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Abstract: The existence of the greatest solutions to some lattice-valued relational equations, 
inequations and their systems is proved in the case of a complete residuated codomain lattice. 
The aim is to structure the existing knowledge and to provide missing results related to 
equations and inequations, where there is only one unknown on every side of the 
(in)equation. We also prove the existence of the least solution, for some equations and 
inequations. By a counter-example, we prove that the minimal solution of some typical 
equations need not exist. We also prove some more general results in the case where we have 
more than one variable on one, or both sides, of the (in)equations. In some cases, when the 
greatest solution need not exist, we prove the existence of a maximal solution. A procedure 
yielding one such solution, is also offered in this paper. 
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1 Introduction 
In the 1960s of the 20th Century, Zadeh defined fuzzy sets as mappings from a 
domain set to the interval [0,1], thus, generalizing the notion of set [18]. Fuzzy 
relations in this context were defined as mappings from the square of the domain 
set to the interval [0,1]. Together with the so-called sup-min composition of fuzzy 
relations, this was also a generalization of the usual, in this context called "crisp" 
relations and their composition. Using this generalized fuzzy relational composition 
and a generalized inclusion, fuzzy relational equations and inequations were defined 
and studied [12]. 



V. Stepanovic et al. A Note on the Solutions to Lattice-valued Relational Equations and Inequations 

‒ 28 ‒ 

Fuzzy relational equations play a crucial role in many areas of fuzzy logic, 
particularly in fuzzy control systems. Since the mid-1980s, interest in fuzzy control 
has grown significantly, beginning with foundational theoretical research and 
followed by practical applications in a wide range of industrial and commercial 
domains. 

A typical fuzzy control system comprises three main stages: input, processing, and 
output. The processing stage often relies on fuzzy IF-THEN rules, which form the 
basis of fuzzy rule-based systems. These rules commonly involve multiple 
antecedents, which are combined using fuzzy operators or represented as fuzzy 
relations. One widely used method, the Mamdani approach, constructs fuzzy 
controllers by deriving a fuzzy relation from real-world control behavior. This 
relation maps input values to output values using appropriate compositional 
inference rules. 

In practical implementations, control objectives often require that specific output 
values correspond to given input conditions. Therefore, a key problem is to 
determine a fuzzy relation that accurately models this input-output mapping. Fuzzy 
relational equations provide a formal framework to address this problem, making 
them essential in the design and analysis of fuzzy control systems [9]. 

In 1967, Goguen further generalized the notions of fuzzy set and fuzzy relation, 
introducing lattice-valued set as a mapping from a domain set to a lattice, and 
lattice-valued relation as a mapping from the square of the domain set to the same 
lattice [4]. Some researchers started to investigate fuzzy set equations and 
inequations in this more general setting [3], and more recently [5] [13]. The sets of 
fuzzy sets and, particularly, fuzzy relations, are seen as lattices related to the 
component ordering, and related to that ordering, we may speak of the greatest, the 
least, or maximal and minimal solutions to fuzzy relational equations and 
inequations. 

The structure of the set of solutions and, particularly, the existence of extremal 
solutions to some fuzzy relational equations and inequations were studied in cases 
where the codomain lattice is of special kinds. The most general case studied is the 
case of a complete codomain lattice [6] [16], or a complete lattice fulfilling some 
additional properties [2] [15]. Some investigations were conducted in the case of a 
complete residuated codomain lattice [5] [10], which is still a very general one, 
since Boolean algebra, complete Brouwerian lattice, Godel and Lukasiewicz 
algebras are special cases of the residuated lattice. Some recent investigations 
pointed out that the computation of minimal solutions is still a complex problem 
[7]. 

The infinite distributivity of the multiplication related to supremum in a residuated 
codomain lattice implies the existence of the greatest solution to some fuzzy 
relational equations and inequations and their systems. Here we are trying to 
systematize many such cases of fuzzy relational equations and inequations. Up to 
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now, the researchers were dealing mostly with classical equations and inequations 
R◦X ( = ,  ≤ , ≥ ) S, with an unknown X (see e.g., [8]). 

We prove that the greatest solution exists in the case of equations and inequations 
in which there is exactly one variable (i.e., unknown) on every side of the 
(in)equation, whether the variable on the left side is equal to or different from the 
variable on the right side of the (in)equation. 

If there is exactly one variable on one side and no variable on the other, the greatest 
solution also exists for all the inequations and all solvable equations. 

By a counterexample, we show that in the case when there is more than one variable 
on one side of the (in)equation, the greatest solution need not exist. 

The results we obtained also apply to the case of a complete Brouwerian codomain 
lattice, that is, a complete codomain lattice in which the infimum is infinitely 
distributive over the supremum. 

As for the least solution, we prove that there exist the least solutions to some 
equations and inequations, namely those that can be expressed in terms of operators 
in the set of fuzzy relations. 

2 Preliminaries 
A lattice 𝐿𝐿 is said to be complete if any subset of L has an infimum and a supremum. 
It is straightforward that the infimum and the supremum are unique. 

A structure (𝐿𝐿,˅,˄,→,⊗,0,1) is a residuated lattice ([1]), if the following holds: 
- (𝐿𝐿,˅,˄) is a complete lattice with greatest element 1 and the least element 0 
- (𝐿𝐿,⊗,1) is a commutative monoid with 1 
- The operations → and ⊗ are connected in the following way: 

 𝑥𝑥 ⊗ 𝑦𝑦 ⩽ 𝑧𝑧 ⟺ 𝑥𝑥 ⩽ 𝑦𝑦 → 𝑧𝑧 

In a complete residuated lattice L, the "multiplication" ⊗ is infinitely distributive 
over supremum, i.e., the following holds: 

𝑎𝑎 ⊗�𝑥𝑥𝑖𝑖 = �𝑎𝑎⊗𝑥𝑥𝑖𝑖
𝑖𝑖∈𝐼𝐼𝑖𝑖∈𝐼𝐼

 

for every 𝑎𝑎 ∈ 𝐿𝐿 and every class {𝑥𝑥𝑖𝑖| 𝑖𝑖 ∈ 𝐼𝐼} ⊆ 𝐿𝐿. 

The operation ⊗ in residuated lattices, fulfils the following: 

𝑎𝑎 ⊗ 0 = 0 ⊗𝑎𝑎 = 0                                                                                              (1) 

Also, ⊗ is order-preserving related to its operands, i.e.: 

𝑎𝑎 ⩽ 𝑎𝑎1 and 𝑏𝑏 ⩽ 𝑏𝑏1⟹ 𝑎𝑎 ⊗ 𝑏𝑏 ⩽ 𝑎𝑎1 ⊗ 𝑏𝑏1 
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If 𝐴𝐴 is a set, an 𝐿𝐿-valued relation on 𝐴𝐴 is a mapping from 𝐴𝐴⨉𝐴𝐴 to a fixed lattice 𝐿𝐿, 
which we call the codomain lattice. The set of all 𝐿𝐿-valued relations of 𝐴𝐴 is denoted 
by ℱ(𝐴𝐴⨉𝐴𝐴). It is a lattice related to the following component-wise ordering: 

𝑃𝑃 ⩽ 𝑄𝑄 ⟺ (∀(𝑥𝑥,𝑦𝑦) ∈ 𝐴𝐴 ⨉ 𝐴𝐴)𝑃𝑃(𝑥𝑥,𝑦𝑦) ⩽ 𝑄𝑄(𝑥𝑥, 𝑦𝑦) 

 If 𝐿𝐿 is complete, ℱ(𝐴𝐴⨉𝐴𝐴) is also a complete lattice. 

The composition of fuzzy relations 𝑃𝑃,𝑄𝑄 ∈ ℱ(𝐴𝐴⨉𝐴𝐴), in the case of a residuated 
codomain lattice, is defined as follows:  

𝑃𝑃 ∘ 𝑄𝑄(𝑥𝑥,𝑦𝑦) = �𝑃𝑃(𝑥𝑥, 𝑧𝑧) ⊗𝑄𝑄(𝑧𝑧,𝑦𝑦)
𝑧𝑧∈𝐴𝐴

 

Since ⊗ is order-preserving relative to its operands, we get that ∘ is an order-
preserving operation (relative to both operands) in ℱ(𝐴𝐴⨉𝐴𝐴). It is known that ∘ is 
also an associative operation in ℱ(𝐴𝐴⨉𝐴𝐴), i.e.: 

(𝑃𝑃 ∘ 𝑄𝑄) ∘ 𝑅𝑅 = 𝑃𝑃 ∘ (𝑄𝑄 ∘ 𝑅𝑅) 

Hence, due to simplicity, sometimes we will skip the parentheses and write this as: 
𝑃𝑃 ∘ 𝑄𝑄 ∘ 𝑅𝑅 

It is also known that ∘ is infinitely distributive in relation to supremum, from both 
sides, i.e., if {𝑄𝑄𝑖𝑖|𝑖𝑖 ∈ 𝐼𝐼} is a family of 𝐿𝐿-fuzzy relations and 𝑃𝑃 is another fuzzy 
relation, the following holds: 

𝑃𝑃 ∘�𝑄𝑄𝑖𝑖 = �(𝑃𝑃 ∘ 𝑄𝑄𝑖𝑖
𝑖𝑖∈𝐼𝐼𝑖𝑖∈𝐼𝐼

 )                                                                                                (2) 

��𝑄𝑄𝑖𝑖
𝑖𝑖∈𝐼𝐼

� ∘ 𝑃𝑃 = �(𝑄𝑄𝑖𝑖 ∘ 𝑃𝑃)                    
𝑖𝑖∈𝐼𝐼

                                                                      (3) 

Solutions to equations may often be seen as fixed points of some operators. 
Therefore, we shall use the Tarski fixed-point theorem. 

