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Abstract: In this work, we focus on the task of multi-label classification (MLC), where 

every example is associated with a set of labels. We present an algorithm for learning 

option predictive clustering trees (OPCTs) for MLC, based on the predictive clustering 

framework. The algorithm addresses the myopia of the standard tree induction algorithm 

by considering alternative splits in the internal nodes of the tree and introducing option 

nodes where appropriate. An option tree can be viewed as a compact representation of an 

ensemble, as well as, used as a pool of candidates from which a single tree can be 

extracted. This broadens the space of trees that is searched and reduces the myopia, 

compared to the standard tree induction. We evaluate the proposed OPCTs on 12 

benchmark MLC datasets from different domains. Results show that OPCTs as ensembles 

can achieve performance similar to the bagging ensembles of PCTs, while the single trees 

extracted from OPCTs can outperform standard PCTs. We also perform parameter 

sensitivity analysis and provide avenues for future work. 

Keywords: predictive clustering trees; option trees; multi-label classification; myopia 

1 Introduction 

The most widely studied machine learning task is binary classification where the 

goal is to predict whether an example belongs to a group/class or not. If the 

examples can belong to a single class from a given set of m classes (m > 2) the 

task is known as multi-class classification. In this work, we focus on the multi-

label classification (MLC) task, where a single example can be assigned several 

labels (i.e., a subset of a given set of possible labels). 

MLC is a well-established predictive modelling task. The methods addressing this 

task belong in two groups: problem transformation and algorithm adaptation 

methods [4]. The problem transformation methods transform the multi-label 

learning problem into one or more single-label classification problems, which a 

great number of machine learning algorithms are capable of solving. 
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The problem transformation methods can be further split into three categories: 

binary relevance, label power-set and pair-wise methods. Binary relevance 

methods use the one-against-all strategy to convert the problem into several binary 

classification problems. A closely related method is the classifier chain method 

and its ensemble extension [9]. Label power-set (LP) methods transform the 

problem into a single multi-class classification problem, where a separate class is 

created for every possible subset of original labels. In this way, LP based methods 

directly take into account the label correlations. Representative methods include 

HOMER [5] and RAkEL [3]. Pair-wise methods perform pair-wise or round robin 

classification, with binary classifiers using Q(Q - 1)/2 classifiers covering all pairs 

of labels [17]. To combine these classifiers, the pairwise classification method 

uses majority voting. 

The algorithm adaptation methods customize existing machine learning 

algorithms for the task of MLC. There are extensions of the following machine 

learning algorithms: boosting, k-nearest neighbors, decision trees and neural 

networks. The extended methods are able to directly handle multi-label data. 

AdaBoost.MH and AdaBoost.MR [8] are two extensions of AdaBoost for multi-

label data. While AdaBoost.MH is designed to minimize Hamming loss, 

AdaBoost.MR is designed to find a hypothesis which ranks the correct labels at 

the top. Several variants for multi-label learning (ML-kNN) of the popular k-

Nearest Neighbors (kNN) lazy learning algorithm have been proposed [1]. 

Decision tree extension was proposed within the predictive clustering framework 

[22]. A single predictive clustering tree (PCT) is constructed by using a splitting 

criterion that considers all of the labels. The PCTs for MLC were also used in an 

ensemble setting [14]. Neural networks have been adapted for MLC by 

introducing a new error function that takes multiple labels into account [18]. 

An extensive experimental comparison [12] of 12 MLC methods on 11 datasets 

using 16 performance measures showed that ensembles of PCTs are a state-of-the-

art method for the MLC task. However, as already pointed out, a common concern 

with decision tree based models is their myopia, resulting from the greedy 

induction algorithm used to learn them. For this reason, several alternatives were 

proposed, such as beam search induction [15] and option trees [19], aimed at 

reducing the myopia of the trees. Both approaches showed that they can improve 

the performance of standard decision trees, while [12] also showed that very large 

option trees achieve the performance of bagging ensembles of decision trees. 

Conversely, [10] argues that exhaustive searching of the model space often leads 

to an inferior generalization. 

