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Abstract: Three-axis magnetometers are widely used in the field of localization in both 

outdoor and indoor environments. However, magnetic field measurements are disturbed by 

the presence of metallic objects due to the soft and hard-iron effects. To neglect these effects, 

a compensation technique is required, and, in this article, different solutions are proposed 

and evaluated to compensate for the disturbance effects of metallic objects with known 

fingerprints. These techniques exploit an already presented concept in the literature that is 

able to provide the compensation values of a known detected object using the distance and 

angle as inputs to a single hidden layer Artificial Neural Network (ANN). In this work, unlike 

the original proposal, each new presented technique exploits a modified or a different soft 

computing tool, such as a double hidden ANN, a Fuzzy Inference System (FIS), and an 

Adaptive Neural FIS (ANFIS). The techniques were tested with real measurements of three 

different objects, and the performances of the techniques were compared using the maximum 

errors, the Mean Absolute Errors (MAEs) of every single component, and the total MAEs. 

Overall, among them, only the ANN techniques and the ANFIS provided acceptable results. 

More precisely, the former provided maximum errors in the range between 0.3 μT and 3.8 

μT, and MAEs in the order of 0.07 μT, whereas the latter was the one that provided the best 

performance, giving a residual maximum error in the order of 10 -3 μT and an MAE in the 

order of 10 -5 μT. 
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1 Introduction 

Magnetometers are widely used in the field of both localization and tracking, and 

are adopted in several applications such as permanent magnet localization [1] [2], 

underwater object tracking [3], creation of magnetic maps [4], localization of 

pedestrians [5], smartphone-based indoor positioning [6], indoor navigation 

systems [7], tracking of vehicles [8], tracking of metallic targets [9], magnetic 

fingerprint-based robot localization [10] [11], enhanced dead-reckoning 

localization method for skid-steering robots [12], or detection of unexploded 

ordnance [13]. 

The magnetic data can be fused with data from other sensors, like gyroscopes and 

accelerometers, to estimate the robot pose [14] or to estimate the velocity [15]. It 

can also be combined with data from other systems, such as the Global Navigation 

Satellite System (GNSS) [16], or with radio modules [17] [18]. 

Three-axis magnetometers are used in both outdoor and indoor environments. In the 

former, the sensor is used as a compass and provides the orientation with respect to 

the global localization frame [19]; moreover, outdoor measurements of the 

geomagnetic field are usually not affected by disturbances, and magnetometers can 

be used more reliably. In indoor applications, such an approach cannot be adopted 

because of the presence of metallic objects, furniture, and building structures; these 

sources introduce the soft and hard-iron effects, which manipulate the geomagnetic 

field and make the measurements unreliable. Despite this issue, many solutions 

based on different ideas have been proposed in the literature to exploit 

magnetometers for localization and orientation purposes, such as the magnetic 

fingerprint approaches [20], or the use of magnetic information fused with other 

sensors (accelerometer, gyroscope, odometer) to help the system in the attitude 

estimation [21] [11] [14]. However, to reliably use the magnetic information in 

indoor and outdoor environments when a metallic object can affect the 

measurement, compensation for the disturbances is needed. 

In the literature, there are some proposals for magnetic disturbances compensation. 

Authors in reference [22] deal with soft and hard-iron effects generated by metallic 

components or strong electrical currents in underwater vehicles where the space for 

mounting magnetic sensors is limited; they focused on the compensation for the 

static soft and hard-iron effects generated by the robot itself due to the structure and 

the permanent magnets of the motors, and the compensation for the dynamic hard-

iron effects generated by strong current consumptions in cables near to the 

magnetometers. Static effects have been compensated using a calibration procedure, 



Acta Polytechnica Hungarica Vol. 22, No. 1, 2025 

‒ 241 ‒ 

whereas dynamic effects are filtered out by an algorithm that uses the information 

from multiple distributed small sensors installed on the vehicle; the filtering 

algorithm is based on the idea that in some cases distortions can affect only the flux 

density (strength component) and preserve the direction even if the disturbance is 

high, and vice versa, in some other cases distortions can affect only the direction 

and preserve the flux density. Based on these considerations, it is possible to 

estimate the probability of how a magnetometer in the array is disturbed; the flux 

density is modelled as a Gaussian distribution, whereas the three-dimensional 

direction component is modelled using the von Mises-Fisher distributions.  

The proposed approach compensates only for the disturbances produced by the 

robot itself, and it cannot deal with any external interference due to ferromagnetic 

objects. 

In reference [23], authors deal with dynamic magnetic field distortions generated 

by the robot itself due to a change in the posture or a different current consumption. 

This type of problem arises in systems where it is not possible to install 

magnetometers far away from the sources of the distortion or in robots equipped 

with many moving parts (such as multiple legs or/and harms) that can change the 

configuration and modify the distribution of the soft and hard-iron effect sources. 