Theorem 1. [17] (Tarski) Let (𝐿𝐿,⩽) be a complete lattice, 𝑓𝑓 an increasing function 
from 𝐿𝐿 to 𝐿𝐿, and 𝑃𝑃 the set of all its fixed points, (𝑃𝑃,⩽)  is a complete, nonempty 
lattice, and the following holds: 

⋁𝑃𝑃 = ⋁{𝑥𝑥 ∈ 𝐿𝐿| 𝑓𝑓(𝑥𝑥) ⩾ 𝑥𝑥} ∈ 𝑃𝑃 

⋀𝑃𝑃 = ⋀{𝑥𝑥 ∈ 𝐿𝐿| 𝑓𝑓(𝑥𝑥) ⩽ 𝑥𝑥} ∈ 𝑃𝑃                                                                             (4) 

Tarski also proved a more general assertion about the fixed points of increasing 
operators on a complete lattice. 

Theorem 2. [17] (Tarski) Let (𝐿𝐿,⩽) be a complete lattice, and {𝑓𝑓𝑖𝑖|𝑖𝑖 ∈ 𝐼𝐼} the set of 
increasing functions from 𝐿𝐿 to 𝐿𝐿, such that any two of them commute, i.e. 𝑓𝑓𝑖𝑖 ∘ 𝑓𝑓𝑗𝑗 =
𝑓𝑓𝑗𝑗 ∘ 𝑓𝑓𝑖𝑖 for all 𝑖𝑖, 𝑗𝑗 ∈ 𝐼𝐼. If 𝑃𝑃 is the set of all common fixed points for all 𝑓𝑓𝑖𝑖, (𝑃𝑃,⩽) is 
the complete lattice, and the following holds: 
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⋁𝑃𝑃 = ⋁{𝑥𝑥 ∈ 𝐿𝐿| (∀𝑖𝑖 ∈ 𝐼𝐼)𝑓𝑓𝑖𝑖(𝑥𝑥) ⩾ 𝑥𝑥} ∈ 𝑃𝑃 

⋀𝑃𝑃 = ⋀{𝑥𝑥 ∈ 𝐿𝐿| (∀𝑖𝑖 ∈ 𝐼𝐼)𝑓𝑓𝑖𝑖(𝑥𝑥) ⩽ 𝑥𝑥} ∈ 𝑃𝑃 

If 𝐿𝐿 is a complete Brouwerian lattice, i.e., if it is a complete and infimum is infinitely 
distributive relative to supremum, then 𝐿𝐿 is also residuated, relative to ⊗, which is 
identical to ⋀ , and →, defined by: 

𝑥𝑥 → 𝑦𝑦 = �{𝑧𝑧 ∈ 𝐿𝐿|𝑥𝑥 ⋀ 𝑧𝑧 ⩽ 𝑦𝑦} 

If infimum does not commute with arbitrary suprema - as in case of any Browerian 
lattice, but only with the supremum of chains, we get a weaker property, so called 
meet-continuity. In cases where the greatest solution of some equations (or 
inequations) does not exist, we will use the following lemmas to prove the existence 
of maximal solutions: 

Lemma 3. [14] If 𝐴𝐴  is a set, 𝐿𝐿 a complete, meet-continuous lattice, and 
{(𝑃𝑃𝑖𝑖 ,𝑄𝑄𝑖𝑖)|𝑖𝑖 ∈ 𝐼𝐼} a chain of pairs of fuzzy relations from ℱ(𝐴𝐴⨉𝐴𝐴), we have: 

�𝑃𝑃𝑖𝑖 ∘�𝑄𝑄𝑖𝑖
𝑖𝑖∈𝐼𝐼

= �(𝑃𝑃𝑖𝑖 ∘ 𝑄𝑄𝑖𝑖 ).
𝑖𝑖∈𝐼𝐼𝑖𝑖∈𝐼𝐼

 

Lemma 4. (Zorn, Kuratowski) If a partially ordered set P has the property that every 
chain in P has an upper bound in P, then P contains at least one maximal element. 

3 Results 
If not otherwise stated,  𝐿𝐿 is a complete residuated lattice. 

By 𝑃𝑃,𝑄𝑄,𝑅𝑅, 𝑆𝑆 we denote 𝐿𝐿-valued relations from ℱ(𝐴𝐴⨉𝐴𝐴), and by 𝑋𝑋 and 𝑌𝑌 
unknown 𝐿𝐿-valued relations. Due to the associativity of the composition, there exist 
only five types of terms over ℱ(𝐴𝐴⨉𝐴𝐴), that use only composition, in which we 
have at most one variable occurring not more than once 𝑃𝑃 ∘ 𝑋𝑋,𝑋𝑋 ∘ 𝑃𝑃,𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄,𝑃𝑃 
and 𝑋𝑋. 

According to the infinite distributivity of relational composition related to 
supremum, we also have that: 

𝑃𝑃 ∘�𝐴𝐴𝑖𝑖 ∘ 𝑄𝑄 = �(𝑃𝑃
𝑖𝑖∈𝐼𝐼

∘ 𝐴𝐴𝑖𝑖) ∘ 𝑄𝑄 = �𝑃𝑃
𝑖𝑖∈𝐼𝐼

∘ 𝐴𝐴𝑖𝑖 ∘ 𝑄𝑄
𝑖𝑖∈𝐼𝐼

                                                   (5) 

Now, we form fuzzy relational equations and inequations by taking expressions of 
the forms 𝑃𝑃 ∘ 𝑋𝑋,𝑋𝑋 ∘ 𝑃𝑃,𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄,𝑃𝑃 and 𝑋𝑋 on both sides of the (in)equations. 
Constants on the different sides of the equations are different as a rule, and 
unknowns on the different sides of the equations may be equal or different. All the 



V. Stepanovic et al. A Note on the Solutions to Lattice-valued Relational Equations and Inequations 

‒ 32 ‒ 

equations and inequations using only composition and having at most one unknown 
on each of their sides are equivalent to one such equation or inequation. 

Here, in equations and inequations with two different variables 𝑋𝑋 and 𝑌𝑌, the greatest 
solution is naturally the greatest with respect to the componentwise order in 
ℱ(𝐴𝐴⨉𝐴𝐴) ×ℱ(𝐴𝐴⨉𝐴𝐴). 

Let 𝑃𝑃,𝑄𝑄,𝑅𝑅, 𝑆𝑆 ∈ ℱ(𝐴𝐴⨉𝐴𝐴). There exists the greatest solution to the equations and 
inequations of the following forms (this will be demonstrated in the sequel): 

𝑃𝑃 ∘ 𝑋𝑋 = 𝑄𝑄 ∘ 𝑋𝑋     𝑃𝑃 ∘ 𝑋𝑋 ⩽ 𝑄𝑄 ∘ 𝑋𝑋 

𝑃𝑃 ∘ 𝑋𝑋 = 𝑄𝑄 ∘ 𝑌𝑌     𝑃𝑃 ∘ 𝑋𝑋 ⩽ 𝑄𝑄 ∘ 𝑌𝑌                                                                                       (6) 

 𝑃𝑃 ∘ 𝑋𝑋 = 𝑋𝑋 ∘ 𝑄𝑄     𝑃𝑃 ∘ 𝑋𝑋 ⩽ 𝑋𝑋 ∘ 𝑄𝑄    𝑃𝑃 ∘ 𝑋𝑋 ⩾ 𝑋𝑋 ∘ 𝑄𝑄 

𝑃𝑃 ∘ 𝑋𝑋 = 𝑌𝑌 ∘ 𝑄𝑄     𝑃𝑃 ∘ 𝑋𝑋 ⩽ 𝑌𝑌 ∘ 𝑄𝑄    𝑃𝑃 ∘ 𝑋𝑋 ⩾ 𝑌𝑌 ∘ 𝑄𝑄                                                         (7) 

𝑃𝑃 ∘ 𝑋𝑋 = 𝑄𝑄 ∘ 𝑋𝑋 ∘ 𝑅𝑅     𝑃𝑃 ∘ 𝑋𝑋 ⩽ 𝑄𝑄 ∘ 𝑋𝑋 ∘ 𝑅𝑅    𝑃𝑃 ∘ 𝑋𝑋 ⩾ 𝑄𝑄 ∘ 𝑋𝑋 ∘ 𝑅𝑅   

𝑃𝑃 ∘ 𝑋𝑋 = 𝑄𝑄 ∘ 𝑌𝑌 ∘ 𝑅𝑅     𝑃𝑃 ∘ 𝑋𝑋 ⩽ 𝑄𝑄 ∘ 𝑌𝑌 ∘ 𝑅𝑅                                                                        (8) 

 𝑃𝑃 ∘ 𝑋𝑋 ⩾ 𝑄𝑄 ∘ 𝑌𝑌 ∘ 𝑅𝑅                                                                                                             (9) 

 𝑃𝑃 ∘ 𝑋𝑋 ⩽ 𝑄𝑄                                                                                                                         (10) 

𝑃𝑃 ∘ 𝑋𝑋 ⩾ 𝑋𝑋        𝑃𝑃 ∘ 𝑋𝑋 = 𝑋𝑋                                                                                               (11) 