In this work, we extend predictive clustering trees (PCTs) for MLC with option 

nodes, thus forming option predictive clustering trees (OPCTs). An option tree can 

be seen as a condensed representation of an ensemble of trees which share a 

common substructure. For illustration, see Figures 2 and 6. We also examine 

different techniques for selecting the optimal embedded tree from the OPCT. In 

this way, we increase the space of trees searched by the algorithm. We evaluate 



Acta Polytechnica Hungarica Vol. 17, No. 10, 2020 

 – 111 – 

both OPCTs as ensembles and the best embedded trees extracted from OPCTs on 

several datasets from different domains. The goal of this paper is to see whether 

OPCTs as ensembles can achieve the performance of bagging ensembles for the 

MLC task, and if selecting the best embedded tree can reduce the myopia of the 

standard decision trees. 

The remainder of this paper is organized as follows. Section 2 describes the 

algorithm for learning OPCTs for MLC. Next, Section 3 outlines the design of the 

experimental evaluation. Section 4 continues with a discussion of the results. 

Finally, we conclude and provides possible directions for further work. 

2 Option Predictive Clustering Trees 

The predictive clustering trees framework views a decision tree as a hierarchy of 

clusters. The top-node corresponds to one cluster containing all data, which is 

recursively partitioned into smaller clusters while moving down the tree. The PCT 

framework is implemented in the CLUS system [23] available at 

http://clus.sourceforge.net. 

OPCTs extend the PCT framework by introducing option nodes into the tree 

building procedure. Option decision trees were first introduced as classification 

trees by Buntine [19] and then analyzed in more detail by Kohavi and Kunz [13]. 

Ikonomovska et al. [16] analyzed regression option trees in the context of data 

streams. We also evaluated OPCTs for the multi-target regression task [11] and 

hierarchical multi-label classification task [7]. 

The motivation for the introduction of option trees is to address the myopia of the 

top-down induction of decision trees (TDIDT) algorithm [20]. From the 

perspective of the predictive clustering framework, a PCT is a non-overlapping 

hierarchical clustering of the whole input space. Each node (subtree) corresponds 

to a clustering of a subspace and prediction functions are placed in the leaves, i.e., 

the lowest clusters in the hierarchy. In contrast, an OPCT allows the construction 

of an overlapping hierarchical clustering. This means that at each node of the tree 

several alternative hierarchical clusterings of the subspace can appear instead of a 

single one. When using TDIDT to construct a predictive clustering tree, all 

possible splits are evaluated by using a heuristic, and the best split is selected. 

However, other splits may have very similar heuristic values and the difference 

between them could be a consequence of noise or sampling that generated the 

data. In this case, selecting a different split could be optimal. To address this 

concern, the use of option nodes was proposed [13]. 

Figure 1 presents the TDIDT algorithm modified for the induction of OPCTs. The 

function call FindBestTests(E,O) returns the O best tests according to the heuristic 

score in descending order (best first). Every test is represented as a triplet (t,h,P), 
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where t is the actual test function, h is its heuristic value and P is the set of 

partitions produced by the test. 

 

Figure 1 

The top down induction algorithm for option PCTs 

The main component of the algorithm is the heuristic score used to evaluate the 

splits. For the MLC task, sets of labels are presented as binary vectors, where 

every component denotes the presence (1) or absence (0) of one label. For every 

component the Gini index is calculated, and their average is the final heuristic 

score. The algorithm introduces an option node into the tree when the best splits 

have similar heuristic values. Instead of selecting only the best split, we select 

every split s that satisfies the condition: 

1
)(

)(

bestsHeur

sHeur
                     (1) 
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where sbest is the best split and ε determines how similar the heuristics must be. 

E.g., when ε=0.1, we are selecting only splits whose heuristics are within 10% of 

the best split. Typical values of ε are in the [0, 1] interval. After we have 

determined the candidate splits, we introduce an option node whose children are 

split nodes containing the selected splits. When no suitable test is found, a leaf 

node is created that stores the prototype of examples sorted to that leaf. For the 

MLC task, the i-th component of the prototype is the average value of the i-th 

components of examples in that leaf. 