They propose a solution based on Machine Learning (ML) that is able to learn the 

model of the magnetic field distortions and provide the needed compensation.  

The idea is to use the ambient magnetic field to estimate the orientation or 

localization after compensation for the dynamic disturbances. The configuration of 

a robot can be inferred either using the proprioceptive sensor data or using an array 

of distributed magnetic sensors (as done in reference [22]). They adopt a multi-

target function regression approach, proposing two solutions: the first one based on 

a Support Vector Regression (SVR) and the second one based on a Multi-Layer 

Perceptron (MLP) regression. The inputs of the function regression systems are the 

posture, the current consumptions of the motors, and the configuration of the robot; 

the outputs are the compensations of the magnetic field. The proposed system is 

able to deal with self-induced disturbances, but it cannot compensate for distortions 

induced by external metallic objects. 

The authors in reference [6] adopt a magnetic fingerprint approach for the indoor 

localization of smartphones. The system uses Magnetic Field Magnitude (MFM) 

features that are generated by distortions of the geomagnetic field due to the 

presence of pillars, escalators, and large iron furniture. However, the magnetometer 

measurements are influenced by soft and hard-iron effects generated by the Printed 

Circuit Board (PCB) of the device itself. To deal with this problem and estimate the 

indoor magnetic field, authors derive the inverse model of the magnetometer 

measurement that enables compensation for the introduced errors. The proposed 

model considers additive and multiplicative interferences. The former includes the 

hard-iron effect and the sensor offset, whilst the latter includes the soft-iron effect, 

magnetometer nonorthogonality, and unequal gains. The proposed solution is able 

to compensate only for the disturbances introduced by the smartphone board itself, 
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and it cannot deal with soft and hard-iron effects introduced by further metallic 

objects that modify the magnetic features collected during the offline phase of the 

fingerprint approach. 

In reference [24], the authors of the paper proposed a system for the neglection of 

disturbances induced by known metallic objects that are detected by a different 

technology, such as a stereo vision system or LiDAR; such technologies are able to 

identify the known objects and provide the distance and the angle between the object 

and the robot in the reference frame of the object itself. Then, an MLP neural 

network is used to estimate the disturbances generated by the known metallic object. 

The inputs of the Artificial Neural Network (ANN) are the distance and the angle, 

and the outputs are the three components to compensate for the disturbance of the 

known ferromagnetic object. The proposed concept considers only one type of ANN 

architecture and doesn’t consider double hidden layer structure or other types of 

soft-computing tools that could be adopted to solve the problem. 

Besides the aforementioned articles, the literature also proposes inference systems 

for localization purposes based on fuzzy techniques and magnetometers. In 

reference [25], the authors use the information from a three-axis gyroscope and a 

three-axis magnetometer that are provided as input to a combined Fuzzy Inference 

System (FIS) compensation and Kalman Filter (KF) system to estimate the relative 

and absolute orientation angles of the robot with high accuracy. Reference [26] 

proposes a system for an autonomous robot based on Adaptive Neuro FIS (ANFIS) 

that navigates in the north direction and it is able to avoid obstacles; the neuro 

system fuses the sensor information from a magnetic compass and a sonar; the 

former needs to determine the target angle and the latter needs to identify the 

obstacle. In reference [27], authors deal with the estimation of the orientation 

problem for Unmanned Aerial Vehicles (UAVs); their solution fuses the 

information from a three-axis gyroscope, a three-axis magnetometer, and a visual 

navigation system using a Complementary KF combined with fuzzy logic to adjust 

the gain of the filter to improve the robustness and accuracy of the system. In 

reference [28], the authors focus on a system for pedestrian localization by fusing 

information from the Global Positioning System (GPS), a digital compass 

consisting of a 3-axis semiconductor magnetometer and two tilt sensors, and an 

orientation tracker composed of a three-axis gyroscope, a three-axis accelerometer, 

and a three-axis magnetometer. The information from the digital compass and the 

orientation tracker is fused using a fuzzy system that provides an output that is fused 

with the GPS signal using an Extended KF (EKF). The rules of the fuzzy system 

determine how to combine the orientation data from the two sensors and decide 

whether to consider both or only one of them at a time. Authors in reference [29] 

deal with indoor smartphone localization adopting a magnetic fingerprint approach; 

they compensate for the soft and hard-iron effects introduced by the device itself 

and use a Fuzzy K-nearest neighbour classifier (described in [30]) to estimate the 

position. References [25] - [29] exploit magnetic information and also adopt the 
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fuzzy logic tool, but do not aim to deal with ferromagnetic disturbances 

compensation. 