𝑃𝑃 ∘ 𝑋𝑋 ⩾ 𝑌𝑌        𝑃𝑃 ∘ 𝑋𝑋 = 𝑌𝑌                                                                                                (12) 

𝑋𝑋 ∘ 𝑃𝑃 = 𝑋𝑋 ∘ 𝑄𝑄       𝑋𝑋 ∘ 𝑃𝑃 ⩽ 𝑋𝑋 ∘ 𝑄𝑄     

𝑋𝑋 ∘ 𝑃𝑃 = 𝑌𝑌 ∘ 𝑄𝑄       𝑋𝑋 ∘ 𝑃𝑃 ⩽ 𝑌𝑌 ∘ 𝑄𝑄                                                                          (13) 

𝑋𝑋 ∘ 𝑃𝑃 = 𝑄𝑄 ∘ 𝑋𝑋 ∘ 𝑅𝑅     𝑋𝑋 ∘ 𝑃𝑃 ⩽ 𝑄𝑄 ∘ 𝑋𝑋 ∘ 𝑅𝑅    𝑋𝑋 ∘ 𝑃𝑃 ⩾ 𝑄𝑄 ∘ 𝑋𝑋 ∘ 𝑅𝑅 

𝑋𝑋 ∘ 𝑃𝑃 = 𝑄𝑄 ∘ 𝑌𝑌 ∘ 𝑅𝑅     𝑋𝑋 ∘ 𝑃𝑃 ⩽ 𝑄𝑄 ∘ 𝑌𝑌 ∘ 𝑅𝑅                                                                       (14) 

𝑋𝑋 ∘ 𝑃𝑃 ⩾ 𝑄𝑄 ∘ 𝑌𝑌 ∘ 𝑅𝑅                                                                                                             (15) 

𝑋𝑋 ∘ 𝑃𝑃 ⩽ 𝑄𝑄                                                                                                             (16) 

𝑋𝑋 ∘ 𝑃𝑃 ⩾ 𝑋𝑋        𝑋𝑋 ∘ 𝑃𝑃 = 𝑋𝑋                                                                                     (17) 

𝑋𝑋 ∘ 𝑃𝑃 ⩾ 𝑌𝑌       𝑋𝑋 ∘ 𝑃𝑃 = 𝑌𝑌                                                                                      (18) 

𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄 = 𝑅𝑅 ∘ 𝑋𝑋 ∘ 𝑆𝑆      𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄 ⩽ 𝑅𝑅 ∘ 𝑋𝑋 ∘ 𝑆𝑆 

𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄 = 𝑅𝑅 ∘ 𝑌𝑌 ∘ 𝑆𝑆      𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄 ⩽ 𝑅𝑅 ∘ 𝑌𝑌 ∘ 𝑆𝑆                                                  (19) 

𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄 ⩽ 𝑅𝑅                                                                                                      (20) 

𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄 = 𝑋𝑋      𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄 ⩾ 𝑋𝑋                                                                          (21) 

𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄 = 𝑌𝑌      𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄 ⩾ 𝑌𝑌                                                                          (22) 
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It is straightforward to check that the set of solutions to the equations and 
inequations above is closed under the supremum. For example, if {𝑋𝑋𝑖𝑖|𝑖𝑖 ∈ 𝐼𝐼} is the 
family of solutions to the equation 𝑃𝑃 ∘ 𝑋𝑋 = 𝑋𝑋 ∘ 𝑄𝑄, we have that 𝑃𝑃 ∘ 𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑖𝑖 ∘ 𝑄𝑄 

for all 𝑖𝑖 ∈ 𝐼𝐼; therefore: 
�(𝑃𝑃
𝑖𝑖∈𝐼𝐼

∘ 𝑋𝑋𝑖𝑖) = �(𝑋𝑋𝑖𝑖 ∘ 𝑄𝑄)
𝑖𝑖∈𝐼𝐼

 

Now, applying (2) and (3), we get: 

𝑃𝑃 ∘ ��𝑋𝑋𝑖𝑖
𝑖𝑖∈𝐼𝐼

� = ��𝑋𝑋𝑖𝑖
𝑖𝑖∈𝐼𝐼

� ∘ 𝑄𝑄 

which means that ⋁ 𝑋𝑋𝑖𝑖𝑖𝑖∈𝐼𝐼  is a solution to the same equation (the greatest solution). 

Using (2), (3), and (5), we prove the same for all the equations and inequations 
above. For those of them that contain both 𝑋𝑋 and 𝑌𝑌 we prove that if {(𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖)|𝑖𝑖 ∈ 𝐼𝐼} 
is a set of solutions, then the following is a solution: 

��𝑋𝑋𝑖𝑖
𝑖𝑖∈𝐼𝐼

,�𝑌𝑌𝑖𝑖
𝑖𝑖∈𝐼𝐼

� 

The existence of the greatest solution to the above equations and inequations 
follows from the fact that 𝑋𝑋 = 0 or - in case both 𝑋𝑋 and 𝑌𝑌 occur in the equation or 
inequation – (𝑋𝑋,𝑌𝑌) = (0,0) is a solution of the above equations (the set of solutions 
is non-empty), and the fact that the set of solutions is closed under supremum. 

We have omitted the inequations 𝑃𝑃 ∘ 𝑋𝑋 ⩽ 𝑋𝑋, 𝑋𝑋 ∘ 𝑃𝑃 ⩽ 𝑋𝑋 and 𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄 ⩽ 𝑋𝑋, since 
it is obvious that the greatest fuzzy relation is the greatest solution to those 
inequations.  

However, a modified problem with the additional condition that the solution is less 
than or equal to some given fuzzy relation is also of practical interest. This problem 
for all these inequations is solved by taking the supremum of all the solutions 
contained in 𝑇𝑇 and such a solution is the greatest one contained in 𝑇𝑇. 

Up to now, we were proving the existence of the greatest solutions, but in some 
cases, the solutions themselves can be easily determined. 

For the inequation (10), we can "calculate" the greatest solution, following a similar 
argument as in [12]. Namely, since, by definition of ∘, we have: 

𝑃𝑃 ∘ 𝑋𝑋(𝑧𝑧,𝑦𝑦) = �(𝑃𝑃(𝑧𝑧, 𝑥𝑥) ⊗
𝑥𝑥∈𝐴𝐴

𝑋𝑋(𝑥𝑥, 𝑦𝑦)) 

𝑃𝑃 ∘ 𝑋𝑋 ⩽ 𝑄𝑄 is equivalent to: 

(∀𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝐴𝐴)𝑃𝑃(𝑧𝑧, 𝑥𝑥) ⊗𝑋𝑋(𝑥𝑥,𝑦𝑦) ⩽ 𝑄𝑄(𝑧𝑧,𝑦𝑦) 

which is further equivalent to: 
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(∀𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝐴𝐴)𝑋𝑋(𝑥𝑥,𝑦𝑦) ⩽ 𝑃𝑃(𝑧𝑧, 𝑥𝑥) → 𝑄𝑄(𝑧𝑧,𝑦𝑦) 

and, finally: 

𝑋𝑋(𝑥𝑥, 𝑦𝑦) ⩽�(𝑃𝑃(𝑧𝑧, 𝑥𝑥) → 𝑄𝑄(𝑧𝑧,𝑦𝑦))
𝑧𝑧∈𝐴𝐴

                                                                             (23) 

So, the greatest solution to the inequation (10) is equal to 𝐺𝐺𝑃𝑃,𝑄𝑄, defined by: 

𝐺𝐺𝑃𝑃,𝑄𝑄 = �(𝑃𝑃(𝑧𝑧, 𝑥𝑥) → 𝑄𝑄(𝑧𝑧,𝑦𝑦))
𝑧𝑧∈𝐴𝐴

                                                                                 (24) 

Likewise, we conclude that the greatest solution to the inequation (16) is given by: 

𝐺𝐺𝑃𝑃,𝑄𝑄 = �(𝑃𝑃(𝑦𝑦, 𝑧𝑧) → 𝑄𝑄(𝑥𝑥, 𝑧𝑧))
𝑧𝑧∈𝐴𝐴

                                                                                (25) 

As for the inequation (20), we get the following: 

𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄 ⩽ 𝑅𝑅 ⟺  𝑋𝑋 ∘ 𝑄𝑄 ⩽ 𝐺𝐺𝑃𝑃,𝑅𝑅 ⟺ 𝑋𝑋 ⩽ 𝐺𝐺𝑄𝑄,𝐺𝐺𝑃𝑃,𝑅𝑅  

Thus, the greatest solution to the inequation (20) is 𝐺𝐺𝑄𝑄,𝐺𝐺𝑃𝑃,𝑅𝑅 , which is defined by the 
following: 

𝐺𝐺𝑄𝑄,𝐺𝐺𝑃𝑃,𝑅𝑅(𝑥𝑥, 𝑦𝑦) = ��𝑄𝑄(𝑦𝑦, 𝑧𝑧) → 𝐺𝐺𝑃𝑃,𝑅𝑅(𝑥𝑥, 𝑧𝑧)� =
𝑧𝑧∈𝐴𝐴

 

��𝑄𝑄(𝑦𝑦, 𝑧𝑧) →��𝑃𝑃(𝑡𝑡, 𝑥𝑥) → 𝑅𝑅(𝑡𝑡, 𝑧𝑧)�
𝑡𝑡∈𝐴𝐴

�
𝑧𝑧∈𝐴𝐴

                                                                 (26) 

We could also take any system of equations of the above-listed types, and using the 
same arguments, we conclude that there exists the greatest solution to such a system. 
The unknowns from the different equations of the system may differ, or be the same, 
or some may differ and some may be the same. 

