the 
methodology described in Section 4.1. Results confirmed that the proposed 
approach maintained high accuracy across all scenarios, with only minor recall 
reductions in diagrams involving complex asynchronous flows. These results 
further validate the robustness of the method when applied to a broad spectrum of 
realistic modelling patterns. 

The evaluation included six specific sequence diagram cases: 

1. Simple Sequence Diagram: Assessed the basic continuous message flow 

2. Order of Messages: Focused on the correct sequence of messages 

3. Sequence Diagram with Fragments: Tested more complex interactions 
within the diagram 

4. Observer Pattern: Evaluated using the observer design pattern 

5. Abstract Factory: Evaluated using the abstract factory design pattern 

6. Parallel Processes: Parallel processing within the abstract factory pattern 
was included 

For instance, in the "Complex Interactions" evaluation case, the complex 
interactions within the sequence diagram were analyzed. The sequence diagram for 
this evaluation case (Figure 7) involves 4 classes: multiple messages distributed 
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throughout the diagram, a LOOP fragment, a nested ALT fragment within the 
LOOP fragment, and an OPT fragment. This diagram is from the book "UML 
Distilled: A Brief Guide to the Standard Object Modelling Language" by M. Fowler 
[16]. As with the other evaluation cases, the precision and recall metrics were 
calculated by comparing the generated and expected OAL codes. The comparison 
of OAL codes is illustrated in Figures 8 and 9. 

Table 1 below compares the number of elements in the generated and expected OAL 
codes. 

Figure 7 
Sequence diagram used in the third evaluation case (Complex Interactions) [16] 

Figure 8 
Sample of expected code for the 3rd evaluation case  

Figure 9 
Sample of the generated code for the 3rd evaluation case 
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As mentioned earlier, we calculated the precision and recall metrics to evaluate the 
accuracy of the generated OAL code. Precision was defined as the ratio of correctly 
generated OAL code elements to the total number of generated elements. Recall 
was defined as the ratio of correctly generated OAL code elements to the total 
number of elements in the expected OAL code. 

In this evaluation, the value for True Positives (TP) was 21, for False Positives (FP) 
was 0, and for False Negatives (FN) was 2. 

Table 1 
Comparison of the number of code elements in the 3rd evaluation case 

OAL Code Elements Number o f  Elements  
in Expected Code 

Number o f  Elements 
in Generated Code 

Class 4 4 
Method 4 4 
Instance Creation 3 3 
Method Call 3 3 
for each Loop 1 1 
if Statement 2 2 
else Statement 1 1 
end Construct 3 3 
Class Attributes 2 0 
All Elements 23 21 

Using these values, the precision and recall were calculated as follows: 

Precision  = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

= 21
21 + 0

= 1.0                 (1) 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 =  21
21 + 2

= 21
23

 ≈  0.91   (2) 

A high recall value indicates that the generated code contains no extraneous 
elements. In contrast, a slightly lower recall value suggests the absence of some 
elements compared to the expected OAL code. However, this gap does not imply 
the incompleteness of our approach; instead, it is a result of the limitations of the 
SQD_Tunder prototype in certain aspects. Specifically, the SQD_Tunder prototype 
does not support representing more complex structures, such as lists or assigning 
elements to variables. Therefore, the lower recall metric reflects the mentioned 
prototype's limitations, not our approach's shortcomings. 

4.3 Overall Evaluation Results 

The metrics analysis demonstrated that our developed method is applicable within 
the context of the AnimArch prototype. Comparison with the expected OAL code 
revealed only minor deviations in recall and precision metrics, indicating that the 
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approach can generate source code from sequence diagrams with a high degree of 
accuracy under the tested conditions. 

The precision and recall results suggest that the method performs effectively for the 
evaluated cases, covering relevant elements identified and retrieved during the 
process. The expected OAL codes were used as relevance judgments to provide a 
consistent reference for comparison; however, we recognise that this measure 
reflects alignment with a predefined target output rather than serving as an absolute 
proof of system effectiveness. 

While earlier evaluation was conducted on a single representative example, we have 
now extended the set of evaluation cases to include a broader variety of sequence 
diagram structures (see Section 4.2). This expansion provides a stronger basis for 
assessing the method’s performance, though further large-scale testing on 
industrial-scale models would be needed to make definitive claims about robustness 
across all modelling scenarios. 

The results indicate that the proposed approach is particularly suitable when the 
UML diagrams do not require code structures that are currently unsupported by the 
SQD Tunder prototype. For mapping more complex constructs into OAL code, the 
prototype would need to be extended in future work. 

Conclusions 

During this research, we developed and validated functionalities for generating 
source code from UML sequence diagrams in the OAL language for use within the 
AnimArch prototype. Our work represents a significant step forward for the future 
development of the AnimArch prototype [17], providing a robust and reliable 
foundation for further model-driven engineering research. The proposed method 
achieved high accuracy in transforming dynamic models into executable code, as 
confirmed by precision and recall analysis across a diverse set of evaluation cases. 

The practical value of adaptive modelling and code generation approaches is further 
illustrated by related work such as Scalable Real-Time Confusion Detection for 
Personalized Onboarding Guides [18], which demonstrates the successful 
deployment of real-time user behaviour analysis in large-scale, multi-user 
environments. This alignment with real-world applications underscores the broader 
applicability of our approach within software engineering practice. 

Future work will focus on extending the SQD Tunder prototype to support more 
complex code structures, such as lists, variable assignments, and advanced control 
flows, as well as on large-scale evaluation with industrial-grade models. These 
developments will further enhance the precision, coverage, and usability of the 
system, strengthening its role as a reliable tool for transforming UML sequence 
diagrams into executable OAL code within model-driven development workflows. 
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