From a mathematical point of view, to solve the problem of disturbance 

compensation, different nonlinear modelling approaches can be adopted. In the 

literature, there are many proposals to deal with nonlinear modelling problems, and 

some valuable examples are the following. The authors in reference [31] proposed 

a system for the mobile robot pose estimation based on a specific algorithm that 

exploits the differences between the real sensor readings (from a laser scanner 

technology) and the virtual (or simulated) sensor readings obtained from a known 

map of the environment of work; the algorithm estimates the pose by looking for 

the best match between the two types of readings. In reference [32], a new concept 

for the parameters estimation of the nonlinear model of photovoltaic cells is 

proposed, and it is based on a Balancing Composite Motions Optimization (BCMO) 

technique that allows to model the system by minimizing the Root Mean Square 

Error (RMSE) between the experimental and simulated data. The authors in 

reference [33] proposed two nonlinear estimation approaches that are based on an 

EKF and a Takagi-Sugeno Fuzzy Observer, respectively; they deal with the control 

process of a Strip Winding System that is a nonlinear system characterized by a 

variable reference input, a variable moment of inertia with a constant increasing 

tendency, and variable parameters. Alternatively, the class of nonlinear modelling 

can also be addressed by adopting approaches based on multilayer neural networks 

as proposed in [34], in which the authors exploited an ANN to describe the 

relationship between the pollution rank and the geographic coordinates. 

In agreement with all the aforementioned articles and to the best knowledge of the 

authors, the State-Of-the-Art (SOA) of the compensation for the soft and hard-iron 

effects can be summarized as reported in Table 1. 

By observing Table 1, it is possible to note that the literature offers some different 

approaches for magnetic disturbances compensation but the proposed solutions in 

reference [22], [23], and [6] don’t deal with the compensation for disturbances 

introduced by external ferromagnetic objects, and therefore those proposals can be 

effected by external soft and hard-iron effects. On the other hand, only reference 

[24] proposed an approach to compensate for magnetic disturbances induced by a 

known metallic object, but the authors considered only a solution with a single 

hidden layer ANN without considering other soft-computing tools that might 

improve performances. 

This paper aims to estimate the magnetic disturbances induced by a known metallic 

object in systems for robot localization purposes. By adopting the main concept 

based on an ANN proposed in reference [24], new techniques based on different 

soft computing-based tools are proposed to estimate the magnetic disturbances for 

a known object. The paper exploits the capabilities of a double hidden layer ANN 

(which is the extension of the single layer ANN proposed in reference [24]), a FIS 

and the ANFIS approaches. The choice of these soft-computing tools is due to their 

flexibility and their capability to deal with nonlinear systems. 
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The main contributions of this article can be summarized as follows: 

• Three novel approaches, respectively based on a double hidden layer ANN, a 

FIS and an ANFIS, are proposed to neglect disturbances induced by known 

metallic objects; they are based on the main concept proposed in reference [24]. 

• The obtained results by using the technique in reference [24] and all techniques 

here proposed are compared to each other evaluating their performances based 

on measured magnetic fingerprints of multiple objects. 

The rest of the paper is organized as follows. Section 2 summarizes the exploited 

concept, and reports the used measurement data. Section 3 introduces the proposed 

techniques for the identification and compensation of magnetic disturbances. 

Section 4 reports all obtained results and provides a comparison among them. 

Finally, the conclusion summarizes the developed work and provides future work 

plans. 

2 Exploited Concepts and used Measurement Data 

The proposed techniques in this article aim to provide the value of the three 

magnetic disturbance components induced by a known metallic object in order to 

compensate for the magnetometer measurements. The techniques exploit the 

concept proposed in reference [24] and adopt the same basic assumptions. More 

Table 1 

Summary of the SOA of the compensation for magnetic disturbances 

Reference Aim of the proposal Drawback of the proposal 

[22] 

(i) To compensate for the static soft 

and hard-iron effects generated by the 

robot itself due to the structure and the 

permanent magnets of the motors. 

(ii) To compensate for the dynamic 

hard-iron effects generated by strong 

current consumptions in cables near to 

the magnetometers. 

It cannot deal with any external 

disturbance induced by 

ferromagnetic objects. 

[23] 

To deal with dynamic magnetic field 

distortions generated by the robot itself 

due to a change in the posture or a 

different current consumption. 

It cannot deal with any external 

disturbance induced by 

ferromagnetic objects. 

[6] 

To compensate for the disturbances 

(soft and hard-iron effects) induced by 

PCB. 

It cannot deal with any external 

disturbance induced by 

ferromagnetic objects. 

[24] 
To compensate for the disturbances 

induced by known metallic objects 

Only one type of soft computing 

tool was considered.  
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precisely, it is supposed to have a robot equipped with a technology (e.g., stereo 

vision system, LiDAR, etc.) that can detect the known metallic object and provide 

the distance 𝑑 and angle 𝛼 in the reference frame of the object; the two variables 

are given as inputs to a soft-computing technique that gives as outputs the three 

components of the disturbance. The concept is summarized in Figure 1 [24], where 

it is possible to see (i) the schematic of the robot with a magnetometer sensor S and 

the object (in red), and (ii) the input and output variables diagram for a generic soft-

computing technique. 