Introducing an option node with a large number of options is not advised [13] as it 

can lead to the explosion of model sizes. Therefore, we limit the maximum 

number of options included in a single option node (parameter O). To further limit 

the exponential growth of the tree, we also set the maximum depth in the tree 

where an option node can be introduced (parameter L). This means that on levels 

deeper than L, the tree is built following the standard TDIDT algorithm. This 

follows our intuition that splits lower in the tree, where clusters are already more 

homogeneous, are less important than splits higher in the tree. 

Once an OPCT is learned, we use it to make predictions. In a regular PCT an 

example is sorted into a leaf (reached according to the tests in the nodes of the 

tree) where the prototype stored in that leaf is predicted. Traversing an example 

through an OPCT is the same for split nodes and leaves. When we encounter an 

option node, however, we traverse the example down each of the options. This 

means that in an option node an example is sorted to multiple leaves, where 

multiple predictions are produced. To obtain a single prediction in an option node, 

we aggregate the obtained predictions. For the MLC task, the aggregation is 

simple component-wise averaging of the vectors, as it is done in PCT ensembles. 

The resulting vector gives us pseudo-probabilities of every label, to which a 

threshold can be applied to select the actual labels. 

An option tree is usually observed as a single tree, however, it can also be 

interpreted as a compact representation of an ensemble. We can extract embedded 

trees out of an option tree by replacing every option node with one of its options 

(Figure 2). A given OPCT is also an extension of the PCT learned on the same 

data. By definition, whenever we introduce an option node, the best split is one of 

the options included. Consequently, the PCT is an embedded tree in the OPCT, 

resulting from replacing all option nodes with the best option. 

In addition to using an option tree as an ensemble of embedded trees, we can also 

extract a single embedded PCT out of it. This increases the space of trees searched 

by the TDIDT algorithm and directly addresses its myopia. The simplest way to 

select a single embedded PCT is to use the error on the training dataset as the 

selection criterion. This is an attractive option since it requires very little extra 

work and no extra data, but can lead to overfitting. 
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Figure 2 

An option tree (left) and the ensemble of its embedded trees (right). Oi are option nodes, Sj split nodes 

and Lk leaf nodes. 

Another option is to use a part of the training data as a separated validation set, 

which would not be used for the initial learning of the OPCT, but would be 

utilized to determine which of the embedded trees has the best predictive 

performance. We can also use expert knowledge to select the embedded tree. 

Providing a domain expert with an option tree gives them a lot of choices with 

regards to the model. This approach also has the advantage that the domain expert 

need not be available for interaction when the model is learned, but can assess the 

OPCT and chose the preferred options later on. 

3 Experimental Design 

The experimental evaluation was performed on 12 datasets from biology, text 

classification and multimedia domains. They are described in Table 1. All datasets 

except CAL500 were retrieved pre-divided into training and testing sets and we 

used them in their original format to facilitate easier comparison of the results. 

The CAL500 dataset was randomly split on training and test sets. All 12 datasets 

can be found at http://mulan.sourceforge.net/datasets-mlc.html. 

There are many measures of performance used for the MLC task [12]. In our 

comparison we focus on Area Under the Average Precision-Recall Curve 

( ) [2]. It combines the pseudo-probabilities of all the different labels as if 

they belonged to a single binary classification problem, and calculates the area 

under the precision-recall curve from them. A nice feature of  is that it is 
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a threshold independent measure, so we do not have to worry about setting the 

threshold at which the labels are predicted in the leaves (as explained in Section 

2). In the appendix we include the results for two additional performance 

measures (Ranking Loss and One Error [12]), from which similar conclusions can 

be made. 