By the same arguments, it follows that there exists the greatest solution to the 
following equations and inequations provided that they are solvable, i.e., that there 
exists at least one solution: 

𝑃𝑃 ∘ 𝑋𝑋 = 𝑄𝑄                 𝑃𝑃 ∘ 𝑋𝑋 ⩾ 𝑄𝑄                                                                             (27) 

𝑋𝑋 ∘ 𝑃𝑃 = 𝑄𝑄                 𝑋𝑋 ∘ 𝑃𝑃 ⩾ 𝑄𝑄                                                                             (28) 

𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄 = 𝑅𝑅         𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄 ⩾ 𝑅𝑅                                                                       (29) 

Actually, for an equation of the type (28), Sanchez has proved (see [12]) that it is 
solvable if and only if 𝐺𝐺𝑃𝑃,𝑄𝑄 ∘ 𝑃𝑃 = 𝑄𝑄; if that is the case, 𝐺𝐺𝑃𝑃,𝑄𝑄 is its greatest solution. 
He also proved that an equation of the type (27) is solvable if and only if 𝑃𝑃 ∘ 𝐺𝐺𝑃𝑃,𝑄𝑄 =
𝑄𝑄; if that is the case, the greatest solution to (27) is 𝐺𝐺𝑃𝑃,𝑄𝑄. The least solution to the 
equations of the types (27) and (28) need not exist (see [11]). 
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The following example shows that there might not be minimal solutions to these 
equations: 

Example 1. We take a set 𝐿𝐿 = {1,0, 𝑎𝑎, 𝑏𝑏} ∪ {𝑏𝑏𝑖𝑖|𝑖𝑖 ∈ 𝑁𝑁} with the order: 

(∀𝑖𝑖 ∈ 𝑁𝑁)0 < 𝑏𝑏 < 𝑏𝑏𝑖𝑖 < 𝑎𝑎 < 1 

(∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁)𝑏𝑏𝑖𝑖 < 𝑏𝑏𝑗𝑗 ⟺ 𝑖𝑖 > 𝑗𝑗 

𝐿𝐿 is a chain. We introduce a commutative operation, denoted by ⊗, such that: 

(∀𝑥𝑥 ∈ 𝐿𝐿)(1 ⊗ 𝑥𝑥 = 𝑥𝑥 and 0 ⊗ 𝑥𝑥 = 𝑥𝑥 ⊗ 0 = 0) 

𝑎𝑎 ⊗ 𝑎𝑎 = 𝑏𝑏 

(∀𝑖𝑖 ∈ 𝑁𝑁)𝑎𝑎 ⊗ 𝑏𝑏𝑖𝑖 = 𝑏𝑏 

𝑎𝑎 ⊗ 𝑏𝑏 = 0 

(∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁)𝑏𝑏𝑖𝑖 ⊗ 𝑏𝑏𝑗𝑗 = 0 

(∀𝑖𝑖 ∈ 𝑁𝑁)𝑏𝑏 ⊗ 𝑏𝑏𝑖𝑖 = 0 

𝑏𝑏 ⊗ 𝑏𝑏 = 0 

Note that ⊗ is associative, since (𝑎𝑎 ⊗ 𝑏𝑏) ⊗ 𝑐𝑐 = 0 = 𝑎𝑎 ⊗ (𝑏𝑏 ⊗ 𝑐𝑐) if 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are 
different from 1. If there is an element in {𝑎𝑎, 𝑏𝑏, 𝑐𝑐} equal to 1, it is obvious that in 
this case also (𝑎𝑎 ⊗ 𝑏𝑏) ⊗ 𝑐𝑐 = 𝑎𝑎 ⊗ (𝑏𝑏 ⊗ 𝑐𝑐).  

We define the operation  → such that: 

(∀𝑥𝑥 ∈ 𝐿𝐿)1 → 𝑥𝑥 = 𝑥𝑥 

𝑥𝑥 → 𝑦𝑦 = 1, whenever 𝑥𝑥 ⩽ 𝑦𝑦 

(∀𝑖𝑖 ∈ 𝑁𝑁)𝑏𝑏𝑖𝑖 → 𝑏𝑏 = 𝑎𝑎 → 𝑏𝑏𝑖𝑖 = 𝑎𝑎 

(∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁)𝑏𝑏𝑖𝑖 → 𝑏𝑏𝑗𝑗 = 𝑎𝑎 ⟺ 𝑖𝑖 < 𝑗𝑗 

𝑎𝑎 → 𝑏𝑏 = 𝑎𝑎 

𝑎𝑎 → 0 = 𝑏𝑏 

1 → 0 = 0 

(∀𝑖𝑖 ∈ 𝑁𝑁)𝑏𝑏𝑖𝑖 → 0 = 𝑏𝑏1 

We can check that we've got a residuated lattice. But there is no minimal solution 
to the equation 𝑎𝑎 ⊗ 𝑥𝑥 = 𝑏𝑏. Taking a one-element domain set 𝐶𝐶 = {𝑐𝑐}, and 𝐿𝐿 as a 
codomain lattice, we can take 𝐴𝐴(𝑐𝑐, 𝑐𝑐) = 𝑎𝑎,𝐵𝐵(𝑐𝑐, 𝑐𝑐) = 𝑏𝑏. There is no minimal 
solution to the equation 𝐴𝐴 ∘ 𝑋𝑋 = 𝐵𝐵 (and 𝑋𝑋 ∘ 𝐴𝐴 = 𝐵𝐵 as well), although there are 
solution. 

Since we have that 𝐺𝐺𝑄𝑄,𝐺𝐺𝑃𝑃,𝑅𝑅   is the greatest solution to the inequation (20), if the 
corresponding equation of the type (29) is solvable, all its solutions are also 
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solutions to the inequation (20), thus the greatest solution to the equation is less than 
or equal to 𝐺𝐺𝑄𝑄,𝐺𝐺𝑃𝑃,𝑅𝑅; but from the monotony of the ∘, 𝐺𝐺𝑄𝑄,𝐺𝐺𝑃𝑃,𝑅𝑅  is also a solution to the 
equation. Thus, we have that an equation of the type (29) is solvable if and only if: 

𝑃𝑃 ∘ 𝐺𝐺𝑄𝑄,𝐺𝐺𝑃𝑃,𝑅𝑅 ∘ 𝑄𝑄 = 𝑅𝑅                                                                                          (30) 

If that is the case, the greatest solution to (29) equals 𝐺𝐺𝑄𝑄,𝐺𝐺𝑃𝑃,𝑅𝑅. 

As for an inequation belonging to some of the types (27)-(29), by monotony of ∘ 
we conclude that it is solvable, if and only if the greatest fuzzy relation in ℱ(𝐴𝐴⨉𝐴𝐴) 
is a solution to it. 

We can further calculate the greatest solution to the inequations of the type (6): 

Theorem 5. The greatest solution to the inequation (6) is the pair of fuzzy relations 
(𝑋𝑋,𝑌𝑌), such that for all 𝑥𝑥,𝑦𝑦 ∈ 𝐴𝐴, 𝑌𝑌(𝑥𝑥,𝑦𝑦) = 1 and: 

𝑋𝑋(𝑥𝑥,𝑦𝑦) = ��𝑃𝑃(𝑧𝑧, 𝑥𝑥) →�𝑄𝑄(𝑧𝑧, 𝑡𝑡)
𝑡𝑡∈𝐴𝐴

�
𝑧𝑧∈𝐴𝐴

                                                                    (31) 

Proof: First, (31) is a solution, since by (23) we have that 𝑃𝑃 ∘ 𝑋𝑋 ⩽ 𝑄𝑄 ∘ 1 is 
equivalent to: 

𝑋𝑋(𝑥𝑥, 𝑦𝑦) ⩽��𝑃𝑃(𝑧𝑧, 𝑥𝑥) → (𝑄𝑄 ∘ 1)(𝑧𝑧,𝑦𝑦)�
𝑧𝑧∈𝐴𝐴

 

and thus equivalent to: 

𝑋𝑋(𝑥𝑥, 𝑦𝑦) ⩽��𝑃𝑃(𝑧𝑧, 𝑥𝑥) →�𝑄𝑄(𝑧𝑧, 𝑡𝑡) ⊗ 1(𝑡𝑡,𝑦𝑦)
𝑡𝑡∈𝐴𝐴

�
𝑧𝑧∈𝐴𝐴

 

and finally equivalent to: 

𝑋𝑋(𝑥𝑥, 𝑦𝑦) ⩽��𝑃𝑃(𝑧𝑧, 𝑥𝑥) →�𝑄𝑄(𝑧𝑧, 𝑡𝑡)
𝑡𝑡∈𝐴𝐴

�
𝑧𝑧∈𝐴𝐴

 

If (31) is not the greatest solution, since we have proved that the greatest solution 
exists, there is a fuzzy relation 𝑋𝑋1 greater than: 

��𝑃𝑃(𝑧𝑧, 𝑥𝑥) →�𝑄𝑄(𝑧𝑧, 𝑡𝑡)
𝑡𝑡∈𝐴𝐴

�
𝑧𝑧∈𝐴𝐴

 

such that 𝑃𝑃 ∘ 𝑋𝑋1 ⩽ 𝑄𝑄 ∘ 1, which contradicts the equivalence we have proved. 