 

In order to obtain the compensated measurement vector 𝑩, the generated outputs 

𝑩𝑐 provided by the soft-computing techniques need to be subtracted from the 

magnetometer outputs 𝑩𝑚, and it is given by the following vectorial equation: 

𝑩 = 𝑩𝑚 − 𝑩𝑐.        (1) 

Furthermore, it is supposed that the magnetic fingerprint (or disturbances) of a given 

metallic object is known, is time-invariant, and can be calculated by adopting the 

technique proposed in reference [35]. By adopting such an approach, in each point 

of the space around an object the disturbances are obtained by subtracting the 

magnetic field measured during the undisturbed scenario from the magnetic field 

measured during the disturbed one, and it is given as: 

𝑩𝑓𝑝 = 𝑩𝑑𝑠 − 𝑩𝑢𝑠       (2) 

where 𝑩𝑓𝑝 is the magnetic field vector of the fingerprint, 𝑩𝑑𝑠 is the magnetic field 

vector of the disturbed scenario, and 𝑩𝑢𝑠 is the magnetic field vector in the 

undisturbed scenario. 

As done in reference [24], three metallic objects were investigated: (i) a fluxmeter, 

(ii) a C-shape structure, and (iii) a complex object composed of two C-shape 

structures. For each of them, the magnetic fingerprint was measured using the 

HMC5883L three-axis magnetometer digital sensor that was installed as an End 

Effector on the ABB IRB 140 industrial robotic arm; the three axes of the sensor 

frame are parallel to the three axes object frame. In Figure 2, the used measurement 

setup to obtain the magnetic disturbances and the investigated objects are shown. 

 

Figure 1 

On the left, the scheme of the robot and the detected known object (in red) with its reference 

frame; on the right, the soft computing tool with its input and output variables [24]. The three 

outputs are the three components of the vector 𝑩𝑐. 
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For each object, an area of 40 × 40 cm was considered where in the middle the 

object under investigation was placed. Samples were collected along 41 straight 

trajectories, in points spaced 1 cm from each other generating a grid. To avoid 

collision between the end effector and the object, some samples were not recorded 

in a limited square area around the object itself. The applied sampling rate was 50 

Hz and, in each considered point of the grid, 100 samples were recorded and 

averaged to reduce the effect of noise. For example, the 2-dimensional heat maps 

of the three components of object 2 are reported in Figure 3. The white square areas 

in the middle of the pictures represent the space where measurements were not 

recorded due to the presence of the object itself. 

In order to provide a better comprehension of the entire method related to the 

technique proposed in reference [24] and the techniques here proposed, Table 2 

summarizes all steps, providing a complete view of the whole procedure. 

Figure 2 

Measurement setup for the magnetic disturbances with investigated objects 

Object 1 Object 2 Object 3Sensor

 

Figure 3 

The heat maps of the fingerprint of the object 2. The color bar values are μT 
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Table 2 

Summary of the procedure 

Step Schematic representation Description 

1 

 

Measurements of the 

magnetic field with 

and without the 

presence of the 

investigated object. 

2 

 

Extraction of the 

object disturbance (or 

fingerprint) by 

applying equation 2. 

3 

 

Designing and training 

of a soft compute 

technique by using the 

obtained fingerprint at 

Step 2. 

4 

 

Offline test of the 

designed technique. 

Direct comparison 

between 𝑩𝑓𝑝 and 𝑩𝑐  , 

and estimation of the 

errors. The 𝑑 and 𝛼 

variables are in 

relation to the position 

of each point of the 

grid. 

5 

 

Online test in which 

the variables 𝑑 and 𝛼 

are provided by the 

detection system. 
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3 Proposed Compensation Techniques and Tested 

Algorithms 

Differently from the proposed technique in [24], in which an MLP ANN with only 

one hidden layer was adopted as a soft-computing technique, in this paper, the 

original concept was modified by using different soft computing tools and 

proposing three new techniques that exploit an MLP with two hidden layers, the 

FIS, and the ANFIS. The authors made the implementations publicly available in 

the Supplementary Online Material [36] in order to help other lab teams in the 

development of similar algorithms. The algorithms are presented as follows. 

3.1 Artificial Neural Network 

By considering the block diagram in Figure 1, an MLP ANN architecture composed 

of an input layer, two hidden layers (with the same number of neurons), and an 

output layer, is adopted. Each neuron in each layer is fully connected with each 

neuron in the next one. Both the distance and angle of the identified object are given 

as inputs at the first layer. As for the two hidden layers, the used activation functions 

are sigmoids and different numbers of neurons between 1 and 100 were tested to 

find the optimal setup. The final layer provides the outputs, which are the three 

components of the estimated disturbance; the linear activation function is applied in 

this layer. The training process is conducted using the Levenberg–Marquardt 

backpropagation and providing as target data the 𝑩𝑓𝑝 values of the fingerprint. To 

evaluate the performances of each trained architecture, the Mean Squared Error 

(MSE) is used, and, as done in reference [24], the training data are obtained 

considering 70% of the grid points and using the other 30% for the validation 

process. Such a training/testing ratio of 70/30 is an empirical data splitting value 

that is largely accepted in literature to avoid overfitting [37]. In Figure 4, the 

adopted architecture is shown. In addition, it is specified that such an architecture 

choice is based on the author’s experience and on the work developed in reference 

[24]. 