Table 1 

Properties of the datasets used in the study: number of examples in the training/testing datasets 

(Ntr/Nte), number of descriptive attributes (discrete/continuous, D/C), the total number of labels (Q) 

and label cardinality (lc) 

 Ntr/Nte D/C Q lc 

bibtex 4880/2515 1836/0 159 2.40 

birds 322/323 2/258 19 1.01 

CAL500 302/200 0/68 174 26.0 

corel5k 4500/500 499/0 374 3.52 

emotions 391/202 0/72 6 1.87 

enron 1123/579 1001/0 53 3.38 

flags 129/65 9/10 7 3.39 

genbase 463/199 1185/0 27 1.25 

medical 645/333 1449/0 45 1.25 

scene 1211/1196 0/294 6 1.07 

tmc2007-500 21519/7077 500/0 22 2.16 

yeast 1500/917 0/103 14 4.24 

We used the 12 benchmark datasets to evaluate OPCTs. Firstly, we wanted to see 

how the OPCTs as ensembles of embedded PCTs compare to the bagging 

ensembles of PCTs [21]. Specifically, we were interested in the trade-off between 

the performance and the size of the model. For the size of the model we looked at 

the total number of leaves in the tree(s). For the bagging ensembles of PCTs, the 

number of trees in the ensemble is the primary way to control the size of the 

model. We ran the experiments with 10, 25, 50, 100 and 125 PCTs in the 

ensemble. 

For OPCTs, we can influence the number of option nodes introduced into the tree 

by using different parameter values. We considered different values for the ε 

parameter from the set {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0}. When ε=1, option 

nodes with the best O splits are always introduced at the top L levels of the tree. 

We also tried different settings of the O and L parameters. Specifically, we used 

pairs (O, L) from the set {(10, 2), (5, 3), (3, 4)}. In addition to a better 

understanding of the performance vs. size trade-off, this also gives us insight into 

what is more valuable in OPCTs: more options at the top of the tree, or allowing 

option nodes lower in the tree. The pairs were selected in a way that at the 

maximum amount of option nodes introduced (e.g., at ε=1), the OPCTs would 

aggregate a similar amount of predictions compared to bagging ensembles of 100 
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PCTs. An important thing to note here is that different selections of parameters 

can still produce the same OPCT, if for a given dataset the same splits satisfy both 

criteria. 

We also compared standard PCTs to the best embedded trees extracted from 

OPCTs (from here on referred to as BestEmbedded trees). We tried two 

approaches to extracting the BestEmbedded trees from OPCTs: selecting the 

embedded tree based on the training set performance, and based on the 

performance on a separate validation set not used to build the original OPCT. 

Both PCTs and BestEmbedded trees were post pruned using the training set in the 

first set of experiments, and using the validation set in the second set. This way, 

standard PCTs also benefited from the validation set, thus enabling a fair 

comparison. Note that BestEmbedded trees therefore use the validation set both 

for embedded tree selection and pruning. BestEmbedded trees were extracted from 

various OPCTs built with the same parameter settings described in the previous 

paragraph. This gave us insight into how different parameters influence the 

performance of the BestEmbedded trees. As a validation set, we randomly 

selected 20% of examples from the initial training set. 

4 Results and Discussion 

4.1 Comparison of OPCTs and Bagging Ensembles 

Figure 3 shows the trade-off between the performance and size of the model for 

bagging ensembles of PCTs and OPCTs as ensembles. We can see that increasing 

the number of options improves the performance of OPCTs. In contrast to adding 

more trees to an ensemble, this is not guaranteed, since additional options include 

split nodes with lower heuristic scores. The performance improvement saturates at 

the largest OPCTs and often reaches the performance of bagging ensembles (on 7 

datasets). All models seem to perform equally well on the genbase dataset, and 

much better than single PCTs (results on Figure 4). 

Note that the comparison of the sizes of the trees is closely related to the 

comparison of running times. The most time consuming items when learning a 

tree are the evaluations of the candidate splits and then splitting the data. This is 

done in the same way in both PCTs (and ensembles thereof) and OPCTs, 

therefore, similar number of nodes in the trees indicates similar time needed for 

their induction. 
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Figure 3 

Trade-off between size and performance of bagging ensembles of PCTs and OPCTs. The size of 

ensembles is influenced by the number of trees, whereas the size of OPCTs is mainly influenced by the 

number of option nodes introduced into the tree. Note that every graph is on a different scale. 