Theorem 6. The greatest solution to the inequation (7) is the pair of fuzzy relations 
(𝑋𝑋,𝑌𝑌), such that for all 𝑥𝑥,𝑦𝑦 ∈ 𝐴𝐴, 𝑌𝑌(𝑥𝑥, 𝑦𝑦) = 1 and 

𝑋𝑋(𝑥𝑥,𝑦𝑦) = ��𝑃𝑃(𝑧𝑧, 𝑥𝑥) →�𝑄𝑄(𝑡𝑡, 𝑦𝑦)
𝑡𝑡∈𝐴𝐴

�
𝑧𝑧∈𝐴𝐴

.  
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Theorem 7. The greatest solution to the inequation (8) is the pair of fuzzy relations 
(𝑋𝑋,𝑌𝑌), such that for all 𝑥𝑥,𝑦𝑦 ∈ 𝐴𝐴, 𝑌𝑌(𝑥𝑥,𝑦𝑦) = 1 and 

𝑋𝑋(𝑥𝑥, 𝑦𝑦) = ��𝑃𝑃(𝑧𝑧, 𝑥𝑥) → � (𝑄𝑄(𝑧𝑧, 𝑡𝑡) ⊗𝑅𝑅(𝑠𝑠,𝑦𝑦))
𝑡𝑡,𝑠𝑠∈𝐴𝐴

�
𝑧𝑧∈𝐴𝐴

 

Theorem 8. The greatest solution to the inequation (9) is the pair of fuzzy relations 
(𝑋𝑋,𝑌𝑌), such that for all 𝑥𝑥,𝑦𝑦 ∈ 𝐴𝐴, 𝑋𝑋(𝑥𝑥,𝑦𝑦) = 1 and: 

𝑌𝑌(𝑥𝑥,𝑦𝑦) = ��𝑅𝑅(𝑦𝑦, 𝑧𝑧) →��𝑄𝑄(𝑡𝑡, 𝑥𝑥) →�𝑃𝑃
𝑠𝑠∈𝐴𝐴

(𝑡𝑡, 𝑠𝑠)�
𝑡𝑡∈𝐴𝐴

�
𝑧𝑧∈𝐴𝐴

 

Theorem 9. The greatest solution to the inequation (12) is the pair of fuzzy relations 
(𝑋𝑋,𝑌𝑌), such that for all 𝑥𝑥, 𝑦𝑦 ∈ 𝐴𝐴, 𝑋𝑋(𝑥𝑥,𝑦𝑦) = 1 and: 

𝑌𝑌(𝑥𝑥,𝑦𝑦) = �𝑃𝑃
𝑧𝑧∈𝐴𝐴

(𝑥𝑥, 𝑧𝑧) 

Theorem 10. The greatest solution to the inequation (13) is the pair of fuzzy 
relations (𝑋𝑋,𝑌𝑌), such that for all 𝑥𝑥,𝑦𝑦 ∈ 𝐴𝐴, 𝑌𝑌(𝑥𝑥,𝑦𝑦) = 1 and: 

𝑋𝑋(𝑥𝑥,𝑦𝑦) = ��𝑃𝑃(𝑦𝑦, 𝑧𝑧) →�𝑄𝑄(𝑡𝑡, 𝑧𝑧)
𝑡𝑡∈𝐴𝐴

�
𝑧𝑧∈𝐴𝐴

 

Theorem 11. The greatest solution to the inequation (14) is the pair of fuzzy 
relations (𝑋𝑋,𝑌𝑌), such that for all 𝑥𝑥,𝑦𝑦 ∈ 𝐴𝐴, 𝑌𝑌(𝑥𝑥,𝑦𝑦) = 1 and: 

𝑋𝑋(𝑥𝑥, 𝑦𝑦) = ��𝑃𝑃(𝑦𝑦, 𝑧𝑧) → � (𝑄𝑄(𝑥𝑥, 𝑠𝑠) ⊗𝑅𝑅(𝑡𝑡, 𝑧𝑧))
𝑠𝑠,𝑡𝑡∈𝐴𝐴

�
𝑧𝑧∈𝐴𝐴

 

Theorem 12. The greatest solution to the inequation (15) is the pair of fuzzy 
relations (𝑋𝑋,𝑌𝑌), such that for all 𝑥𝑥,𝑦𝑦 ∈ 𝐴𝐴, 𝑋𝑋(𝑥𝑥,𝑦𝑦) = 1 and: 

𝑌𝑌(𝑥𝑥,𝑦𝑦) = ��𝑄𝑄(𝑧𝑧, 𝑥𝑥) →��𝑅𝑅(𝑦𝑦, 𝑡𝑡) →�𝑃𝑃(𝑠𝑠, 𝑡𝑡)
𝑠𝑠∈𝐴𝐴

�
𝑡𝑡∈𝐴𝐴

�
𝑧𝑧∈𝐴𝐴

 

Theorem 13. The greatest solution to the inequation (18) is the pair of fuzzy 
relations (𝑋𝑋,𝑌𝑌), such that for all 𝑥𝑥,𝑦𝑦 ∈ 𝐴𝐴, 𝑋𝑋(𝑥𝑥, 𝑦𝑦) = 1 and: 

𝑌𝑌(𝑥𝑥,𝑦𝑦) = �𝑃𝑃
𝑧𝑧∈𝐴𝐴

(𝑧𝑧, 𝑦𝑦) 

Theorem 14. The greatest solution to the inequation (19) is the pair of fuzzy 
relations (𝑋𝑋,𝑌𝑌), such that for all 𝑥𝑥,𝑦𝑦 ∈ 𝐴𝐴, 𝑌𝑌(𝑥𝑥,𝑦𝑦) = 1 and: 

𝑋𝑋(𝑥𝑥,𝑦𝑦) = ��𝑄𝑄(𝑥𝑥, 𝑧𝑧) →��𝑃𝑃(𝑡𝑡,𝑦𝑦) → ��(𝑅𝑅(𝑡𝑡, 𝑝𝑝) ⊗𝑆𝑆(𝑠𝑠, 𝑧𝑧)�
𝑝𝑝,𝑠𝑠∈𝐴𝐴

�
𝑡𝑡∈𝐴𝐴

�
𝑧𝑧∈𝐴𝐴
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Theorem 15. The greatest solution to the inequation (22) is the pair of fuzzy 
relations (𝑋𝑋,𝑌𝑌), such that for all 𝑥𝑥,𝑦𝑦 ∈ 𝐴𝐴, 𝑋𝑋(𝑥𝑥,𝑦𝑦) = 1 and: 

𝑌𝑌(𝑥𝑥,𝑦𝑦) = � (𝑃𝑃(𝑥𝑥, 𝑠𝑠) ⊗𝑄𝑄(𝑡𝑡
𝑠𝑠,𝑡𝑡∈𝐴𝐴

,𝑦𝑦)) 

Up to now, we have systematically presented all the types of equations and 
inequations containing at most one variable on one side in connection with the 
existence of the greatest solutions. 

The greatest solution does not exist in general for equations having more than one 
variable on one side. The following example illustrates this. 

Example 2. Let 𝐿𝐿 be a partitive set of {1,2} (which is a complete and infinitely 
distributive lattice, and thus residuated), and 𝐴𝐴 = {𝑎𝑎, 𝑏𝑏}. Let 𝑃𝑃 and 𝐿𝐿 be an 𝐿𝐿-valued 
relation satisfying: 

𝑃𝑃(𝑎𝑎, 𝑎𝑎) = 𝑃𝑃(𝑏𝑏, 𝑎𝑎) = 𝑃𝑃(𝑎𝑎, 𝑏𝑏) = 𝑃𝑃(𝑏𝑏, 𝑏𝑏) = {1} 

We consider the equation and the inequation: 

𝑋𝑋 ∘ 𝑋𝑋 = 𝑃𝑃    𝑋𝑋 ∘ 𝑋𝑋 ⩽ 𝑃𝑃                                                                                        (32) 

Let 𝑄𝑄 and 𝑅𝑅 be 𝐿𝐿-valued relations such that: 

𝑄𝑄(𝑎𝑎, 𝑎𝑎) = 𝑄𝑄(𝑎𝑎, 𝑏𝑏) = 𝑄𝑄(𝑏𝑏, 𝑏𝑏) = {1};    𝑄𝑄(𝑏𝑏, 𝑎𝑎) = {1,2} 

𝑅𝑅(𝑎𝑎, 𝑎𝑎) = 𝑅𝑅(𝑏𝑏, 𝑎𝑎) = 𝑅𝑅(𝑏𝑏,𝑏𝑏) = {1}   𝑅𝑅(𝑎𝑎, 𝑏𝑏) = {1,2} 

Now we have: 

(𝑄𝑄 ∘ 𝑄𝑄)(𝑎𝑎, 𝑎𝑎) = (𝑅𝑅 ∘ 𝑅𝑅)(𝑎𝑎, 𝑎𝑎) = {1} = (𝑄𝑄 ∘ 𝑄𝑄)(𝑎𝑎, 𝑏𝑏) = (𝑅𝑅 ∘ 𝑅𝑅)(𝑎𝑎, 𝑏𝑏); 

(𝑄𝑄 ∘ 𝑄𝑄)(𝑏𝑏, 𝑎𝑎) = (𝑅𝑅 ∘ 𝑅𝑅)(𝑏𝑏, 𝑎𝑎) = {1} = (𝑄𝑄 ∘ 𝑄𝑄)(𝑏𝑏, 𝑏𝑏) = (𝑅𝑅 ∘ 𝑅𝑅)(𝑏𝑏, 𝑏𝑏). 