3.2 Fuzzy Inference System 

The original idea to use an ANN is modified, and the MLP is substituted with three 

Mamdani FISs (one for each component of the magnetic field).  
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Distance and angle inputs are given to a function 𝐹(𝑑, 𝛼) that provides as outputs 

the coordinate (𝑥, 𝑦) of the object in the object reference frame. Then, the position 

coordinates are given as inputs to the FISs which provide as output the three magnetic 

components of the compensation values, i.e., 𝐵𝑋𝑐, 𝐵𝑌𝑐, 𝐵𝑍𝑐. The function 𝐹(𝑑, 𝛼) is 

given as: 

𝐹(𝑑, 𝛼) = {
𝑥 = 𝑑 ∙ 𝑐𝑜𝑠 (𝛼)
𝑦 = 𝑑 ∙ 𝑠𝑖𝑛 (𝛼)

      (3) 

The architecture of the FIS technique is reported in Figure 5, whilst in Figure 6 an 

example of one of the three FIS structures used in the technique is shown for the 

component 𝐵𝑋𝑐. 

For each component of the magnetic field, the FIS is designed with 11 Membership 

Functions (MFs) per input because, considering the investigated area around the 

object, i.e., a squared area with 41 trajectories and 41 points per each trajectory, the 

coordinates at every 4 cm both along 𝑥 and 𝑦 were chosen as reference coordinates; 

this choice gives rise to 11 MFs per each input. It is highlighted that the higher the 

number of MFs, the higher the resolution, and a such high number of MFs was due 

to obtaining results comparable with the other investigated techniques. 

 

Figure 5 

The overall architecture of the FIS technique 
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Figure 4 

The architecture of the two hidden layers ANN 
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Furthermore, the chosen MFs are Gaussian, and they have as average one of the 

reference coordinates (either along 𝑥 or 𝑦), and as variance a value of 1.75 cm2 that 

was obtained by empirical trials. Different types of MFs, such as triangular or 

trapezoidal, were also tested, but they provided worse results than the Gaussian 

function, which gives the lowest maximum absolute error using the chosen variance. 

The input MFs for the 𝑥 and 𝑦 coordinates are set in the same manner, and, as an 

example, the 𝑥 input MFs are reported in Figure 7. 

 

Figure 6 

The structure of the FIS only for the component 𝐵𝑋𝑐 
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  c
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Figure 7 

The 11 input MFs for the component 𝑥 
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The output MFs are obtained by discretizing the magnetic field range of the 

disturbance, i.e., the 𝑩𝑓𝑝 values of the fingerprint, with steps of 1 µT between the 

minimum and the maximum of each component and for each investigated object. 

The used function is trapezoidal with the minor base of 0.4 µT and the major base 

of 0.42 µT that were obtained by empirical trials. Also, different types of functions, 

such as triangular and Gaussian, were tested, but the trapezoidal one provided the 

best performance. Furthermore, a high number of MFs was needed to obtain 

performances that are comparable with the other techniques. Because each object 

and each component are different, many sets of output MFs are developed, and as 

an example, the output MFs for the component 𝐵𝑋𝑐 of the object number 2 is 

reported in Figure 8. 

The used designing software is the Fuzzy Logic Designer tool of MATLAB. For 

each FIS, a total of 112 rules generated using each trajectory and each considered 

point of the area under investigation were entered, and they are given as: 

If (Point is pnt1) AND (Trajectory is trj1), then (BX is B0)   (4) 

where pnt1 and trj1 are respectively the 𝑥 and 𝑦 reference input coordinates, BX is 

the variable of the output, and B0 is the selected value for the entered reference 

coordinate. It is noted that the number of total rules is not equal to 121 (obtained by 

multiplying the number of the MFs: 11 × 11) as it could be expected because in the 

space occupied by the object, it is not possible to measure the magnetic 

disturbances. Finally, the obtained FIS surface of the component 𝐵𝑋𝑐 of the object 

number 2 is reported in Figure 9 as an example. 

 

Figure 8 

The output MFs for the component 𝐵𝑋𝑐 
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3.3 Adaptive Neuro Fuzzy Inference System 

In this technique, the FIS blocks described in the previous paragraph are substituted 

with ANFIS blocks holding the same overall architecture as shown in both Figure 

5 and Figure 6. For each component of the magnetic field and each investigated 

object, two types of techniques were designed: the first one with 11 MFs for each 

input (referred to as ANFIS 11), and the second one with 41 MF (referred to as 

ANFIS 41). 