By comparing the results of OPCTs with different settings of parameters O and L, 

we can see that the pair (O, L) = (10, 2) offers the best performance, followed by 

(O, L) = (5, 3). This confirms our intuition that option nodes lower in the tree are 

less useful and do not offer enough improvement in performance to justify the 

increased model size. This is especially evident on the bibtex, birds, emotions and 

scene datasets. 
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Figure 4 

Performance of BestEmbedded trees produced by different parametrizations of OPCTs and selected 

based on training set performance, compared to the performance of a single PCT. Note that every 

graph is on a different scale. 

4.2 Comparison of BestOptions and Standard PCTs 

Figures 4 and 5 show the comparison of standard PCTs and the BestEmbedded 

trees extracted from OPCTs with different parameters. Figure 4 shows the results 

for BestEmbedded trees selected based on the training set performance, and 

Figure 5 based on the validation set performance. First thing we can notice is that 
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the BestEmbedded trees and PCTs often have very similar or identical 

performance. There are usually no significant differences in size as well. In fact, 

often the BestEmbedded tree is the same as the standard PCT, especially when it 

is selected based on the training set. This is not surprising, since standard PCTs 

choose splits that perform best on the training set at each step. We can also see 

that having a separate validation set for pruning can greatly improve the 

performance of both standard PCTs and BestEmbedded trees (the bibtex, genbase, 

medical and tmc2007 datasets). 

 

Figure 5 

Performance of BestEmbedded trees produced by different parametrizations of OPCTs and selected 

based on validation set performance, compared to the performance of a single PCT. Note that every 

graph is on a different scale. 
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Another thing that the results show is that for extracting BestOptions, option 

nodes deeper in the tree are still helpful. While the parameter values (O, L) = (10, 

2) always provided the best results for OPCTs as ensembles, even parameter 

values (O, L) = (3, 4) often lead to the best selection of BestEmbedded trees. 

With larger OPCTs a larger space of trees is searched when selecting 

BestEmbedded trees, and that is where there are more differences compared to 

standard PCTs. Even when selected based on the training set performance, 

BestEmbedded trees often perform better than standard PCTs (on the scene, 

tmc2007 and mostly flags datasets). But it also frequently happens that the 

BestEmbedded tree generalizes worse than the standard PCT (the bibtex, 

emotions, genbase and flags datasets). 

Using a validation set to select the BestEmbedded tree mostly helps in selecting a 

tree that generalizes better, when compared to the train set selection. This can be 

nicely seen on the bibtex, emotions, enron, scene and flags datasets. However, in 

some cases it leads to a worse selection relatively to the standard PCT, as seen on 

the medical, tmc2007 and yeast datasets. The cause for this may be oversearching, 

as described in [10]. By searching the space of trees more exhaustively, we have a 

higher chance of discovering "fluke" theories that fit the data well, but generalize 

poorly. As opposed to what is commonly understood as overfitting, these "fluke" 

theories are not overly complex. For example, when selecting the BestEmbedded 

tree, the standard PCT is always one of the options. It often happens that the tree 

with the best performance on the validation set is smaller (represents a simpler 

theory) than the standard PCT, but it still has a poorer performance on the test set. 

4.3 Use Case Demonstration 

We demonstrate the usefulness of OPCTs on the emotions dataset [6]. The 

examples in the emotions dataset are 30 seconds long music samples extracted 

from 100 different songs from different genres. The goal is to label the music 

samples with the emotions present in the music. There are 6 possible labels 

corresponding to 6 emotional clusters. The music samples are described with 8 

rhythmic features and 64 timbre features. 

Figure 6 shows an example of an OPCT trained on the emotions dataset for 

illustrative purpose. It was pruned to reduce the tree size to a humanly manageable 

proportions and contains only one option node with three options. 
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Figure 6 

A heavily pruned OPCT constructed on the emotions dataset. Option nodes are represented as circles, 

standard split nodes have oval shape and leaf nodes are shown as boxes containing the labels predicted 

in that leaf. 

Figure 7 shows a PCT trained using the standard top down induction algorithm. 