Thus, 𝑄𝑄 and 𝑅𝑅 are solutions to the (in)equation (32). If there exists the greatest 
solution to the (in)equation, it would have to contain 𝑄𝑄 ∨ 𝑅𝑅. But: 

(𝑄𝑄 ∨ 𝑅𝑅)(𝑎𝑎, 𝑎𝑎) = (𝑄𝑄 ∨ 𝑅𝑅)(𝑏𝑏, 𝑏𝑏) = {1} 

(𝑄𝑄 ∨ 𝑅𝑅)(𝑎𝑎, 𝑏𝑏) = (𝑄𝑄 ∨ 𝑅𝑅)(𝑏𝑏, 𝑎𝑎) = {1,2} 

Clearly, (𝑄𝑄 ∨ 𝑅𝑅) ∘ (𝑄𝑄 ∨ 𝑅𝑅) > 𝑃𝑃, and if  𝑆𝑆 were the greatest solution, we would 
have: 

𝑆𝑆 ∘ 𝑆𝑆 ⩾ (𝑄𝑄 ∨ 𝑅𝑅) ∘ (𝑄𝑄 ∨ 𝑅𝑅) > 𝑃𝑃 

since 𝑆𝑆 ⩾ 𝑄𝑄 ∨ 𝑅𝑅 and since the composition is order-preserving operation in 
ℱ(𝐴𝐴⨉𝐴𝐴), which contradicts the assumption that 𝑆𝑆 is the greatest solution to 𝑋𝑋 ∘
𝑋𝑋 = 𝑃𝑃, or the greatest solution to 𝑋𝑋 ∘ 𝑋𝑋 ⩽ 𝑃𝑃. 

Thus, the greatest solution to 𝑋𝑋 ∘ 𝑋𝑋 = 𝑃𝑃 does not exist, nor does the greatest 
solution to the corresponding inequation 𝑋𝑋 ∘ 𝑋𝑋 ⩽ 𝑃𝑃. 
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The same holds for the equation 𝑋𝑋 ∘ 𝑌𝑌 ⩽ 𝑃𝑃, the greatest solution does not exist, 
because (𝑅𝑅,𝑅𝑅) and (𝑄𝑄,𝑄𝑄) are solutions, and the greatest solution (𝑆𝑆1, 𝑆𝑆2) would 
contain (𝑅𝑅 ∨ 𝑄𝑄,𝑅𝑅 ∨ 𝑄𝑄), but we get a contradiction: 

𝑆𝑆1 ∘ 𝑆𝑆2 ⩾ (𝑅𝑅 ∨ 𝑄𝑄) ∘ (𝑅𝑅 ∨ 𝑄𝑄) > 𝑃𝑃 

However, there exists a maximal solution to the equations and inequations 𝑋𝑋 ∘ 𝑋𝑋 ⩽
𝐴𝐴, 𝑋𝑋 ∘ 𝑋𝑋 = 𝐴𝐴, 𝑋𝑋 ∘ 𝑌𝑌 ⩽ 𝐴𝐴 and 𝑋𝑋 ∘ 𝑌𝑌 = 𝐴𝐴. We get it applying the following analogue 
of Lemma 3: 

Lema 16.  If 𝐴𝐴  is a set, 𝐿𝐿 a complete, residuated lattice, and {(𝑃𝑃𝑖𝑖 ,𝑄𝑄𝑖𝑖)|𝑖𝑖 ∈ 𝐼𝐼} a chain 
of pairs of fuzzy relations from ℱ(𝐴𝐴⨉𝐴𝐴)⨉ℱ(𝐴𝐴⨉𝐴𝐴), we have: 

�𝑃𝑃𝑖𝑖 ∘�𝑄𝑄𝑖𝑖
𝑖𝑖∈𝐼𝐼

= �(𝑃𝑃𝑖𝑖 ∘ 𝑄𝑄𝑖𝑖 ).
𝑖𝑖∈𝐼𝐼𝑖𝑖∈𝐼𝐼

 

Proof: Since the operation ∘ is order-preserving with respect to both arguments, we 
have that for all 𝑖𝑖 ∈ 𝐼𝐼: 

𝑃𝑃𝑖𝑖 ∘ 𝑄𝑄𝑖𝑖 ⩽�𝑃𝑃𝑖𝑖 ∘�𝑄𝑄𝑖𝑖
𝑖𝑖∈𝐼𝐼𝑖𝑖∈𝐼𝐼

 

thus, 

�(𝑃𝑃𝑖𝑖 ∘ 𝑄𝑄𝑖𝑖)
𝑖𝑖∈𝐼𝐼

⩽�𝑃𝑃𝑖𝑖 ∘�𝑄𝑄𝑖𝑖
𝑖𝑖∈𝐼𝐼𝑖𝑖∈𝐼𝐼

 

To prove the opposite inequality, we use the infinite distributivity of ⊗ over 
supremum and the fact that it is order-preserving: 

�𝑃𝑃𝑖𝑖 ∘�𝑄𝑄𝑖𝑖
𝑖𝑖∈𝐼𝐼𝑖𝑖∈𝐼𝐼

(𝑥𝑥, 𝑦𝑦) = ���𝑃𝑃𝑖𝑖(𝑥𝑥, 𝑧𝑧) ⊗�𝑄𝑄𝑗𝑗(𝑧𝑧, 𝑦𝑦)
𝑗𝑗∈𝐼𝐼𝑖𝑖∈𝐼𝐼

�
𝑧𝑧∈𝐴𝐴

= 

����𝑃𝑃𝑖𝑖(𝑥𝑥, 𝑧𝑧)
𝑖𝑖∈𝐼𝐼

�
𝑗𝑗∈𝐼𝐼𝑧𝑧∈𝐴𝐴

⊗ 𝑄𝑄𝑗𝑗(𝑧𝑧, 𝑦𝑦) = � � (𝑃𝑃𝑖𝑖
(𝑖𝑖,𝑗𝑗)∈𝐼𝐼2𝑧𝑧∈𝐴𝐴

(𝑥𝑥, 𝑧𝑧) ⊗𝑄𝑄𝑗𝑗(𝑧𝑧,𝑦𝑦)) ⩽ 

� � (max {𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗}
(𝑖𝑖,𝑗𝑗)∈𝐼𝐼2𝑧𝑧∈𝐴𝐴

(𝑥𝑥, 𝑧𝑧) ⊗ max {𝑄𝑄𝑖𝑖 ,𝑄𝑄𝑗𝑗}(𝑧𝑧, 𝑦𝑦)) = 

� �(max {𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗}
𝑧𝑧∈𝐴𝐴(𝑖𝑖,𝑗𝑗)∈𝐼𝐼2

(𝑥𝑥, 𝑧𝑧) ⊗ max {𝑄𝑄𝑖𝑖 ,𝑄𝑄𝑗𝑗}(𝑧𝑧, 𝑦𝑦)) = 

� (𝑚𝑚𝑚𝑚𝑚𝑚 {𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗} ∘
(𝑖𝑖,𝑗𝑗)∈𝐼𝐼2

𝑚𝑚𝑚𝑚𝑚𝑚 {𝑄𝑄𝑖𝑖 ,𝑄𝑄𝑗𝑗}) ⩽�(𝑃𝑃𝑖𝑖 ∘ 𝑄𝑄𝑖𝑖)
𝑖𝑖∈𝐼𝐼

 

As for the least solution, using Theorem 1, analogously as in [16], we can prove 
that there exists the least solution to equations and inequations (11), (17) and (21). 
The least relation in ℱ(𝐴𝐴⨉𝐴𝐴) is the least solution of all these (in)equations (due to 
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(1)). In the sequel, we discuss solutions under the condition that the solution is 
greater than or equal to a given fuzzy relation. 

Theorem 17. Let 𝑈𝑈 ∈ ℱ(𝐴𝐴⨉𝐴𝐴) be a fuzzy relation such that 𝑃𝑃 ∘ 𝑈𝑈 ⩾ 𝑈𝑈. There 
exists the least solution to the inequation 𝑃𝑃 ∘ 𝑋𝑋 ⩽ 𝑋𝑋 containing 𝑈𝑈, and the least 
solution to the equation 𝑃𝑃 ∘ 𝑋𝑋 = 𝑋𝑋 containing 𝑈𝑈, and the two of them coincide. 

Proof: We define 𝜑𝜑:ℱ(𝐴𝐴⨉𝐴𝐴)→ℱ(𝐴𝐴⨉𝐴𝐴) by 

𝜑𝜑(𝑋𝑋) = 𝑃𝑃 ∘ 𝑋𝑋. 

Since ∘ is order preserving relative to both arguments, 𝜑𝜑 is an increasing operator 
in the complete lattice ℱ(𝐴𝐴⨉𝐴𝐴), and since 𝑃𝑃 ∘ 𝑈𝑈 ⩾ 𝑈𝑈, we have 𝑃𝑃 ∘ 𝑋𝑋 ⩾ 𝑈𝑈 for all 
𝑋𝑋 ⩾ 𝑈𝑈, 𝜓𝜓 = 𝜑𝜑|[𝑈𝑈,1] is also an increasing operator in the segment [𝑈𝑈, 1] of 
ℱ(𝐴𝐴⨉𝐴𝐴). Its fixed points are solutions to the equation 𝑃𝑃 ∘ 𝑋𝑋 = 𝑋𝑋. Using Theorem 
1, we conclude that the set of solutions to 𝑃𝑃 ∘ 𝑋𝑋 = 𝑋𝑋 is a nonempty, complete lattice 
relative to the inclusion in [𝑈𝑈, 1], and it has the least fixed point. It is the least 
solution to the equation 𝑃𝑃 ∘ 𝑋𝑋 = 𝑋𝑋 containing U. 