Both of them are designed with the Neuro-Fuzzy Designer Toolbox of MATLAB. 

As ANFIS 11, the train data for each component and each object are generated by 

the magnetic fingerprint of the object itself by extracting the value of the disturbance 

by considering points spaced of 4 cm along each axis as done for the FIS technique. 

Then, the neuro system is set with 11 triangular MFs for each input and a constant 

 

Figure 9 

The FIS surface of the component 𝐵𝑋𝑐 (object 2) 

 

Figure 10 

The architecture of ANFIS with a generic number of MF for the component BXc 

BXc

x

y

input inputMF rules outputMF output
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MF as output; the set optimization technique is hybrid with 1000 training epochs, 

and the convergence is reached after about 650 epochs with a relative training error 

in the order of a few 10-6 µT for each component and each object. As ANF S 41, 

the same steps are adopted, but with the difference that each of the 41 trajectories 

and each of the 41 points in each trajectory are considered and used as training data. 

The neuro system is set with 41 triangular MFs for each input and a constant MF as 

output; the set optimization technique is hybrid with 100 training epochs; the 

convergence is reached after a few epochs with a relative training error in the order 

of a few 10-6 µT for each component and each object. As example, in Figure 10, the 

structure of the used ANFIS for both the 11 and 41 techniques is reported for the BX 

component. 

4 Tests 

For each considered object, the error between the measured value of the disturbance 

and the estimated one by adopting one of the proposed techniques is given as: 

𝑒𝐼(𝑥, 𝑦) = 𝐵𝐼𝑓𝑝(𝑥, 𝑦) − 𝐵𝐼𝑐(𝑥, 𝑦)      (5) 

where, for the considered object, 𝐼 identifies one of the three components of the 

magnetic field, 𝑒𝐼 is the error of the 𝐼-th magnetic component, 𝑥 and 𝑦 are the 

coordinates of the tested points, and 𝐵𝐼𝑓𝑝(𝑥, 𝑦) and 𝐵𝐼𝑐(𝑥, 𝑦) are the 𝐼-th magnetic 

field component of the measurement and the provided compensation, respectively. 

The used evaluation parameters to evaluate the performance of each technique are 

the Mean Absolute Error (MAE) of each component and the total MAE. The former 

is computed using the following equations: 

𝑒𝑀𝐴𝐸_𝐼(𝑥, 𝑦) =
1

𝑁
(∑ ∑ |𝐵𝐼𝑓𝑝(𝑥, 𝑦) − 𝐵𝐼𝑐(𝑥, 𝑦)|𝑦𝑥 )    (6) 

where 𝑁 is the total number of measured points in the area. The latter is given as: 

𝑒𝑀𝐴𝐸_𝑡(𝑥, 𝑦) =
1

3𝑁
(∑ ∑ (∑ |𝐵𝐼𝑓𝑝(𝑥, 𝑦) − 𝐵𝐼𝑐(𝑥, 𝑦)|𝐼 )𝑦𝑥 )   (7) 

The obtained MAEs of each proposed new technique, the original single hidden 

layer ANN in reference [24], and the case without any compensation were 

investigated to compare the performances. It is outlined that the proposed concepts 

have been tested offline because no real robot localization system has been 

implemented. In other words, the proposed concepts were tested by providing the 

distance and angle as inputs; then, the provided outputs of each technique were 

compared with the value obtained by measuring the fingerprint of the known 

metallic object. These tests aim to validate the theoretical feasibility of the concepts. 

As for the double hidden layer ANN technique, the trend of the total MAE as a 

function of the number of neurons is reported in Figure 11. The graph shows that 
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the convergence is reached very soon for the second and third objects (about after 

15 neurons), whereas the first one has a more complex trend with some sudden high 

spikes before the stabilization that is reached at 40 neurons. After convergence, the 

first and the second objects show an irregular trend after 51 neurons where some 

little spikes are present until the end of the investigated neurons. The strange 

behaviour is more marked for the first object which had a stranger trend also in the 

results obtained in reference [24] for a single hidden layer. However, to compare 

the performances among other techniques here proposed, the number of neurons 

that provides the lowest total MAE for each architecture and each object has been 

chosen, and their values are summarized in Table 3, where the numbers for the 

single hidden layer are reported as well. In other words, for each object, only the 

architecture (with a specific number of neurons) that provides the best results is 

considered. 

In general, by considering the data in Table 3 and the results in Figure 11, it is 

possible to note that the ANN convergence depends on the considered object and 

the number of considered hidden layers. 