 

Figure 7 

A standard PCT constructed on the emotions dataset. Split nodes have oval shapes and leaf nodes are 

shown as boxes containing the labels predicted in that leaf. 

Figure 8 shows the BestEmbedded tree selected from OPCT_O5_L3 with ε=0.2. 

They were both pruned using the validation set. The standard PCT has 22 leaf 

nodes and it achieved 0.57 , while the BestEmbedded tree is much 

smaller with only 9 leaves and has better predictive performance with 0.62 

. We can see that they differ already at the root node. 

This demonstrates the ability of OPCTs to help us find better performing trees, 

which can even be smaller than standard trees. Ideally, the BestEmbedded trees 

can be selected by experts, looking at the OPCT and selecting the options that are 

consistent with their knowledge. 
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Figure 8 

The BestEmbedded tree selected from OPCT_O5_L3 with ε=0.2 constructed on the emotions dataset. 

Standard split nodes have oval shapes and leaf nodes are shown as boxes containing the labels 

predicted in that leaf. 

Conclusions 

In this work, we present an algorithm for learning option predictive clustering 

trees for the task of multi-label classification, where every example is associated 

with a set of labels. OPCTs are global models that predict the entire label sets 

simultaneously and belong in the algorithm adaptation group of methods. The 

main purpose of the proposed algorithm is to reduce the myopia of the standard 

greedy algorithm for learning PCTs. During tree construction, if multiple tests 

have heuristic scores similar to that of the best test, an option node is created that 

contains a set of alternative sub-nodes, called options, i.e., a set of the best 

performing splits. When predicting the labels of an example, each option produces 

a prediction, and predictions from different options are then aggregated in the 

option node. This leads us to consider option trees as condensed representations of 

an ensemble of trees. 

In addition to the pseudo-ensemble aspect of OPCTs, we can also look at them as 

a set of possible PCTs (embedded trees), and select one of them as the final 

model. This broadens the search over the space of possible trees and decreases the 

myopia of the algorithm. There are multiple ways of selecting the best embedded 

trees. In our experiments, we used the performance on the training set, and the 

performance on a validation set. Another option is to use expert knowledge to 

select the best options in the option tree. 

We performed an experimental evaluation of the OPCT method and the 

BestEmbedded trees, and compared them to standard PCTs and bagging 

ensembles of PCTs. The evaluation was performed on 12 datasets appropriate for 

the MLC task, and we measured model performance with . The results 

show that large OPCTs can often reach the performance of tree ensembles, and 

that BestEmbedded trees can outperform standard trees. Unfortunately, we can 

also fall in the trap of oversearching and find BestEmbedded trees with worse 
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predictive performance compared to standard PCTs. We also looked into how 

different parameters affect the performance of OPCTs and BestEmbedded trees. 

We found that allowing more option nodes higher in the tree, while limiting them 

on the lower levels (parameter values (O, L) = (10, 2)) works best for OPCTs as 

ensembles. For BestEmbedded trees, option nodes lower in the tree are still useful 

and can help find better trees. We demonstrated the potential of OPCTs on a 

music emotion labelling dataset, where the BestEmbedded tree was much smaller 

than the standard PCT, yet had a better predictive performance. 

There are several paths for further work. We would like to evaluate OPCTs and 

BestEmbedded trees in a domain where an expert would help select the best splits 

in the option nodes. Additionally, we plan to investigate the use of OPCTs for 

feature ranking and selection for MLC datasets. 
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Appendix – additional results 

 

Figure 9 

Comparison of bagging and OPCTs using the ranking loss measure. For details see Figure 3. 
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Figure 10 

Comparison of PCTs and BestOption trees selected based on the training set performance using the 

ranking loss measure 

 

 

Figure 11 

Comparison of PCTs and BestOption trees selected based on the validation set performance using the 

ranking loss measure 
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Figure 12 

Comparison of bagging ensembles and OPCTs using the one error measure. For details see Figure 3. 

 

Figure 13 

Comparison of PCTs and BestOption trees selected based on the training set performance using the one 

error measure 
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Figure 14 

Comparison of PCTs and BestOption trees selected based on the validation set performance using the 

one error measure 