Now, applying assertion (4) of Theorem 1 to 𝜓𝜓, we get that there exists the least 
solution to 𝑃𝑃 ∘ 𝑋𝑋 ⩽ 𝑋𝑋 containing U, and it is also the least fixed point of 𝜓𝜓, i.e. the 
solution to the equation 𝑃𝑃 ∘ 𝑋𝑋 = 𝑋𝑋. 

Applying the same arguments for operators 𝜓𝜓1(𝑋𝑋) = 𝑋𝑋 ∘ 𝑃𝑃 and 𝜓𝜓2(𝑋𝑋) = 𝑃𝑃 ∘ 𝑋𝑋 ∘
𝑄𝑄, we get more results: 

Theorem 18. Let  𝑈𝑈 ∈ ℱ(𝐴𝐴⨉𝐴𝐴) be a fuzzy relation such that 𝑈𝑈 ∘ 𝑃𝑃 ⩾ 𝑈𝑈. There 
exists the least solution to the inequation 𝑋𝑋 ∘ 𝑃𝑃 ⩽ 𝑋𝑋 containing 𝑈𝑈 and the least 
solution to the equation 𝑋𝑋 ∘ 𝑃𝑃 = 𝑋𝑋 containing 𝑈𝑈, and the two of them coincide. 

Theorem 19. Let  𝑈𝑈 ∈ ℱ(𝐴𝐴⨉𝐴𝐴) be a fuzzy relation such that 𝑃𝑃 ∘ 𝑈𝑈 ∘ 𝑄𝑄 ⩾ 𝑈𝑈. There 
exists the least solution to the inequation 𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄 ⩽ 𝑋𝑋 containing 𝑈𝑈 and the least 
solution to the equation 𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄 = 𝑋𝑋 containing 𝑈𝑈, and the two of them coincide. 

We may also apply the generalized Tarski theorem (Theorem 2) to systems of 
equations. Due to the associativity of  ∘, we have that (𝑃𝑃 ∘ 𝑋𝑋) ∘ 𝑄𝑄 = 𝑃𝑃 ∘ (𝑋𝑋 ∘ 𝑄𝑄), 
and the operators 𝜑𝜑(𝑋𝑋) = 𝑃𝑃 ∘ 𝑋𝑋 and 𝜓𝜓(𝑋𝑋) = 𝑋𝑋 ∘ 𝑄𝑄 commute; therefore, we get that 
the system of equations 𝑃𝑃 ∘ 𝑋𝑋 = 𝑋𝑋 and 𝑋𝑋 ∘ 𝑄𝑄 = 𝑋𝑋 does not just have the greatest 
solution, but also the least one. But since the least fuzzy relation in ℱ(𝐴𝐴⨉𝐴𝐴) is ‒ 
due to (1) ‒ the solution to the system, we add the conditions 𝑃𝑃 ∘ 𝑈𝑈 ⩾ 𝑈𝑈 and 𝑈𝑈 ∘
𝑄𝑄 ⩾ 𝑈𝑈 for a fuzzy relation 𝑈𝑈 to get another meaningful result. 

Theorem 20. Let 𝑈𝑈 ∈ ℱ(𝐴𝐴⨉𝐴𝐴) be a fuzzy relation such that 𝑃𝑃 ∘ 𝑈𝑈 ⩾ 𝑈𝑈 and 𝑈𝑈 ∘
𝑄𝑄 ⩾ 𝑈𝑈. There exists the least solution to the system of inequations containing 𝑈𝑈: 

𝑃𝑃 ∘ 𝑋𝑋 = 𝑋𝑋 

𝑋𝑋 ∘ 𝑄𝑄 = 𝑋𝑋 
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4 Additional Results 
In this part, we generalize some of the obtained results. 

We consider equations obtained by more complex terms. The terms are obtained by 
constant relations and variables, using only one binary symbol ∘. Since the 
interpretation of this binary symbol is an associative operation of composition, we 
will exclude all the parentheses for simplicity. 

Let the language consist of constant symbols (constants) 𝐴𝐴1,𝐴𝐴2, … ,𝐵𝐵, … and 
symbols of variables (variables) 𝑋𝑋1,𝑋𝑋2, … ,𝑌𝑌,𝑍𝑍, …  and one symbol of a binary 
operation ∘. 

Here is the inductive definition of the term in this language: 

1.  Variables and constants are terms 
2.  If 𝑇𝑇1and 𝑇𝑇2 are terms, then 𝑇𝑇1 ∘ 𝑇𝑇2 is a term 
3.  All terms are obtained exactly, with finitely many applications of rules 1,2 

An equation is an expression 𝑇𝑇1 = 𝑇𝑇2 where 𝑇𝑇1 and 𝑇𝑇2 are terms, and there is at 
least one variable in at least one of the terms 𝑇𝑇1 and 𝑇𝑇2. 

Let 𝐿𝐿 be a complete residuated lattice. 

The solution of the equation 𝑇𝑇1 = 𝑇𝑇2 on the set 𝐴𝐴 with fixed constants (relations) 
from ℱ(𝐴𝐴⨉𝐴𝐴) and the set of variables {𝑋𝑋1, … ,𝑋𝑋𝑛𝑛} is the ordered 𝑛𝑛-tuple of 
relations (𝑅𝑅1, … ,𝑅𝑅𝑛𝑛) such that the equality 𝑇𝑇1 = 𝑇𝑇2 is true for all elements from 𝐴𝐴, 
when variables {𝑋𝑋1, … ,𝑋𝑋𝑛𝑛}  are exchanged with the relations (𝑅𝑅1, … ,𝑅𝑅𝑛𝑛) 
respectively and the binary symbol ∘ is exchanged with the composition of relations. 

The next example shows that for some equations, there are no solutions. 

Example 3 

Let 𝐿𝐿 be a three-element chain {0, 𝑝𝑝, 1} with 0 < 𝑝𝑝 < 1. Let 𝐴𝐴 = {𝑎𝑎, 𝑏𝑏}. 

We can easily check that the equation 𝑋𝑋 ∘ 𝑋𝑋 =  𝑄𝑄 does not have a solution with 

𝑄𝑄(𝑎𝑎, 𝑎𝑎) = 0,𝑄𝑄(𝑎𝑎, 𝑏𝑏) = 𝑝𝑝,𝑄𝑄(𝑏𝑏, 𝑎𝑎) = 0,𝑄𝑄(𝑏𝑏, 𝑏𝑏) = 0. 

Indeed, from the system of equations: 

(𝑋𝑋(𝑎𝑎, 𝑎𝑎)⋀𝑋𝑋(𝑎𝑎, 𝑎𝑎))⋁(𝑋𝑋(𝑎𝑎, 𝑏𝑏)⋀𝑋𝑋(𝑏𝑏, 𝑎𝑎)) = 0 

�𝑋𝑋(𝑎𝑎, 𝑎𝑎)⋀𝑋𝑋(𝑎𝑎, 𝑏𝑏)�⋁�𝑋𝑋(𝑎𝑎, 𝑏𝑏)⋀𝑋𝑋(𝑏𝑏, 𝑏𝑏)� = 𝑝𝑝 

�𝑋𝑋(𝑏𝑏, 𝑎𝑎)⋀𝑋𝑋(𝑎𝑎, 𝑎𝑎)�⋁�𝑋𝑋(𝑏𝑏, 𝑏𝑏)⋀𝑋𝑋(𝑏𝑏, 𝑎𝑎)� = 0 

(𝑋𝑋(𝑏𝑏, 𝑎𝑎)⋀𝑋𝑋(𝑎𝑎, 𝑏𝑏))⋁(𝑋𝑋(𝑏𝑏, 𝑏𝑏)⋀𝑋𝑋(𝑏𝑏, 𝑏𝑏)) = 0 
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we have that 𝑋𝑋(𝑎𝑎, 𝑎𝑎) = 0 and 𝑋𝑋(𝑏𝑏, 𝑏𝑏) = 0 (from the first and the fourth equations, 
respectively). So the left side of the second equation is 0, which is a contradiction. 
Hence, there is no solution to this equation. 

The next theorem gives conditions under which there is a solution to a type of 
equation. 

Theorem 21. Let 𝑇𝑇1 = 𝑇𝑇2 be an equation with variables {𝑋𝑋1, … ,𝑋𝑋𝑛𝑛}, such that there 
is at least one variable on each side of the equation. Then, there is the least solution 
(0,0, . . . ,0), and every solution is contained in a maximal solution. 

Proof: Obviously, (0,0, . . . ,0) is always one solution to the equation, and it is the 
least solution. 

By a generalization of Lemma 16, if �(𝑅𝑅1𝑖𝑖 , … ,𝑅𝑅𝑛𝑛𝑖𝑖 )�𝑖𝑖 ∈ 𝐼𝐼� is a chain of solutions, then 
(⋁ 𝑅𝑅𝑖𝑖∈𝐼𝐼 1

𝑖𝑖 , … ,⋁ 𝑅𝑅𝑖𝑖∈𝐼𝐼 1
𝑖𝑖 ) is also a solution, and it is an upper bound of the chain in the 

set of solutions. Since every chain in the set of solutions has an upper bound, by 
Lemma 4, there exists a maximal solution, and every solution is contained in a 
maximal one. 