Error trends are calculated using equation (5), and, as an example of the obtained 

outputs, the trends of the X component of object 2 for each technique are reported 

in Figure 12-16. The square area inside the graph at the centre where the error is 

Table 3 

Number of neurons for each tested ANN architecture and for each tested object 

Object 1 Hidden Layer [24] 2 Hidden Layer 

1 79 36 

2 93 24 

3 69 36 

 

 

Figure 11 

The MAE as a function of neurons for the ANN architecture with two hidden layers 
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zero is the space where the measurements were not collected. Some considerations 

that are in common with all results for each object are the following. In all graphs, 

it is possible to observe an irregular trend of the error with some limited spikes.  

The two MLPs show very similar behaviours, even though the double hidden layer 

ANN has several spikes less than the single one. FIS shows a very coarse trend, but 

it is expected because the number of MFs is limited. A little bit better for ANFIS 

11, but the limitation in the MFs gives rise to a trend that is very similar to FIS. As 

ANFIS 41, the scale of the error is three orders less than the others and it shows to 

be the most accurate whatever the considered object. 

 

Figure 13 

The error of component 𝐵𝑋. (object 2) for the ANN technique with two hidden layers 

 

Figure 12 

The error of component 𝐵𝑋. (object 2) for the ANN technique with one hidden layer 
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Figure 14 

The error of component 𝐵𝑋. (object 2) for the FIS technique 

 

Figure 15 

The error of component 𝐵𝑋. (object 2) for the ANFIS 11 technique 

 

Figure 16 

The error of component 𝐵𝑋. (object 2) for the ANFIS 41 technique 
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For instance, as for object 2, Figures 17-18 report the component 𝐵𝑋 of the 

disturbance that is, respectively, obtained by measurements and by adopting ANFIS 

41. The latter is obtained by providing inputs every 0.5 cm that is less than the 

measurement resolution. 

All obtained maximum errors and MAEs of the original technique, of each new 

proposed technique, and the case without any compensation are reported in Table 

4-5 as a summary of the obtained results. 

 

Figure 17 

The measured fingerprint component 𝐵𝑋𝑓𝑝. (object 2) 

 
Figure 18 

The generated fingerprint component 𝐵𝑋𝑐. (object 2), by adopting ANFIS 41 
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The data are divided into the errors related to each object and each component. By 

evaluating the tables, it is possible to infer that performance depends also on the 

investigated object besides the considered technique. Very meaningful is the case 

of object 1, where FIS provides, as the worst case, a maximum error of 50.682 𝜇T 

for the 𝐵𝑌 component that is slightly improved by using ANFIS 11 which provides 

28.2031 𝜇T; they are of the same order of magnitude as the case without any 

compensation and, therefore, cannot be considered acceptable. Altogether, object 1 

is the hardest to compensate for the disturbance for all techniques, and acceptable 

maximum errors are provided only by ANNs and ANFIS 41 techniques, which 

provide the worst maximum errors of 3.8310 𝜇T and 2.3258 10-3 𝜇T, respectively. 

As for the MAE of object 1, FIS is not able to significantly compensate for the 

disturbance because it gives errors in the order of a few 𝜇T which are comparable 

to the case without any compensation; on the contrary, FIS 11 works better, giving 

Table 4 

The maximum errors for all techniques and Objects 

All values in μT 

X axis 

O
b

je
ct

 

B
ef

o
re

 

co
m

p
en

sa
ti

o
n

 

A
ft

er
 A

N
N

 

co
m

p
en

sa
ti

o
n

 

1
 h

id
d

en
 l

a
ye

r 

[2
4

] 

A
ft

er
 A

N
N

 

co
m

p
en

sa
ti

o
n

 

2
 h

id
d

en
 l

a
ye

r 

A
ft

er
 F

IS
 (

1
1

 

M
F

 p
er

 I
n

p
u

t)
 

co
m

p
en

sa
ti

o
n

 

A
ft

er
 A

N
F

IS
 

(1
1

 M
F

 p
er

 

In
p

u
t)

 

co
m

p
en

sa
ti

o
n

 

A
ft

er
 A

N
F

IS
 

(4
1

 M
F

 p
er

 

In
p

u
t)

 

co
m

p
en

sa
ti

o
n

 

1 68.21 1.6664 1.5438 33.956 9.9701 5.3169 10-4 

2 20.96 0.5341 1.1189 3.1833 2.3106 4.953810-4 

3 14.281 0.3137 0.78114 2.5640 1.3644 4.875910-4 

Y axis 

O
b

je
ct

 

B
ef

o
re

 

co
m

p
en

sa
ti

o
n

 

A
ft

er
 A

N
N

 

co
m

p
en

sa
ti

o
n

 

1
 h

id
d

en
 l

a
ye

r 

[2
4

] 

A
ft

er
 A

N
N

 

co
m

p
en

sa
ti

o
n

 

2
 h

id
d

en
 l

a
ye

r 

A
ft

er
 F

IS
 (

1
1

 

M
F

 p
er

 I
n

p
u

t)
 

co
m

p
en

sa
ti

o
n

 

A
ft

er
 A

N
F

IS
 

(1
1

 M
F

 p
er

 

In
p

u
t)

 

co
m

p
en

sa
ti

o
n

 

A
ft

er
 A

N
F

IS
 

(4
1

 M
F

 p
er

 

In
p

u
t)

 

co
m

p
en

sa
ti

o
n

 

1 52.294 2.4561 3.8310 50.682 28.203 5.2552 10-4 

2 28.319 0.5153 0.55703 5.4384 3.7215 4.8956 10-4 

3 13.713 0.6207 1.1460 2.1824 1.5905 5.1029 10-4 

Z axis 

O
b

je
ct

 

B
ef

o
re

 

co
m

p
en

sa
ti

o
n

 

A
ft

er
 A

N
N

 

co
m

p
en

sa
ti

o
n

 

1
 h

id
d

en
 l

a
ye

r 

[2
4

] 

A
ft

er
 A

N
N

 

co
m

p
en

sa
ti

o
n

 

2
 h

id
d

en
 l

a
ye

r 

A
ft

er
 F

IS
 (

1
1

 

M
F

 p
er

 I
n

p
u

t)
 

co
m

p
en

sa
ti

o
n

 

A
ft

er
 A

N
F

IS
 

(1
1

 M
F

 p
er

 

In
p

u
t)

 

co
m

p
en

sa
ti

o
n

 

A
ft

er
 A

N
F

IS
 

(4
1

 M
F

 p
er

 

In
p

u
t)

 

co
m

p
en

sa
ti

o
n

 

1 110.18 1.5427 2.1531 35.258 18.114 2.3258 10-3 

2 18.222 0.7617 0.88379 3.2117 1.7802 5.1140 10-4 

3 9.5048 0.4085 1.2136 2.4436 1.7178 5.8919 10-5 

 



Acta Polytechnica Hungarica Vol. 22, No. 1, 2025 

‒ 259 ‒ 

in the worst case an MAE of about 0.4 𝜇T. The remaining other techniques, i.e., 

ANNs and ANFIS 41, provide more satisfying results in the order of 0.07 𝜇T and 

10-5 𝜇T, respectively. 

In general, better results are obtained by considering objects 2 and 3; in these cases, 

the two ANNs provide similar performance with an acceptable maximum error in 

the range between 0.3 𝜇T and 1.2 𝜇T and an acceptable MAE in the order of 0.07 

Table 5 

The MAEs for all techniques and Objects 
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𝜇T. FIS and ANFIS 11 provide comparable results, with maximum errors in the 

range between 1.3 𝜇T and 5.4 𝜇T, and MAE errors in the range between 0.12 𝜇T 

and 0.39 𝜇T. Finally, ANIFS 41 provides the best results with a maximum error in 

the order of 10-4 𝜇T and MAEs in the order of 10-5 𝜇T. 

In summary, by considering both maximum errors and MAEs, FIS is the one that 

provided the worst performance (not always acceptable) despite the high number of 

adopted MFs; a little bit better results were provided by ANFIS 11, but they still are 

not always satisfactory. The two ANNs provide similar results for all objects with 

acceptable values that are comparable to each other. They are in the order of a few 

𝜇T and cents 𝜇T for the maximum error and the MAE, respectively. 

In the end, ANFIS 41 provides the best performance, providing good compensation 

for the disturbances and with errors that are at least three orders of magnitude 

smaller than the other ones in all cases. 

Conclusion 

In this paper, four novel techniques for disturbance compensation have been 

proposed. They are a modified version of the technique proposed in reference [24], 

where the original single hidden layer ANN is substituted in each technique, 

respectively, with the double hidden layer ANN, the FIS, the ANFIS 11, and the 

ANFIS 41. Each of them was tested by computing the maximum errors and MAEs. 

The FIS technique is the one that provides the worst performance, particularly for 

object 1, with outputs not always acceptable; similar results a little bit improved are 

obtained with ANFIS 11, but still with poor performance for object 1. The single-

layer and the double-layer ANNs have similar performances for all of the tested 

objects that can be considered altogether acceptable. As for ANFIS 41, it performs 

much better than other techniques, providing error values with a difference of at 

least three orders of magnitude less. Of all the proposed techniques, only the two 

MLP ANNs and ANFIS 41 can be considered suitable for further study by testing 

them in a real-time robotic localization system. In addition, it is specified that in 

this work, the presented new techniques were tested offline because no real 

localization systems have been implemented. However, the results suggest that the 

main concept proposed in [24] and here further developed offers a theoretical way 

to compensate for external magnetic disturbance induced by a known metallic 

object. 

Finally, all the techniques here proposed and considered have the issue that the 

magnetic fingerprint of the identified object must be already known in advance, and 

it is a drawback; for this, future goals are to develop more generic techniques to 

compensate for unknown objects. 
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