Example 4. Let 𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑋𝑋 ∘ 𝑌𝑌 =  𝑆𝑆 ∘ 𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑅𝑅 be an equation, where 𝑃𝑃, 𝑆𝑆,𝑅𝑅 are 
constants and 𝑋𝑋 and 𝑌𝑌 variables. Then this equation has the least solution (𝑋𝑋,𝑌𝑌) =
(0,0) and the maximal solutions. 

Now, we proceed with the case when there is a side of the equation 𝑇𝑇1 = 𝑇𝑇2 without 
variables. 

Procedure for solving an equation in case there is a side of the equation 𝑻𝑻𝟏𝟏 =
𝑻𝑻𝟐𝟐  without variables, and there is a variable appearing only once. 

Let 𝑇𝑇1 = 𝑇𝑇2 be an equation in which 𝑋𝑋 is a variable appearing only once in 𝑇𝑇1, 𝑇𝑇2 is 
the term without variables and 𝑌𝑌1, … ,𝑌𝑌𝑛𝑛  are all other variables. 

Now, we take 𝑌𝑌1, … ,𝑌𝑌𝑛𝑛 to be all equal to 1 (𝑌𝑌𝑖𝑖(𝑥𝑥, 𝑦𝑦) = 1 for all 𝑥𝑥, 𝑦𝑦 ∈ 𝐴𝐴 and all 𝑖𝑖 ∈
{1, . . . ,𝑛𝑛}.) 

After composing all the constant elements in 𝑇𝑇1 and 𝑇𝑇2, we obtain one of three 
equations: 𝑃𝑃 ∘ 𝑋𝑋 = 𝑄𝑄, 𝑋𝑋 ∘ 𝑃𝑃 = 𝑄𝑄 and 𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄 =  𝑅𝑅. 

Necessary and sufficient conditions for their solvability are given as in [12] for the 
first two equations, and in formula (30) for the third equation. If the conditions are 
met, the greatest solutions to the equations coincide with the greatest solutions to 
the corresponding inequations, i.e., with 𝐺𝐺𝑃𝑃,𝑄𝑄, 𝐺𝐺𝑃𝑃,𝑄𝑄 𝐺𝐺𝑄𝑄,𝐺𝐺𝑃𝑃,𝑅𝑅  (see (24)-(26)) 
respectively. Let the solution for some of the equations 𝑃𝑃 ∘ 𝑋𝑋 = 𝑄𝑄, 𝑋𝑋 ∘ 𝑃𝑃 = 𝑄𝑄 and 
𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑄𝑄 =  𝑅𝑅 exist and let U be the greatest solution of the equation. Then, a 
maximal solution of the starting equation would be (𝑈𝑈, 1,1, . . . ,1). 

Example 5. Let 𝐿𝐿 be a four-element Boolean algebra {0, 𝑝𝑝, 𝑞𝑞, 1}, with 0 < 𝑝𝑝 < 1 
and 0 < 𝑞𝑞 < 1. Let 𝐴𝐴 = {𝑎𝑎, 𝑏𝑏} and let the equation be given with: 
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𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑌𝑌 ∘ 𝑅𝑅 ∘ 𝑌𝑌 =  𝑄𝑄, with two variables 𝑋𝑋 and 𝑌𝑌 the constant relations 𝑃𝑃,𝑄𝑄,𝑅𝑅 ∈
 ℱ(𝐴𝐴⨉𝐴𝐴) given in tables 1-3. 

Table 1  
Relation P 

𝑃𝑃 𝑎𝑎 𝑏𝑏 
𝑎𝑎 1 𝑝𝑝 
 𝑏𝑏 𝑝𝑝 1 

 

  Table 2  
Relation Q 

𝑄𝑄 𝑎𝑎 𝑏𝑏 
𝑎𝑎 𝑝𝑝 𝑝𝑝 
 𝑏𝑏 1 1 

 

 Table 3 
Relation R 

𝑅𝑅 𝑎𝑎 𝑏𝑏 
𝑎𝑎 𝑞𝑞 0 
 𝑏𝑏 𝑜𝑜 𝑝𝑝 

 

To solve the equation, we take 𝑌𝑌 = 1 and we obtain the equation 𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑆𝑆 =  𝑄𝑄, 
with S given in Table 4. 

Table 4 
Relation S 

𝑆𝑆 𝑎𝑎 𝑏𝑏 
𝑎𝑎 1 1 
 𝑏𝑏 1 1 

Finally, using the formula (26) to find the greatest solution of the corresponding 
inequation 𝑃𝑃 ∘ 𝑋𝑋 ∘ 𝑆𝑆 ≤ 𝑄𝑄 and checking by the formula (30) that it is also a solution 
to the considered equation, we obtain the greatest solution (Table 5). 

Table 5 
Solution 

𝑋𝑋 𝑎𝑎 𝑏𝑏 
𝑎𝑎 𝑝𝑝 𝑝𝑝 
𝑏𝑏 1 1 

and a maximal solution for the starting equation is (𝑋𝑋, 1). 

We can note here that this procedure does not always give us a solution, even if it 
exists. In case all the variables appear more than once in the term, this procedure 
cannot be applied. 

We can, likewise, consider general inequations, of the type 𝑇𝑇1 ⩽ 𝑇𝑇2. In case when 
𝑇𝑇1 contains a single variable 𝑋𝑋 occurring only once, we may prove the existence of 
the greatest solution. By 𝑇𝑇(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) we shall denote a term - as defined above - 
in which all the occurring variables belong to the set {𝑋𝑋1, … ,𝑋𝑋𝑛𝑛}. 

Theorem 22. There exists the greatest solution to inequations of the type 𝑇𝑇1(𝑋𝑋) ⩽
𝑇𝑇2(𝑋𝑋,𝑋𝑋1, … ,𝑋𝑋𝑛𝑛). 

Proof: Let 𝑇𝑇1(𝑋𝑋) ⩽ 𝑇𝑇2(𝑋𝑋,𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) be an inequation of the above type. It is 
solvable, since (0,0, … ,0) is a solution. Let �(𝑋𝑋𝑖𝑖,𝑋𝑋1𝑖𝑖 , … ,𝑋𝑋𝑛𝑛𝑖𝑖 )�𝑖𝑖 ∈ 𝐼𝐼� be the set of its 
solutions (𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑘𝑘𝑖𝑖  are constant relations), meaning that: 

𝑇𝑇1(𝑋𝑋𝑖𝑖) ⩽ 𝑇𝑇2(𝑋𝑋𝑖𝑖,𝑋𝑋1𝑖𝑖 , … ,𝑋𝑋𝑛𝑛𝑖𝑖 ) 
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Then we have: 

𝑇𝑇1 ��𝑋𝑋𝑖𝑖
𝑖𝑖∈𝐼𝐼

� = �𝑇𝑇1(
𝑖𝑖∈𝐼𝐼

𝑋𝑋𝑖𝑖) ⩽�𝑇𝑇2(𝑋𝑋𝑖𝑖,𝑋𝑋1𝑖𝑖 , … ,𝑋𝑋𝑛𝑛𝑖𝑖 )
𝑖𝑖∈𝐼𝐼

 

Since ∘ is order-preserving in ℱ(𝐴𝐴⨉𝐴𝐴), by induction on the complexity of terms, 
we can prove that terms - seen as functions on their variables - are order-preserving. 
Thus, for all 𝑖𝑖 ∈ 𝐼𝐼: 

𝑇𝑇2(𝑋𝑋𝑖𝑖 ,𝑋𝑋1𝑖𝑖 , … ,𝑋𝑋𝑛𝑛𝑖𝑖 ) ⩽ 𝑇𝑇2 ��𝑋𝑋𝑖𝑖
𝑖𝑖∈𝐼𝐼

,�𝑋𝑋1𝑖𝑖
𝑖𝑖∈𝐼𝐼

, … ,�𝑋𝑋𝑛𝑛𝑖𝑖
𝑖𝑖∈𝐼𝐼

� 

and, consequently: 

�𝑇𝑇2(𝑋𝑋𝑖𝑖 ,𝑋𝑋1𝑖𝑖 , … ,𝑋𝑋𝑛𝑛𝑖𝑖 )
𝑖𝑖∈𝐼𝐼

⩽ 𝑇𝑇2 ��𝑋𝑋𝑖𝑖
𝑖𝑖∈𝐼𝐼

,�𝑋𝑋1𝑖𝑖
𝑖𝑖∈𝐼𝐼

, … ,�𝑋𝑋𝑛𝑛𝑖𝑖
𝑖𝑖∈𝐼𝐼

� 

which further implies 

𝑇𝑇1 ��𝑋𝑋𝑖𝑖
𝑖𝑖∈𝐼𝐼

� ⩽ 𝑇𝑇2 ��𝑋𝑋𝑖𝑖
𝑖𝑖∈𝐼𝐼

,�𝑋𝑋1𝑖𝑖
𝑖𝑖∈𝐼𝐼

, … ,�𝑋𝑋𝑛𝑛𝑖𝑖
𝑖𝑖∈𝐼𝐼

� 

This means that the supremum of all the solutions to the above inequation is also a 
solution, actually, the greatest one. 

Conclusions 

In our study, as a first step, we structured the existing knowledge and provided some 
missing results, related to the existence of solutions (the greatest and the least) in 
lattice-valued relational equations and inequations, with only one unknown on each 
side of the equation (inequation).  We used the obtained results to find solutions to 
equations and inequations, with more unknowns. 

Our next step in the future work is to continue solving the more complex cases, in 
this class of equations and inequations, with more unknowns. 
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